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Recently, Fe
3
O
4
nanomaterials have attracted tremendous attention because of their favorable electric and magnetic properties.

Fe
3
O
4
nanostructures with various morphologies have been successfully synthesized and have been used in many fields such as

lithium-ion batteries (LIBs), wastewater treatment, and magnetic resonance imaging (MRI) contrast agents. In this paper, we
provide an in-depth discussion of recent development of Fe

3
O
4
nanomaterials, including their effective synthetic methods and

potential applications.

1. Introduction

Nanomaterials have been attracting great attention owing
to their excellent electrical, optical, magnetic, and catalytic
properties. It is well known that the phases, sizes, and
morphologies of nanomaterials have great influence on their
properties and potential applications; thereby, the controlled
synthesis of nanostructured materials with novel morpholo-
gies has recently received much attention [1–3]. As a kind of
conventional magnetic material, Fe

3
O
4
nanomaterials have

been used in many fields because of their unique electric
and magnetic properties [4, 5]. Several novel and effective
methods have been developed to synthesize Fe

3
O
4
nano-

materials with various shapes, such as nanorods, nanotubes,
andhierarchical superstructures [6–10]. Fe

3
O
4
nanomaterials

have superior properties and great potential applications in
the fields of lithium-ion batteries, wastewater treatment, and
drug delivery [11–15].

Until now, several overviews of the literature on the Fe
3
O
4

nanomaterials have been reported to keep the readers abreast
of the rapid development. For example, a review by Yang’s
group has focused on the synthesis, growth mechanism,
and applications of Fe

3
O
4
nanomaterials [16]. Nevertheless,

many successes on the synthesis, properties, and applications

of Fe
3
O
4
nanomaterials have been continually reported in

the last few years; thereby, it seems timely to review the
development of Fe

3
O
4
nanostructures.

Herein, we provide an update on currently available
methods for the synthesis of Fe

3
O
4
nanomaterials with vari-

ous morphologies; in spite of that, some important and orig-
inal findings reported earlier are also included. The unique
properties, potential applications, and future prospects of
Fe
3
O
4
nanostructures have also been discussed.

2. Synthesis of Fe3O4 Nanomaterials

Generally, the intrinsic shape of nanocrystal is dominated by
the crystalline structure of initial seed, and the final shape is
governed by the subsequent growth stage through delicate
control of external factors (e.g., kinetic energy barrier and
templates) [17]. Fe

3
O
4
has a cubic inverse spinel structure

based on Fd-3m space group [18]. The lattice constant is 𝑎 =
0.839. In the unit cell, as shown in Figure 1, the oxygen
ions form an fcc closed packing, and the iron ions occupy
interstitial tetrahedral sites and octahedral sites, sym-
bolized as [Fe3+]

𝐴
-[Fe2+Fe3+]

𝐵
O
4
, in which 𝐴 (tetrahedral

positions) is occupied by Fe3+ ions and 𝐵 (octahedral sites)
is occupied by eight Fe2+ ions and eight Fe3+ ions.
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Figure 1: Crystal structure of cubic inverse spinel Fe
3
O
4
((green

ball) Fe3+ (blue ball) Fe2+ (red ball) O).

2.1. 0D Fe
3
O
4
Nanomaterials. 0D Fe

3
O
4
nanomaterials have

been widely studied due to their current and promising
applications. It is known that the physicochemical proper-
ties and potential applications of Fe

3
O
4
nanomaterials are

strongly influenced by their sizes; moreover, Fe
3
O
4
nano-

materials tend to aggregate because of the strong magnetic
dipole-dipole attractions between the crystals and the large
surface energy [24]. Thus, many efforts have been devoted to
prepare Fe

3
O
4
nanomaterials with controlled size and well-

defined surface property [25].
After the Sugimoto group have fabricated monodisperse

Fe
3
O
4
nanoparticles in 1980, various methods have been

developed for the synthesis of Fe
3
O
4
nanoparticles with

narrow size distribution and good dispersity. Sun and Zeng
have synthesized 4 nm Fe

3
O
4
nanoparticles via the high-

temperature reaction of Fe(acac)
3
in the phenyl etherwith 1,2-

hexadecanediol, oleic acid, and oleylamine. “Seed-mediated”
growth method is used to make larger nanoparticles, and
Fe
3
O
4
nanoparticles (3–20 nm) can be obtained by changing

the quantity of seeds [26]. The Gao’s group have used
a solvothermal method to synthesize Fe

3
O
4
nanoparticles

with a mean diameter of 25 nm [27]. In the synthesis,
[Zn(CO

3
)
2
(OH)
6
], accepting Fe2+ precipitates through –OH,

can prevent the agglomeration of Fe2+ precipitates, and
superparamagnetic Fe

3
O
4
nanoparticles can be sequentially

obtained. Compared to other successes [11, 28], the as-
synthesized Fe

3
O
4
nanoparticles with good dispersity have

not been coated by other substances (e.g., silica and polymer)
and can keep their naturally properties. Other routes, includ-
ing coprecipitationmethod, reversemicellemethod, andhigh
temperature liquid phase method, have also been explored to
fabricate Fe

3
O
4
nanoparticles with different diameters [29–

32].
Besides spherical nanoparticles, 0D Fe

3
O
4
nanomaterials

with other morphologies have been prepared, such as octa-
hedron [19, 33, 34], dodecahedron [6], and cube [35–37].
Based on the literature [38], the shape of the particle is closely
related to the crystallographic surfaces that enclose the parti-
cle. As to Fe

3
O
4
, the relative surface energies are in the order

of 𝛾
111
< 𝛾
100
< 𝛾
110

owing to the distances between these
three faces and coordination numberwith neighboring atoms
[39, 40]. Therefore, the growth rate of (111) plane is quicker
than that of other planes, and the octahedral shapes would

be the thermodynamically favored morphology according to
theWulff theorem. For example, Zhang et al. have presented a
simple method for octahedral Fe

3
O
4
nanoparticles, in which

tetracosane is the reactionmedia, oleylamine is the surfactant
and the reducing agent, and Fe(OA)

3
is the precursor [19].

As shown in Figure 2(a), the octahedrons have a size of 21 ±
2 nm. The octahedrons can also self-assemble into oriented
superstructures due to their anisotropic shapes (Figure 2(b)).
As discussed above, the (110) facet has the highest surface
energy, so there is much difficulty to fabricate magnetite
nanocrystals enclosed by (110) plane. Nevertheless, Li and
coworkers have prepared rhombic dodecahedral (RD) Fe

3
O
4

nanocrystals via a microwave-assisted route in the presence
of ionic liquid (IL) [C

12
Py]+[ClO

4
]− [6]. In the synthesis,

ILs change the surface condition of the Fe
3
O
4
nanocrystals,

and HMT/phenol adsorbed on (110) planes is benefitcial for
the crystal growth along [100] direction; thus, RD Fe

3
O
4

nanocrystals enclosed by twelve (110) flakes can be obtained.
Moreover, if the nuclei are bounded by (100) planes, cubic
Fe
3
O
4
nanomaterials can be formed [36].

2.2. 1D and 2D Fe
3
O
4
Nanomaterials. Although it is difficult

to prepare anisotropic Fe
3
O
4
nanocrystal because of its cubic

spinel structure, anisotropic nanocrystals can be obtained by
using templates or surfactants to control the growth rate on
different crystal planes. More recently, 1D magnetic nano-
materials, such as nanotubes, nanorods, and nanowires, have
become a pressing need for their potential applications in
lithium-ion batteries and field emission displays [41]. Particu-
larly, tubular Fe

3
O
4
nanostructures have stimulated extensive

efforts owing to their well-defined magnetic states. It was
reported that some conventional methods (i.e., template-
assisted method) are not benefitcial for the formation of
single-crystalline nanotubes; thereby, some novel methods
have been explored [9, 42–44]. Geng et al. have applied
proteins from egg albumin as nanoreactors for the fabrication
of single-crystalline Fe

3
O
4
nanotubes. A flake structure is

prepared with the assistance of egg albumin, and then Fe
3
O
4

nanotubes are prepared from the flake-like precursors based
on a “rolling-up” mechanism. Additionally, nanorods and
nanowires have been successfully synthesized [43, 45–48].
For example, Zhang and coworkers have prepared single-
crystalline Fe

3
O
4
nanowires with large aspect ratio by a

one-step sol-gel process; Wang et al. have reduced 𝛼-Fe
2
O
3

nanowires to Fe
3
O
4
nanowires under H

2
and Ar

2
at 400–

900∘C via a V-S process; chemical vapor deposition (CVD)
method has also been used to synthesize 1D Fe

3
O
4
nanoma-

terials.
2D Fe

3
O
4
nanomaterials, such as nanorings and nano-

flakes, have also attracted much attention to their special
properties. Jia et al. have synthesized Fe

3
O
4
nanorings by the

reduction of hematite in the presence of phosphate and sulfate
[49]. In the synthesis, compared with (001) plane, PO

4

3− and
SO
4

2− have stronger adhesion to the (110) and (100) planes;
therefore, the capsule crystals have a tendency to grow along
the [001] direction and the following dissolution process also
takes place along the [001] direction. Finally, Fe

3
O
4
nanorings

can be formed. Zhu group have prepared Fe
3
O
4
nanosheets
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Figure 2: (a) TEM image of self-assembled monolayer Fe
3
O
4
nanocrystals; (b) SEM image of assembled multilayer Fe

3
O
4
nanocrystals; (c)

SEM image of RD Fe
3
O
4
nanocrystals; the inset is model of RD enclosed by twelve (110) planes [6, 19].

by oxidizing Fe substrates in acidic solution in a hot plate
at 70∘C [50]. Fe

3
O
4
nanoplates have been synthesized by

reducing 𝛾-Fe
2
O
3
nanoplates in the presence of PVP. In the

experiment, PVP can selectively coordinate with (111) facet
of 𝛾-Fe

2
O
3
, which reduces the growth rate along the [111]

direction, resulting in nanoplates bounded by the (111) planes.
Finally, 𝛾-Fe

2
O
3
nanoplates could be transformed to Fe

3
O
4

with the shape and size being unchanged. Other strategies
(i.e., hydrothermal and solvothermal methods) have been
developed to fabricate Fe

3
O
4
nanoprisms [15, 51, 52].

2.3. Fe
3
O
4

Hierarchical Superstructures. Recently, many
research efforts in nanoscience have been devoted to the
self-assembly of nanoscale building blocks into 2D and
3D hierarchical superstructures, which could prevent the
agglomeration of nanomaterials and supplymore tunable and
unique properties [53]. In addition, the “superparamagnetic
limit,” that is, the conflict between reducing the magnetic
energy barrier and decreasing the size, restrains the
development of Fe

3
O
4
nanomaterials [9]. To some extent,

Fe
3
O
4

hierarchical superstructures could overcome this
limit, and some researchers concerned about the synthesis of
self-assembled Fe

3
O
4
superstructures.

As shown in Figure 3(a), 1D chainlike arrays of hollow
Fe
3
O
4
nanospheres have been prepared by aging preassem-

bled Fe nanoparticles in aqueous solution [20].The formation
mechanism is proposed based on the nanoscale Kirkendall
effect: Fe nanoparticles are firstly self-assembled into chain-
like structure and solid Fe spheres are then gradually oxidized
into Fe

3
O
4
hollow nanospheres. Other self-assembled Fe

3
O
4

chains have also been synthesized [10, 54].
The Wang group have successfully synthesized a hierar-

chical and porous structure of Fe
3
O
4
hollow submicrospheres

with Fe
3
O
4
nanoparticles via a solvothermal method [21].

As displayed in Figure 3(b), Fe
3
O
4
submicrospheres are

built from Fe
3
O
4
nanoparticles with diameters of 20–30 nm.

The formation mechanism can be attributed to reduction
and Ostwald ripening: Fe

2
O
3
submicrospheres are firstly

synthesized; hematite is then reduced to magnetite and an
incomplete layer consisted of Fe

3
O
4
nuclei is formed on the

solid Fe
2
O
3
surfaces; a Fe

2
O
3
-Fe
3
O
4
core-cell structure is

formed in the presence of 1,6-hexanediol; finally, Fe
3
O
4
hol-

low submicrospheres are obtained through Ostwald ripening
process.

Hierarchical flower-like Fe
3
O
4
superstructures have been

wildly researched [22, 55–57]. Zhong et al. have reported
the synthesis of flower-like Fe

3
O
4
superstructures by an

ethylene-glycol-(EG-)mediated self-assembly process. Han
and coworkers have prepared flower-like Fe

3
O
4

under
80∘C in the absent of any surfactant or organic solvent
(Figure 3(c)). Ultrasound-assisted hydrothermal route has
also been used to fabricate Fe

3
O
4
hierarchical flower-like

microspheres.
Many other Fe

3
O
4
hierarchical superstructures with

special morphologies have been synthesized. For example,
Fe
3
O
4
microspheres assembled by tetrahedral nanocrystals

[58], porous hollow Fe
3
O
4
beads constructed with rod-

like nanoparticles [59], and nanoparticles-assembled Fe
3
O
4

dendritic patterns [60].

3. Potential Applications of
Fe3O4 Nanomaterials

3.1. Lithium-Ion Batteries (LIBs). Lithium-ion batteries are
regarded as the most promising rechargeable energy storage
technology due to the increasing applications of portable
electronic devices and transportations. In order to obtain
high power and energy density, Fe

3
O
4
nanomaterials have

been extensively explored as LIB anode materials for their
high theoretical capacity (900–1000mA⋅h⋅g−1), low cost,
environmental benignity, and special properties [59, 61].
For example, single-crystalline mesoporous Fe

3
O
4
nanorod

exhibits a high reversible capacity of 843.5mA⋅h⋅g−1 after
50th cycle at 0.1 C; furthermore, the nanorods have superior
electron transport ability, which makes them highly attrac-
tive for the potential application as LIB anode materials
[46]. However, the high surface area of nanomaterials may
cause secondary reactions such as electrolyte decomposition
between electrode and electrolyte and form thick solid
electrolyte interphase (SEI) films on the electrode surface
[62]. Fortunately, it was found that surface modifications
could partly solve these problems [23]. Carbon-coated Fe

3
O
4
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Figure 3: (a) TEM images of the chainlike arrays of Fe
3
O
4
hollow nanospheres; (b) SEM image of the hierarchial porous Fe

3
O
4
hollow

submicrospheres; (c) SEM and TEM images of the flower-like Fe
3
O
4
superstructures [20–22].
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Figure 4: Schematic illustration of the synthesis of Fe
3
O
4
/C core-shell spheres, chains, and rings [23].

nanospindles can increase the electronic conductivity of elec-
trodes leading to thin and uniform SEI films, but also stabilize
the obtained SEI films; thereafter, the Fe

3
O
4
-C composites

are excellent anode materials for highly efficient LIBs with
high reversible capacity, high rate capability, and enhanced
cycling performance. Li group have reported monodisperse
Fe
3
O
4
/C core-shell spheres, chains, and rings with tunable

magnetic properties based on structural evolution from
eccentric Fe

2
O
3
/poly(acrylic acid) core-shell nanoparticles

[63].Thepossible formationmechanism is shown in Figure 4.
Compared with the Fe

3
O
4
/C core-shell spheres, the chains

and rings exhibit higher reversible capacity and better cycling
stability. Several other ways have been used to form Fe

3
O
4
-

C composites [30, 64, 65]. For instance, porous carbons
or mixing graphene layers are impregnated with Fe

3
O
4

precursor; Fe
3
O
4
NPs and carbon are simultaneously formed

from a precursor with high surface area and porosity.

3.2. Wastewater Treatment. In recent years, wastewater treat-
ment has attracted considerable attention because cleanwater
is vital to the human and because of a variety of key industries
[66]. The development of nanoscience opens a novel and
effective way for the wastewater treatment. Many groups
have used Fe

3
O
4
nanomaterials to treat heavy metal ions

and organic pollution. Nanostructured Fe
3
O
4
microspheres

(NFMSs) with a large specific surface area (135.9m2⋅g−1) can
remove toxic Cr6+ from polluted water, and it is found that
1 g NFMSs remove 43.48mg Cr6+ ions at room temperature
[67]. Fe

3
O
4
nanomaterials have also been successfully used

as catalysts to remove organic pollutions, such as xylenol
orange, phenol, and aniline, from wastewater [68–70].

3.3. Other Applications. Fe
3
O
4
nanomaterials have been

applied in many other fields, including metal chemosensor
[71], magnetorheological elastomer [72], SERS spectroscopy
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[57], magnetic resonance contrast agent [73], catalyst [74, 75],
drug delivery [76], and magnetic resonance imaging (MRI)
contrast agents [77].

4. Conclusions

In conclusions, recent synthetic efforts have led to the for-
mation of Fe

3
O
4
nanomaterials with various morphologies.

In spite of the exciting new development, the application of
Fe
3
O
4
nanomaterials in industry is still in its infancy. How-

ever, with the progress in the fundamental understanding
of the physics and chemistry in the Fe

3
O
4
nanomaterials,

we foresee that novel properties and applications will be
demonstrated in the not-so-distant future.
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