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An adaptive second-order sliding mode controller is proposed for a class of nonlinear systems with unknown input. The proposed
controller continuously drives the sliding variable and its time derivative to zero in the presence of disturbances with unknown
boundaries. A Lyapunov approach is used to show finite time stability for the system in the presence of a class of uncertainty. An
illustrative simulation example is presented to demonstrate the performance and robustness of the proposed controller.

1. Introduction

Sliding mode control (SMC) has gained much attention due
to its attractive characteristics of finite time convergence and
robustness against uncertainties [1–3]. Sliding mode control
has been thoroughly studied, fromboth practical and theoret-
ical point of view, for example, successfully applied for control
of time delay systems [4, 5], control and observation of fuel
cell power systems [6–11], control and observation of power
converters [12–16], and adaptive control of flexible spacecraft
[17, 18]. Robustness of a control system is essential based
on the reason that various uncertainties exist in practical
systems. These nonlinear systems are with structured and
unstructured uncertainties and external disturbances such
as load variation. However, the price of using sliding mode
control to achieve robustness to these disturbances is control
chattering problem [19–22]; chattering is undesired because
it may cause high frequency dynamics and even instabil-
ity. Therefore, in order to achieve the optimal operation
performance of such uncertain systems, suitable model and
controller development efforts are needed [23–26].

There are several ways to avoid chattering problem when
using sliding mode control. The conventional SMC uses a

control law with large control gains yielding the undesired
chattering while the control system is in the sliding mode. To
eliminate the chattering, the discontinuous control function
is replaced by “saturation” or continuous “sigmoid” functions
in [27, 28]. However, such approach constrains the sliding
system’s trajectories not to the sliding surface but to its
vicinity losing the robustness to the disturbances. Higher
order sliding mode control techniques are used in [29–32]
which allow driving the sliding variable and its consecutive
derivatives to zero in the presence of the disturbances.
However, the main challenge of high order sliding mode
controllers is the use of high order time derivatives of sliding
variable. It is interesting to note that the popular super-
twisting algorithm [1] only requires the measurement of the
sliding mode variable without its time derivative. Recently,
adaptive sliding mode controller has been proposed to tune
the controller gains with respect to disturbances [33, 34].
Intelligent controllers such as fuzzy neural network [35,
36] and adaptive fuzzy sliding mode controller [37, 38]
were proposed to reduce the chattering. However, all the
aforementioned literatures address the case based on the
assumption that the boundary of the disturbances is known.
This boundary cannot be easily obtained in practical cases.
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The overestimating of the disturbance boundary yields to
larger than necessary control gains, while designing the
super-twisting control law [32].

In this paper, an adaptive controller gain super-twisting
algorithm (ASTW) is proposed for nonlinear system with
unknown input. Based on the Lyapunov theory, the proposed
control law continuously drives the sliding variable and its
time derivative to zero in the presence of bounded unknown
input but without knowing the boundary. The stability and
the robustness of the control system are proven, and the
tracking performance is ensured.

2. Problem Formulation

The super-twisting control law (STW) is effective to remove
the chattering when the relative degree equals one. It gener-
ates the continuous control function that drives the sliding
variable and its time derivative to zero in finite time in the
presence of bounded unknown disturbance. The main dis-
advantage of STW algorithm is that it requires the bounded
value of 𝜎̇ [39] (𝜎 is the sliding variable). Unfortunately, the
knowledge of 𝜎̇ is often unavailable. The overestimating of
the 𝜎̇ will yield to larger than necessary control gains while
designing the STW control law. In this note, an adaptive-gain
approach will be adopted when designing STW control law,
which does not require the bounded value of 𝜎̇. The idea of
adaptive-gain approach is to increase the control gain 𝛼, 𝛽
dynamically until the STW controller converges. Once the
𝜎 > 0, then gains will start reducing; this gains reduction
will be reversed as soon as the sliding variable 𝜎 and its time
derivative 𝜎̇ start deviating from the equilibrium point 𝜎 =
𝜎̇ = 0.

Consider a class of 𝑛th-order uncertain nonlinear system,
which is represented in a state-space form as

𝑥̇ = 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 + 𝑑, (1)

where 𝑥 = [𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
]

𝑇
= [𝑥

1
, 𝑥̇

1
, . . . , 𝑥

1

𝑛−1
]

𝑇
∈ R𝑛 is

the state vector, 𝑢 ∈ R is the control function, 𝑑 ∈ R𝑛 is the
external disturbance, and 𝑓(𝑥) ∈ R𝑛 and 𝑏(𝑥) ∈ R𝑛 are the
smooth vector fields.

Let the desired state vector be 𝑥
𝑑
; the tracking error and

the sliding-surface function are defined as

𝑒 (𝑥, 𝑡) = 𝑥 − 𝑥

𝑑

𝜎 (𝑥, 𝑡) = 𝑐

𝑇
𝑒,

(2)

where 𝑐 = [𝑐
1
, 𝑐

2
, . . . , 𝑐

𝑛
]

𝑇. The sliding mode will be obtained
in finite time if an appropriate control law is applied. In the
sliding mode, the error dynamics will be

𝑐

𝑛
𝑒

(𝑛−1)

1
+ 𝑐

𝑛−1
𝑒

(𝑛−2)

1
+ ⋅ ⋅ ⋅ + 𝑐

1
𝑒

1
= 0.

(3)

The constants 𝑐
1
, 𝑐

2
, . . . , 𝑐

𝑛
are chosen to be positive such that

the eigenvalue polynomial 𝜑(𝜆) = 𝑐
𝑛
𝜆

𝑛−1
+ 𝑐

𝑛−1
𝜆

𝑛−2
+ ⋅ ⋅ ⋅ + 𝑐

1

is Hurwitz.The choice of 𝑐 decides the convergence rate of the
tracking error.

Assumption 1. The relative degree of system (1) with the
sliding variable 𝜎with respect to 𝑢 equals one; in other words,
the control function 𝑢 has to appear explicitly in the first total
derivative 𝜎̇.

Under Assumption 1, the dynamics of 𝜎 can be computed
as follows:

𝜎̇ = 𝑔 (𝑥) 𝑢 + 𝜌 (𝑥, 𝑡) , (4)

where 𝜌(𝑥, 𝑡) = 𝑐𝑇𝑓(𝑥) + 𝑐𝑇𝑑 − 𝑐𝑇𝑥̇
𝑑
and 𝑔(𝑥) = 𝑐𝑇𝑏(𝑥) ̸= 0.

Assumption 2. The first-order time derivative of the uncer-
tain function 𝜌(𝑥, 𝑡) ∈ R is bounded

̇𝜌 (𝑥, 𝑡) ≤ 𝛿, (5)

for some unknown constants 𝛿 > 0.

Assumption 3. The uncertain function 𝑔(𝑥, 𝑡) ∈ R is
presented as

𝑔 (𝑥, 𝑡) = 𝑔

0
(𝑥, 𝑡) + Δ𝑔 (𝑥, 𝑡) , (6)

where 𝑔
0
(𝑥, 𝑡) > 0 is the nominal parts of 𝑔(𝑥, 𝑡) and Δ𝑔(𝑥, 𝑡)

is the parameter variation such that
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

Δ𝑔 (𝑥, 𝑡)

𝑔

0
(𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜂 < 1. (7)

With Assumptions 2 and 3, (4) can be written as follows:

𝜎̇ = 𝜌 (𝑥, 𝑡) + 𝑔

1
(𝑥, 𝑡) 𝜔, (8)

where 1 − 𝜂 ≤ 𝑔
1
(𝑥, 𝑡) = 1 + Δ𝑔(𝑥, 𝑡)/𝑔

0
(𝑥, 𝑡) ≤ 1 + 𝜂 and

𝜔 = 𝑔

0
(𝑥, 𝑡)𝑢. The solution of (8) is understood in the sense

of Filippov [40].

3. Adaptive-Gain STW Controller Design

The control objective is to drive the sliding variable 𝜎 and
its derivative 𝜎̇ to zero in finite time without the control
gain overestimation based on Assumptions 2 and 3 satisfied.
The classical SMC can handle with the task to keep an
output variable 𝜎 at zero when the relative degree of 𝜎 is
one. However, the high frequency control switching leads to
the chattering effect which is exhibited by high frequency
vibration of the controlled plant and can be dangerous in
some applications. The second-order sliding mode (SOSM)
controllers including the continuous STW control algorithm
are able to remove the chattering effect while preserving the
main sliding mode features and improving its accuracy in
the presence of unknown disturbance. However, it requires
the knowledge of bounded disturbance. Unfortunately, the
assumption of the disturbance is often unavailable in practice
which leads to controller gain overestimation.

In this note, an adaptive-gain approach is used to solve
this problem with STW algorithm. STW controller generates
the continuous control function to remove the chattering
effect while adaptive-gain approach allows controller gain
nonoverestimation.
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The STW algorithm can be described by differential
inclusion as follows [1, 32]:

𝜔 = −𝜆 |𝜎|

1/2 sign (𝜎) + V

V̇ = −𝛼 sign (𝜎) ,
(9)

where the time varying controller gains

𝜆 = 𝜆 (𝜎, 𝑡) ,

𝛼 = 𝛼 (𝜎, 𝑡)

(10)

are to be defined later.
Substituting (9) into (8), it follows that

𝜎̇ = −𝜆𝑔

1
(𝑥, 𝑡) |𝜎|

1/2 sign (𝜎) + 𝜑,

𝜑̇ = −𝛼𝑔

1
(𝑥, 𝑡) sign (𝜎) + 𝜙 (𝑥, 𝑡) ,

(11)

where 𝜑 = 𝑔
1
(𝑥, 𝑡)V + 𝜌(𝑥, 𝑡) and 𝜙(𝑥, 𝑡) = ̇𝑔

1
(𝑥, 𝑡)V + ̇𝜌(𝑥, 𝑡).

The term ̇𝑔

1
(𝑥, 𝑡)V is assumed to be bounded with some

unknown constant 𝛿
1
; that is,

󵄨

󵄨

󵄨

󵄨

𝜙 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝛿

1
+ 𝛿 = 𝛿

2
, (12)

for some unknown constant 𝛿
2
> 0.

In this paper, the gains 𝜆(𝜎, 𝑡) and 𝛼(𝜎, 𝑡) are formulated
as

𝜆 (𝜎, 𝑡) = 𝜆

0
√
𝑙 (𝑡),

𝛼 (𝜎, 𝑡) = 𝛼

0
𝑙 (𝑡) ,

(13)

with 𝜆
0
, 𝛼
0
arbitrary positive constants and a positive time

varying scalar 𝑙(𝑡). The dynamic law of the varying function
𝑙(𝑡) is given by

̇

𝑙 (𝑡)

{

{

{

𝑘, if |𝜎| ̸= 0

0. otherwise,
(14)

where 𝑘 > 0 is a positive constant.
Now, the control objective is reduced to driving 𝜎 and its

derivative 𝜎̇ by (13) and (14) to zero in finite time with the
condition of bounded perturbations in (12). Thus, the design
of adaptive STW controller is formulated in the following
theorem.

Theorem 4. Consider system (11); suppose that (12) holds.
Then, for any initial conditions 𝑥(0), 𝜎(0), the adaptive-gain
STW control laws (13), (14) drive the sliding variable 𝜎 and its
derivative 𝜎̇ to zero in finite time.

Proof. A new state vector is introduced in order to present
system (11) in a more convenient form for Lyapunov analysis:

𝜁 = [

𝜁

1

𝜁

2

] = [

𝑙

1/2
(𝑡) |𝜎|

1/2 sign (𝜎)
𝜑

] ; (15)

thus, system (11) can be rewritten as

̇

𝜁 =

𝑙

2

󵄨

󵄨

󵄨

󵄨

𝜁

1

󵄨

󵄨

󵄨

󵄨

[

−𝜆

0
1

−2𝛼

0
0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

𝜁 + [

0

𝜙 (𝑥, 𝑡)

] +

[

[

̇

𝑙 (𝑡)

2𝑙 (𝑡)

𝜁

1

0

]

]

, (16)

where 𝜆
0
= 𝜆

0
𝑔

1
(𝑥, 𝑡) and 𝛼

0
= 𝛼

0
𝑔

1
(𝑥, 𝑡). Given that

𝑔

1
(𝑥, 𝑡) > 0, it is easy to verify that 𝐴 is a Hurwitz matrix.
Then, the following Lyapunov function candidate is

introduced for system (16):

𝑉 = 𝜁

𝑇
𝑃𝜁,

𝑃 =

1

2

[

[

4𝛼

0
+ 𝜆

2

0
−𝜆

0

−𝜆

0
2

]

]

.

(17)

Taking the derivative of (17),

̇

𝑉 =

𝑙 (𝑡)

2

󵄨

󵄨

󵄨

󵄨

𝜁

1

󵄨

󵄨

󵄨

󵄨

𝜁

𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝜁 + 𝑞

1
𝜙 (𝑥, 𝑡) 𝜁

+

̇

𝑙 (𝑡)

2𝑙 (𝑡)

𝜁

1
𝑞

2
𝜁,

(18)

where 𝑞
1
= [
−𝜆

0
, 2
] and 𝑞

2
= [

4𝛼

0
+ 𝜆

2

0
, −𝜆

0
].

Since𝐴 is aHurwitzmatrix, there exists a positive definite
matrix 𝑄 such that 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 and 𝜆min(𝑃)‖𝜁‖

2
≤ 𝑉 ≤

𝜆max(𝑃)‖𝜁‖
2. Equation (18) can be rewritten as

̇

𝑉 ≤ −

𝑙 (𝑡)

2

𝜆min (𝑄)

𝜆

1/2

max (𝑃)
𝑉

1/2
+

𝜎

2

󵄩

󵄩

󵄩

󵄩

𝑞

1

󵄩

󵄩

󵄩

󵄩

𝜆

1/2

min (𝑃)
𝑉

1/2
+ Δ𝑉, (19)

where

Δ𝑉 =

̇

𝑙 (𝑡)

2𝑙 (𝑡)

[(4𝛼

0
+ 𝜆

2

0
) 𝜁

2

1
− 2𝜆

0
𝜁

1
𝜁

2
]

≤

̇

𝑙 (𝑡)

2𝑙 (𝑡)

[(4𝛼

0
+ 𝜆

2

0
+

𝜆

0

2

) 𝜁

2

1
+

𝜆

0

2

𝜁

2

2
]

=

̇

𝑙 (𝑡)

2𝑙 (𝑡)

𝜁

𝑇
Δ𝑄𝜁,

Δ𝑄 =

[

[

[

[

4𝛼

0
+ 𝜆

2

0
+

𝜆

0

2

0

0

𝜆

0

2

]

]

]

]

.

(20)

With (20), (19) is present as

̇

𝑉 ≤ −(

𝑙 (𝑡)

2

𝜆min (𝑄)

𝜆

1/2

max (𝑃)
−

𝜎

2

󵄩

󵄩

󵄩

󵄩

𝑞

1

󵄩

󵄩

󵄩

󵄩

𝜆

1/2

min (𝑃)
)𝑉

1/2

+

̇

𝑙 (𝑡)

2𝑙 (𝑡)

𝜆max (Δ𝑄)

𝜆min (𝑃)
𝑉.

(21)

For simplicity, we define

𝛾

1
=

𝜆min (𝑄)

2𝜆

1/2

max (𝑃)
,

𝛾

2
=

𝜎

2

󵄩

󵄩

󵄩

󵄩

𝑞

1

󵄩

󵄩

󵄩

󵄩

𝜆

1/2

min (𝑃)
,

𝛾

3
=

𝜆max (Δ𝑄)

2𝜆min (𝑃)
.

(22)
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𝛾

1
, 𝛾
2
, 𝛾
3
are all positive constants. Thus, (21) is simplified as

̇

𝑉 ≤ − (𝛾

1
𝑙 (𝑡) − 𝛾

2
) 𝑉

1/2
+ 𝛾

3

̇

𝑙 (𝑡)

𝑙 (𝑡)

𝑉,
(23)

where ̇𝑙 ≥ 0.
In order to show that the ̇

𝑉 will be negative in finite time,
the second time derivative of 𝑉 is calculated as

̈

𝑉 ≤ −

̇

𝑙 (𝑡) 𝑉

1/2
− (𝛾

1
𝑙 (𝑡) − 𝛾

2
)

̇

𝑉

2𝑉

1/2
+ 𝛾

3

̇

𝑙 (𝑡)

𝑙 (𝑡)

̇

𝑉

− 𝛾

3

̇

𝑙 (𝑡)

𝑙

2
(𝑡)

𝑉.

(24)

If ̇

𝑉 > 0, the positive term 𝛾

3
(

̇

𝑙(𝑡)/𝑙(𝑡))

̇

𝑉 is decreasing
and the term (𝛾

1
𝑙(𝑡) − 𝛾

2
)(

̇

𝑉/2𝑉

1/2
) will be positive at

some time instant 𝑡 = 𝑡

1
which dominates the positive

term 𝛾
3
(

̇

𝑙(𝑡)/𝑙(𝑡))

̇

𝑉, since 𝑙(𝑡) is a monotonic nondecreasing
function ( ̇𝑙(𝑡) ≥ 0). In this point, we can conclude that after
the time 𝑡 = 𝑡

1
, ̈𝑉 < 0. That is to say𝑉 is not increasing faster

than a time linear function during time 𝑡 ∈ [0, 𝑡
1
] which can

be formulated as

𝑉 ≤ 𝑚𝑡 + 𝑛. (25)

Substituting (25) into (23), we have

̇

𝑉 ≤ − (𝛾

1
𝑙 (𝑡) − 𝛾

2
) 𝑉

1/2
+ 𝛾

3
̇

𝑙 (𝑡)

𝑚𝑡 + 𝑛

𝑘𝑡 + 𝑙 (0)

, (26)

where 𝑙(0) > 0 is the initial value of the scalar function (14).
The positive term in (26) is bounded,

𝛾

3
̇

𝑙 (𝑡)

𝑚𝑡 + 𝑛

𝑘𝑡 + 𝑙 (0)

≤ 𝛾

3
̇

𝑙 (𝑡)

max {𝑚, 𝑛}
min {𝑘, 𝑙 (0)}

. (27)

Now, we can conclude that after some time 𝑡 > 𝑡
1
the first

term in the right side of (26) will dominate the second term
such that

̇

𝑉 ≤ −𝜃 [𝛾

1
𝑙 (𝑡) − 𝛾

2
] 𝑉

1/2
,

(28)

with 𝜃 ∈ (0, 1) and 𝛾
1
𝑙(𝑡)−𝛾

2
> 0.Therefore, 𝜎 and 𝜎̇ converge

to zero in finite time. Theorem 4 is proven.

Remark 5. In view of practical implementation, the condition
|𝜎| = 0 in (14) cannot be satisfied due to measurement noise
and numerical approximations. The condition |𝜎| = 0 needs
to be modified by dead-zone technique [41, 42], such that the
dynamic law (14) is practically implementable,

̇

𝑙 (𝑡) =

{

{

{

𝑘, if |𝜎| ≥ 𝜏

0, else,
(29)

where 𝜏 is a sufficiently small positive value.

4. Simulation Results and Discussions

Consider the following nonlinear system [43]:

𝑥̇

1
= 𝑥

2
,

𝑥̇

2
= 𝑥

3
,

𝑥̇

3
= −𝑏

1
(𝑡) 𝑥

2

1
− 𝑏

2
(𝑡) 𝑥

2
− 𝑏

3
(𝑡) 𝑥

3
+ [3 + cos (𝑡)] 𝑢

+ 𝑑 (𝑡) ,

(30)

where 𝑏
1
(𝑡) = [1+0.3 sin(𝑡)], 𝑏

2
(𝑡) = [1.5+0.2 cos(𝑡)], 𝑏

3
(𝑡) =

[1 + 0.4 sin(𝑡)], and 𝑑(𝑡) = 0.05 sin(0.1𝑡) is considered as an
external disturbance.

The desired state trajectory is supposed to be 𝑥𝑇
𝑑
=

[sin(𝑡), cos(𝑡), − sin(𝑡)]. The sliding-surface function (2) is
chosen, and 𝑐𝑇 = [10, 5, 1]. The initial state vector is 𝑥(𝑡

0
) =

[0, 0, −0.35]

𝑇. The initial value of the sliding variable is taken
as 𝜎(0) = −5.35.

According to (2), the sliding surface is given as
𝜎 = 𝑐

1
(𝑥

1
− 𝑥

1𝑑
) + 𝑐

2
(𝑥

2
− 𝑥

2𝑑
) + 𝑐

3
(𝑥

3
− 𝑥

3𝑑
) . (31)

The time derivative of 𝜎 is calculated as
𝜎̇ = 𝑔

1
(𝑥, 𝑡) 𝑢 + 𝜌 (𝑥, 𝑡) , (32)

where 𝑔
1
(𝑥, 𝑡) = 𝑐

3
(3 + cos 𝑡) and 𝜌(𝑥, 𝑡) = −𝑐𝑇𝑥

𝑑
+ 𝑐

1
𝑥

2
+

𝑐

2
𝑥

3
+ 𝑐

3
𝑑(𝑡) + 𝑐

3
(𝑏

1
(𝑡)𝑥

2

1
− 𝑏

2
(𝑡)𝑥

2
− 𝑏

3
(𝑡)𝑥

3
).

The adaptive-gain STW control laws (9), (10), (11), and
(13) are designed as

𝜎̇ = −𝜆 (𝜎, 𝑡) 𝑔

1
(𝑥, 𝑡) |𝜎|

1/2 sign (𝜎) + 𝜑

𝜑̇ = −𝛼 (𝜎, 𝑡) 𝑔

1
(𝑥, 𝑡) sign (𝜎) + 𝜙 (𝑥, 𝑡) ,

(33)

where the adaptive-gain 𝜆(𝜎, 𝑡) and 𝛼(𝜎, 𝑡) dynamics follow
(29) and the values of the parameters of the adaptive-gain law
have been taken as 𝜏 = 0.005, 𝜆

0
= 2.5, 𝛼

0
= 8, and 𝑘 = 5.

These parameters are tuned to get sufficiently accurate and
fast convergence. Finally, the adaptive-gain dynamic law (29)
becomes

̇

𝑙 (𝑡) =

{

{

{

5, if |𝜎| ≥ 0.005

0, else.
(34)

Figures 1–3 show the state performance of system (3) in
the presence of disturbance 𝑑(𝑡). The time response of the
sliding surface function𝜎 is shown in Figure 4. It can be easily
found that 𝜎 converges to zero in finite time. From Figure 5,
we can see that the control input is smooth which is suitable
for real applications. Figure 6 shows that the adaptive law of
(34) is effective in the presence of external disturbance 𝑑(t).

Remark 6. In order to avoid high frequency control activity,
the boundary layer technique is employed during the simula-
tion.Thus, the saturation function sat(𝜎/Φ) is used to replace
the function sign(𝜎/Φ), whereΦ is the boundary layer width;
that is,

sat( 𝜎
Φ

) =

{

{

{

{

{

𝜎

Φ

, if
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜎

Φ

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≥ 1

sign( 𝜎
Φ

) , else.
(35)
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5. Conclusions

Adaptive second-order slidingmode control design is studied
for a class of nonlinear systems with unknown inputs. In real
applications, the upper boundary of uncertainty is difficult
to obtain, which is required for calculating control gains of
super-twisting sliding mode control. To solve this problem, a
simple control designmethod is proposed based onLyapunov
function. The idea is very simple; the gains are increased
according to a dynamic law until the sliding mode is attained
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and stops increasing thereafter. The proposed approach has
two advantages:

(i) Only one parameter 𝑘 has to be tuned.
(ii) A priori knowledge of the uncertainty bound is not

required.
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