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This paper studies the implementation of a novel wireless local positioning system (WLPS) for spacecraft formation flying
to maintain high-performance spacecraft relative and absolute position estimation. A WLPS equipped with antenna arrays
allows each spacecraft to measure the relative range and coordinate angle(s) of other spacecraft located in its coverage area.
The dynamic base station and the transponder of WLPS enable spacecraft to localize each other in the formation. Because
the signal travels roundtrip in WLPS, and due to the high spacecraft velocities, the signal transmission time delay reduces the
localization performance. This work studies spacecraft formation positions estimation performance assuming that only WLPS is
available onboard. The feasibility of estimating the spacecraft absolute position using only one-dimensional antenna array is also
investigated. The effect of including GPS measurements in addition to WLPS is studied and compared to a GPS standalone system.

1. Introduction

The relative and absolute positions estimation of spacecraft
formations is a fundamental task in many space missions.
Relative position estimation plays an important role in
spacecraft formation flying (SFF) missions, a subject that
has received a great deal of attention by researchers in
recent decades. Some SFF missions require that multiple
spacecraft in different orbits communicate without interrup-
tion; for example, satellites in the CITRIS-COSMIC system
are required to communicate with each other to monitor
the ionospheric irregularities [1]. Relative positions between
satellites, such as Cluster and Cluster-II satellites that are
launched by the European Space Agency, are estimated
and controlled to support many collaborative tasks where
satellites are required to maintain a specific formation in a
continuous manner within the mission period [2].

Several relative positions estimation systems have been
developed. The autonomous formation flyer (AFF) technol-
ogy was developed for SFF [3, 4], where each spacecraft is
equipped with a communication system to localize other
spacecraft in the formation. This system provides high-
precision estimates for relative positions. A relative position

and attitude estimation through a vision-based navigation
system (VISNAV) has been studied extensively in the liter-
ature [5–8]. The VISNAV enables one spacecraft measure the
line-of-sight (LOS) measurements of the other spacecraft.
Estimation performance of this technique is a function of
the relative distance of spacecraft and the number of beacons
installed on the spacecraft [5].

Given measurements of relative positions between two
spacecraft, [9] proves the feasibility of estimating the orbits
of the two spacecraft. A detailed observability analysis and
a detailed implementation of a batch estimator were deve-
loped. Reference [9] shows that the orbital elements estima-
tion accuracy depends on the relative distance between
spacecraft. Reference [10] shows the feasibility of orbit
navigation of two spacecraft using line-of-sight (LOS) mea-
surements, and suggest that LOS measurements can be used
for spacecraft formation navigation. Both [9, 10] show that
the inclination of the spacecraft orbits impacts the estimation
accuracy. The system becomes unobservable in a few cases,
such as the case when the two spacecraft are in the same zero
inclination orbit plane [9, 10].

Reference [11] presents a study on the implementation
of ultrawideband (UWB) communication for spacecraft
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formation navigation. A transmitter, at one spacecraft, sends
a pulse to a receiver, installed on another spacecraft. Next,
the receiver computes the relative distance between the two
spacecraft through measuring the difference between the
signal transmission time and arrival time. In this technique, a
synchronization between the transmitter and receiver clocks
is required to allow precise range measurement.

The one-way ranging system requires clock synchroniza-
tion between the two nodes [11], for example, the global
positioning system (GPS) [12]. Sources of measurement
error include the signal transmission time delay which
reduces the accuracy performance of the range measurement.
The two-way satellite time and frequency transfer (TWSTFT)
method has been implemented for decades. The TWSTFT
allows two ground stations to measure the round trip signals
that are transmitted from the ground to the satellite, and then
back to a ground station [13–15]. The TWSTFT method has
shown that if both the transmitted and received signals are
reciprocal, then the error due to the signal transmission time
delay is canceled out. Despite that fact, there are few other
nonreciprocal errors which cannot be avoided. However, in
general, it has been shown that the ranging accuracy obtained
from this method can be up to 1.5 nanoseconds [16].

When an observing spacecraft transmits a signal to a
target spacecraft, the signal transmission time delay causes
errors in the measured relative position [17, 18]. Reference
[19] shows that the signal transmission time delay can be
computed if either the observer or the target is stationary.
Also, the TWSTFT has shown that the signal transmission
time delay between ground stations and spacecraft can be
omitted [13–15]. However, when both observer and target
spacecraft are moving, the complexity of estimating the
signal transmission time delay increases. Different modi-
fications of filtering methods have been proposed in the
literature to compensate the measurement errors due to
the time delay [20, 21]. In [22], a closed form time delay
approximation has been proposed using a Taylor series
expansion. Reference [22] shows that, in some cases, the
state estimate error does not converge within the covariance
boundary if the time delay is not modeled.

In this paper, the orbits of two or more spacecraft in a
formation are estimated through the implementation of a
wireless local positioning system (WLPS) that enables rela-
tive localization [23]. The WLPS consists of two components:
the dynamic base station (DBS) and transponder (TRX).
The DBS installed on one spacecraft measures the relative
position of the TRX installed on another spacecraft, which
is located in its coverage area via time-of-arrival (TOA) and
direction-of-arrival (DOA) estimation. The TOA is the time
needed by the transmitted signal to travel from DBS to TRX
and back from TRX to DBS. The signal arrives at the two-
dimensional antenna array in DBS, enabling the system to
compute DOA (azimuth and elevation angles).

This paper investigates the following.

(1) The feasibility of absolute position estimation of spa-
cecraft formation flying using only one-dimensional
DOA (1-DOA) in the WLPS. The 1-DOA WLPS uses
one-dimensional antenna arrays to measure the range

and only the azimuth angle. The two-dimensional
DOA (2-DOA) WLPS uses two-dimensional antenna
arrays to measure range and both azimuth and ele-
vation angles. It is technologically more complicated
compared to the 1-DOA WLPS.

(2) The absolute position estimation of spacecraft in
formation using 2D WLPS, taking into consideration
the signal time delay. One implementation issue with
the WLPS is the time delay that is due to the process-
ing time in the WLPS and due to the signal trans-
mission between different spacecraft nodes. Even
though the time delay due to signal transmission is
very small, the high velocity of spacecraft makes it
nonnegligible in some formation scenarios.

(3) The estimation performance of a GPS standalone
system is compared to a combined GPS and WLPS.

Simulations are conducted to investigate how the posi-
tion estimation performance is affected by the number of
spacecraft in the formation, the size of the formation, the
WLPS and GPS measurement noise variance, and the
altitudes of spacecraft. The accuracy and the speed of con-
vergence of estimator is numerically studied. The Extended
Kalman Filter (EKF) is implemented in all studies presented
in this paper.

The proposed study is critical for the implementation
of localization sensors for many applications, including the
space-based solar power transfer applications [24, 25]. In
the futuristic space-based solar power harvesting techniques
proposed in [24, 25], the position of multiple satellites
in charge of collection of solar power should be properly
estimated to maintain synchronized solar power transfer to
an energy-collecting unit on the earth. This study has also
applications for deep space multispacecraft missions when
GPS is not available.

This paper is organized as follows. Section 2 presents
an overview on WLPS. Section 3 presents the dynamics,
the time-delay modeling, and GPS mathematical model.
Section 4 presents the EKF implementation. Section 5 dis-
cusses the simulation results.

2. Wireless Local Positioning System (WLPS)

The WLPS consists of two basic components [23]: a dynamic
base station (DBS) and a transponder (TRX). Each DBS is
capable of localizing TRXs that are located in its coverage
area via TOA and DOA measurements, as shown in Figure 1.
The DBS periodically broadcasts an identification (IDR)
signal once every ID request repetition time (IRT) as shown
in Figure 2. A TRX that falls within the DBS coverage area
receives the IDR signal and transmits a response signal that
includes its own ID back to the DBS within the IRT period.
The ID of each TRX allows the DBS to distinguish one TRX
from another. It also allows the DBS to easily track multiple
TRXs located in its coverage area.

As shown in Figure 2, the range of TRX is measured by
comparing the TOA of the signal from the TRX at the DBS
receiver and the time of the transmission of the signal from
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Figure 1: (Left) Signal transmission between DBS and TRX. (Right)
TRX’s signal arrives at antenna array.

ID request repetition time (IRT)

Time-of-arrival (range estimation)

τDBS
τTRX

ID transmitted by TRX
ID Request (IDR) signal

transmitted by DBS

Figure 2: DBS ID signal and TRX response signal in an IRT period.

the DBS transmitter. The processing time estimate can be
included in the signal packet transmitted from TRX to DBS
in order to allow DBS to correctly measure the range. The
DBS, equipped with antenna arrays, allows DOA estimation
and beamforming. In addition, beamforming enhances the
performance of the DBS by reducing the interference effects
[26]. The DOA is measured by each spacecraft relative to its
body-fixed coordinate system. In this paper, we assume that
the attitudes of all spacecraft are known. Hence, the DOA
measurements can be computed relative to a fixed reference
frame.

Thus, a WLPS allows single node positioning. In other
words, each node equipped with a DBS can independently
localize the TRXs located in its coverage area and its field-
of view (FOV). Now, if all spacecraft are equipped with
both DBS and TRX, each spacecraft can find the position of
other spacecraft located in its FOV and coverage area. The
position information across multiple spacecraft can be fused
to improve the localization performance [27].

3. System Model

In this section, the state and measurement models are
derived. The estimated states are the spacecrafts’ absolute
positions and their velocity vectors. In this paper, we assume
that the spacecrafts’ orientations are known, and hence,
the WLPS measurements can be expressed in the inertial
reference frame. The spacecraft orientation is represented by
the direction cosine matrix [28].

3.1. State Model. The estimated state vector, x̂, and its time
derivative vector, ˙̂x, for a formation of n spacecraft are

ri

rii j

r j

ith spacecraft

jth spacecraft

Figure 3: Relative position vector between two spacecraft.

defined as

x̂ =
[

rT1 rT2 · · · rTn ṙT1 ṙT2 · · · ṙTn
]T

,

˙̂x =
[

ṙT1 ṙT2 · · · ṙTn r̈T1 r̈T2 · · · r̈Tn
]T

.

(1)

The ith spacecraft’s absolute position is ri=[ri,x ri,y ri,z]
T ,

the velocity vector is ṙi=[ṙi,x ṙi,y ṙi,z]
T , and the accelera-

tion vector is r̈i = [r̈i,x r̈i,y r̈i,z]
T (all in the earth centered

inertial (ECI) frame). The sign .̂ refers to the estimated
values.

The spacecraft’s motion with respect to the earth’s center
is represented by the two-body model [29, 30]

r̈ = −μ
r3

r, (2)

where μ is the earth gravitational constant, the vectors r and
r̈ are the absolute position and acceleration vectors of the
spacecraft, respectively, and r denotes the magnitude of the
vector r.

3.2. Measurements Model. In this study, we assume that each
spacecraft is equipped with both DBS and TRX. Thus, it
can localize other spacecraft and can be localized by other
spacecraft.

In Figure 3, ri and r j represent the ith and the jth
spacecraft absolute position vectors expressed in the ECI
frame. The relative position vector of the jth spacecraft
observed by the ith spacecraft that is equipped with DBS is

ri j = r j − ri, (3)

ri =
[

ri,x ri,y ri,z
]T

, (4)

r j =
[

r j,x r j,y r j,z
]T

, (5)

If the orientation of the spacecraft is known, the relative
position vector, Ri j , expressed in the ith spacecraft reference
frame would be

Ri j = Ciri j , (6)

where Ci is the direction cosine matrix (also known as
attitude matrix [31]) of the ith spacecraft relative to the ECI
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frame. Let hTOA
i j be the time of the ID signal transmission, as

the ID signal travels from the DBS node i and is received by
the TRX node j, transmitted again from the TRX node j, and
until received back at the DBS node i. Assume, for now, that
both the DBS i and TRX j are stationary, then we can write

hTOA
i j = 2×

∥

∥

∥ri j
∥

∥

∥

c

= 2×
∥

∥

∥r j − ri
∥

∥

∥

c
,

(7)

where r j is the position of node j at the time it receives the ID
signal, c is the speed of light, and ‖·‖ refers to the magnitude
of vector. In the above equation, we assumed zero processing
time at the TRX. Let Ri j = [Ri j,x Ri j,y Ri j,z]

T , then the
DOA between the two nodes i and j is given by the two
measurements

hDOA
i j =

⎡

⎣

θi j

φi j

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

tan−1

(

Ri j,y

Ri j,x

)

tan−1

⎛

⎝

Ri j,z
√

R2
i j,x + R2

i j,y

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

Here, θi j is the relative azimuth angle, and φi j is the relative
elevation angle between the two nodes i and j. Using (7) and
(8), we can express the WLPS measurement between the ith
and the jth nodes as

ỹi j =
⎡

⎣

hTOA
i j

hDOA
i j

⎤

⎦ + νWLPS,i j (9)

where νWLPS,i j denotes WLPS measurement noise, which
is assumed to be zero-mean Gaussian with the covariance
matrix E[νWLPS,i jν

T
WLPS,i j] = RWLPS,i j .

The observation matrix of the nonlinear measurement
model in (9) is linearized using the first-order Taylor series
expansion, which corresponds to [31, 32]

h(x) � h(x̂) +
∂h
∂x

∣

∣

∣

∣

x=x̂
(x − x̂), (10)

where h(x) and h(x̂) are the nonlinear measurement models,
and they are expressed in terms of the true state vector, x,
and the estimated state vector, x̂, respectively. In addition,
∂h/∂x ≡ H is the Jacobian matrix of the nonlinear mea-
surement model, (9), which is also known as the sensitivity
matrix. Here, the sensitivity matrix for (9), HWLPS, is given as

HWLPS =
[

−∂h
∂r

∂h
∂r

03×6

]

, (11)

where

∂h
∂r
≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ri j,x
ri j

ri j,y
ri j

ri j,z
ri j

− sin(θ)
ri j cos

(

φ
)

− cos(θ)
ri j cos

(

φ
) 0

− cos(θ) sin
(

φ
)

ri j

− sin(θ) sin
(

φ
)

ri j

− cos
(

φ
)

ri j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Ci.

(12)
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Figure 4: Illustration of signal transmission time delay.

Here, HWLPS is derived assuming that we have only two
spacecraft in the formation. However, the procedure can be
extended to any number of spacecraft in the formation.

3.3. Time Delay Modeling. Time delay estimation has been
extensively studied in the literature. The wide separation
between spacecraft and the high velocity of spacecraft may
result in a significant error in position measurements due to
the signal transmission time delay. One approach to address
time delay error is to consider the time delay as a Gaussian
random variable, and its effect can be removed through
Kalman filter implementation. However, [33] shows that the
error distribution due to the transmission time delay is not
always a normal distribution.

Reference [22] presents an approximation method to
model the signal transmission time delay between two
spacecraft and its effect on relative position estimation, for
one-way signal trips. States of past time are expanded as
functions of the states at current time using the Taylor series
expansion [22]. The WLPS measures the TOA of the round
trip signal between the DBS and the TRX. Figure 4 illustrates
the time delay due to the WLPS processing time and due
to signal transmission. The true signal transmission path is
described in solid line. The dashed line is the signal path if the
time delay is neglected (both DBS and TRX are stationary,
(7), or moveing at with low velocities).

In Figure 4, the DBS transmits its ID signal to TRX at
time t1. The TRX receives the signal at time t2, and it requires
Tpr time to process the signal. Then, the TRX transmits the
signal back to the DBS at time t3, and the DBS receives the
signal at time t4. When the DBS receives the ID signal at time
t4, it measures the time of arrival (TOA) of the signal (t4−t1).
The TOA is measured at the DBS receiver; thus, the clock
synchronization between DBS and TRX is not required. It
is to be noted that Tpr can be determined, offline or online,
by computing the clock pulse needed to process each DBS
signal. In this paper, we assume that Tpr is a known constant.

However, it is important to note that both spacecraft
have travelled from their original position at time t1 to new
position at time t2 when the signal is transmitted from DBS
to TRX. This is also applied for the signal transmission
between time t3 and t4. Let the ith spacecraft be equipped
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with DBS and jth spacecraft be equipped with TRX, the
round trip TOA measurement shown in Figure 4 can be
expressed as

ỹdelay,TOA =
∥

∥

∥ri,t4 − r j,t3
∥

∥

∥

c
+

∥

∥

∥r j,t2 − ri,t1
∥

∥

∥

c
+ Tpr + νd,TOA,

(13)

where νd,TOA is the measurement noise.
All positions of both spacecraft at t1, t2, and t3 need to

be expressed in terms of the positions at time t4. By adapting
the strategy developed in [22], the estimated round trip TOA
based on (13) is given as

ŷdelay,TOA =
∥

∥

∥ri,k − r j,k−1

∥

∥

∥

c
+

∥

∥

∥r j,k−2 − ri,k−3

∥

∥

∥

c
+ Tpr, (14)

where t3 ≡ k − 1, t2 ≡ k − 2, and t1 ≡ k − 3.
In Figure 4, the time of flight (TOF) of signal trans-

mission between ith and jth spacecraft defined in [22] is
presented as Ttr. Let ri j,k be the distance between DBS and
TRX at time t4 and Ttr = ri j,k/c + τ. Then, we can write

ri j,k + τc = Ttr × c

=
√

(

r j,k−1 − ri,k
)T(

r j,k−1 − ri,k
)

.
(15)

It is noted that the true value of Ttr is unknown, and we
can only compute an estimate for the transmission time. The
position of jth spacecraft at time t3 can be estimated via the
first-order Taylor series expansion, which is given as

r j,k−1 � r j,k − Ttrv j,k, (16)

where v j,k is the velocity of jth spacecraft at time k.
By substituting (16) into (15), a closed form for τ can be

obtained [22] as

τ = −B ±√B2 − 4AC
2A

, (17)

where

A =
(

c2 − v2
j,k

)

,

B = 2

⎛

⎝rTi j,kv j,k −
ri j,kv

2
j,k

c
+ cri j,k

⎞

⎠,

C =
2rTi j,kv j,kri j,k

c
− v2

j,k

(

ri j,k
c

)2

,

(18)

where v j,k =
√

vT
j,kv j,k, which is the magnitude of the jth

spacecraft’s velocity vector.
Then, Ttr can be computed using (15) and (17). We

assume that t4− t1 is small. Because t1 is known, the position
of ith spacecraft, ri,k−3, at t1 can be approximated as

ri,k−3 � ri,k − T41vi,k, (19)

where T41 = t4 − t1.

The position of jth spacecraft at time t2, r j,k−2, can be
approximated in a similar way as follows

r j,k−2 � r j,k −
(

Ttr + Tpr

)

× v j,k. (20)

By substituting (16), (19), and (20) into (14), the
estimated TOA, ŷdelay,TOA, can be expressed in terms of the
spacecraft position and velocity vectors at time k.

Similarly, in Figure 4, the time delay in signal transmis-
sion also impacts the DOA measurement [22]. However, the
DOA measurement is defined as the angle of arrival of the
signal transmitted by TRX to DBS. Therefore, the signal
transmission and processing delay between t1 and t3 has
no impact on DOA measurement. Here, a vector L and its
components X , Y , and Z are defined as

L =
[

X Y Z
]T = r j,k−1 − ri,k

= r j,k − Ttrv j,k − ri,k.
(21)

The measured DOA between the ith and the jth space-
craft for both relative azimuth and elevation angles θi j and
φi j is

ỹdelay,DOA =
⎡

⎣

θi j

φi j

⎤

⎦ + νdelay,DOA, (22)

where

θi j = tan−1 Y

X
,

φi j = tan−1 Z√
X2 + Y 2

.

(23)

As in the case of the WLPS measurement model without
the time delay effect (see (11) and (12)), (14) and (22) are
nonlinear. Thus, the sensitivity matrix should be calculated
to facilitate the process of linearization in extended Kalman
filter. The sensitivity matrix is derived below.

3.3.1. Sensitivity Matrix for TOA with Time Delay Model.
From (17), τ is a function of ri,k, r j,k, and v j,k. In this section,
for simplicity, let ri = ri,k, r j = r j,k, ri j = ri j,k, and so on. Let

Sr =
∥

∥

∥r j,k−2 − ri,k−3

∥

∥

∥ (24)

The sensitivity matrix, Hdelay,TOA, for (14) corresponds to

Hdelay,TOA

=
[

∂Sr
∂ri

+
∂ri j
∂ri

+
∂τ

∂ri

∂Sr
∂r j

+
∂ri j
∂r j

+
∂τ

∂r j

∂Sr
∂vi

∂Sr
∂v j

+
∂τ

∂v j

]

,

(25)
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where

∂τ

∂ri
= 1

A

[

v2
j

c

∂ri j
∂ri

+vT
j +

1
D

{

−rTi jv jvT
j +c2ri j

∂ri j
∂ri

−v2
j ri j

∂ri j
∂ri

}]

,

∂τ

∂r j
= 1

A

[

v2
j

c

∂ri j
∂r j

− c
∂ri j
∂r j

− vT
j

+
1
D

{

rTi jv jvT
j + c2ri j

∂ri j
∂ri

− v2
j ri j

∂ri j
∂ri

}]

,

∂τ

∂v j
= 2

τ

A
vT
j +

1
A

[

2
ri j
c
vTj − rTi j +

1
D

{

rTi jv jrTi j − r2
i jv

T
j

}

]

.

(26)

The parameter D in (26) is given by

D =
√

(

rTi jv j

)2
+ c2r2

i j − r2
i jv

2
j . (27)

And both ∂ri j/∂ri and ∂ri j/∂r j are given as

∂ri j
∂r j

= −∂ri j
∂ri

≡ rTi j
ri j

. (28)

Finally, the partial derivatives of Sr in (24) with respect to
the absolute position and velocity vectors are given as

∂Sr
∂ri

= − 1
Sr

{

(

r j,k−2 − ri,k−3

)T
+
(

r j,k−2 − ri,k−3

)T

×v j

[

1
c

∂ri j
∂ri

+
∂τ

∂ri

]}

,

∂Sr
∂r j

= 1
Sr

{

(

r j,k−2 − ri,k−3

)T −
(

r j,k−2 − ri,k−3

)T

×v j

[

1
c

∂ri j
∂r j

+
∂τ

∂r j

]}

,

∂Sr
∂vi

= T41

Sr

(

r j,k−2 − ri,k−3

)T
,

∂Sr
∂v j

= − 1
Sr

{

(

Ttr + Tpr

)(

r j,k−2 − ri,k−3

)T

+
(

r j,k−2 − ri,k−3

)T
v j

∂τ

∂v j

}

.

(29)

3.3.2. Sensitivity Matrix for DOA with Time Delay Model.
The sensitivity matrix for DOA measurements can be derived
in a similar way. The sensitivity matrix for the azimuth angle,
Hθ , and elevation angle, Hφ, is

Hθ = Sθ

[

1
X

∂Y

∂x
− Y

X2

∂X

∂x

]

,

Hφ = Sφ

[

1√
X2 + Y 2

∂Z

∂x
− Z

(X2 + Y 2)3/2

(

X
∂X

∂x
+ Y

∂Y

∂x

)
]

,

(30)

where

Sθ =
1

1 + (Y/X)2 ,

Sφ =
X2 + Y 2

X2 + Y 2 + Z2
,

∂L
∂x
=
[

−I3×3 I3×3 03×3 −Ttr × I3×3

]

− v j,k
∂Ttr

∂x
,

∂Ttr

∂x
= 1

c

∂ri j
∂x

+
∂τ

∂x
,

(31)

where ∂L/∂x = [(∂X/∂x)T (∂Y/∂x)T (∂Z/∂x)T]
T

.
Therefore, the time delay model for the relative position

measurement between the ith spacecraft and the jth space-
craft is given as

ỹi j =
[

ỹT
delay,TOA ỹT

delay,DOA

]T
, (32)

and the sensitivity matrix is

Hi j =
[

HT
delay,TOA HT

θ
HT

φ

]T
. (33)

3.4. GPS Measurements Model. In this section, the model of
the GPS measurement is presented. We assume that there
is no multipath effect and no clock bias error in the GPS
receiver. For any GPS satellite that is in the ith spacecraft’s
LOS, the pseudorange measurement is

ρ̃i =
√

(ri − rGPS)T (ri − rGPS) + νGPS, (34)

where rGPS represents the position of the GPS satellite,
and νGPS represents the GPS measurement noise which is
assumed zero mean white noise, with the noise covariance
as RGPS = E{νGPSν

T
GPS}.

In reality, there might be more than four GPS satellites in
the FOV of each spacecraft in the formation. However, in this
paper, we assume that only four GPS signals are observed at
all times. Hence, the GPS measurement vector is

ỹi,GPS =
[

ρ̃i,1 ρ̃i,2 ρ̃i,3 ρ̃i,4
]T

. (35)

The pseudorange measurements, ρ̃1 to ρ̃4, represent
any four GPS signals received by the given spacecraft (ith
spacecraft in this case). The corresponding sensitivity matrix,
HGPS, is

Hi,GPS =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ri − rGPS,1

ρ1
01×3

ri − rGPS,2

ρ2
01×3

ri − rGPS,3

ρ3
01×3

ri − rGPS,4

ρ4
01×3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (36)

Equation (36) shows the sensitivity matrix for a single
spacecraft. However, it can be easily applied to spacecraft
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formation flying. For GPS only scenario with n-spacecraft
formation, the measurement vector is given as

ỹ =
[

ỹT
1,GPS · · · ỹT

n,GPS

]T
, (37)

with the sensitivity matrix, H , is

H =

⎡

⎢

⎢

⎢

⎢

⎣

H1,GPS

...

Hn,GPS

⎤

⎥

⎥

⎥

⎥

⎦

. (38)

For WLPS and GPS scenario, the measurement vector is
given as

ỹ =
[

ỹT
1,GPS · · · ỹT

n,GPS ỹT
12 ỹT

13 · · · ỹT
i j

]T
, (39)

with the sensitivity matrix, H , is

H =
[

HT
1,GPS · · · HT

n,GPS HT
12 HT

13 · · ·HT
i j

]T
, (40)

where ỹi j and Hi j are defined in (32) and (33), respectively,
i = 1, . . . ,n, j = 1, . . . ,n, and i /= j.

4. Extended Kalman Filter Implementation

The EKF process begins with an initial estimated states,
x̂(t0) = x̂0, and states covariance, P(t0) = P0. At every time
step, k, a measurement is received from the sensor onboard,
and a gain matrix, K , is then computed as follows:

K = P−k H
T
k

[

HkP
−
k H

T
k + Rk

]−1
, (41)

where Rk is the measurement noise covariance at step
k, and its matrix composition depends on the availability
of measurements (e.g., WLPS or GPS) in the estimation
processes. The matrix Hk is the sensitivity matrix, which is
defined as

Hk = ∂̂h
∂x

∣

∣

∣

∣

∣

x̂−k

. (42)

Here, the superscript “−” denotes predicted (or preupdate)
estimates.

Then, the pre-update estimated states, x̂−k , and states
covariance, P−k , are updated through the following equations:

x̂+
k = x̂−k + K

[

ỹk − ̂hk

(

x̂−k
)]

,

P+
k = (I − KHk)P−k ,

(43)

where I is the identity matrix, ̂hk(x̂−k ) is the estimated
measurement, x̂+

k is the postupdate estimated states, P+
k is the

postupdate states covariance, K is the gain matrix in (41),
and Hk is the sensitivity matrix.

Both postupdate estimated states, x̂+
k , and states covari-

ance, P+
k , are propagated to the next time step

˙̂x = f
(

t, x̂+
k

)

+ w, (44)

Ṗ = FkP
+
k + P+

k F
T
k + GQGT , (45)

where w is the process noise vector which is a zero mean
Gaussian noise with Q = E{wwT}, f(t, x̂+

k ) is obtained from
the equation of motion of the spacecraft (2), and Fk is defined
as:

Fk = ∂f
∂x̂

∣

∣

∣

∣

x̂+
k

. (46)

The Fk matrix is the linearized state model

Δẋ = FkΔx + Gw, (47)

where Δx ≡ [ΔrT1 · · · ΔrTnΔvT
1 · · · ΔvT

n ]
T

, with Δri
and Δvi are small changes in the ith spacecraft position and
velocity vectors. For n-spacecraft formation, the Fk matrix in
(47) is given by

Fk =

⎡

⎢

⎢

⎢

⎣

03n×3n I3n×3n

dF(x)
dx

∣

∣

∣

∣

x=x̂+
k

03n×3n

⎤

⎥

⎥

⎥

⎦

, (48)

where,

dF(x)
dx

∣

∣

∣

∣

x=x̂+
k

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂f1

∂x1
03×3 · · · 03×3

03×3
∂f2

∂x2
· · · 03×3

...
. . .

. . .
...

03×3 · · · · · · ∂fn
∂xn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

∂fi
∂xi

= μ

s5

⎡

⎢

⎢

⎢

⎣

2r2
ix − r2

iy − r2
iz 3rixriy 3rixriz

3rixriy 2r2
iy − r2

ix − r2
iz 3riyriz

3rixriz 3riyriz 2r2
iz − r2

ix − r2
iy

⎤

⎥

⎥

⎥

⎦

,

(49)

where i = 1, 2, . . . ,n, s =
√

r2
ix + r2

iy + r2
iz, and ri =

[rix riy riz]
T in (4). Here, μ is defined as in (2).

For a configuration of n-spacecraft, the G matrix, in (45)
and (47), is

G ≡
⎡

⎣

03n×3n

I3n×3n

⎤

⎦. (50)

The Kalman filter algorithm for all scenarios is processed
as follows. The estimated states (including both absolute
position and velocity vectors) and the estimated state
covariance are initialized. Then, the estimated state and
state covariance are updated using (43). It is noted that the
sensitivity matrix and measurement vectors vary from one
scenario to another. Then, both estimated states and state
covariance are propagated using (44) and (45) to next time
step for future update.

5. Simulation Results and Discussions

Simulations are conducted to study and compare the esti-
mation performance of the spacecraft position with respect
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to the earth center (or absolute position) using WLPS only,
GPS only, and WLPS plus GPS. The performance is assessed
through computing the average of the root mean square
error (RMSE), η, of the estimated absolute positions of all
spacecraft in the formation. The mean square error (MSE) is
the average of the square of estimation errors along the x, y,
and z-axes of the spacecraft position

ηi ≡
∥

∥r̂i − ri
∥

∥√
3

, (51)

where ηi is the estimated ith spacecraft’s absolute position’s
RMSE, r̂i is the estimated absolute position of the ith
spacecraft, and ri is the truth absolute position of the ith
spacecraft.

For n-spacecraft formation, the η is given as

η = 1
n

n
∑

i=1

ηi. (52)

The convergence time, Tconv, of the estimation is defined
as the time needed by the estimator until the RMSE falls
below a given steady-state threshold, ethres. The threshold
varies with the SFF configuration (e.g., formation size,
number of spacecraft, etc.). There are different approaches
to determine the steady-state threshold. In one of the
approaches, ethres is computed by taking the average RMSE
of estimator at the steady-state RMSE curve. However, the
Tconv is undefined if the RMSE does not converge.

Two case studies are presented in this paper: (1) one
examining the implementation of 1D WLPS for space-
craft navigation; (2) comparing the estimation performance
between a GPS standalone system and a WLPS along with
a GPS system with time delay modeling. In the second
case study, the estimation performance is examined with
respect to the following SFF configuration parameters: size of
formation, measurement noise level, number of spacecraft,
and altitude of the formation (except GPS scenario).

The general simulation assumptions in this paper are (i)
process and measurement noises for all spacecraft are zero-
mean Gaussian; (ii) the attitude of each spacecraft is well
known; (iii) the TOA and DOA measurement noise standard
deviations are 1 meter and 0.001 degree, respectively, unless
otherwise specified; (iv) the GPS pseudomeasurement noise
standard deviation is 10 meters unless otherwise specified;
(v) the variance of the process noise is 10−14 km2s−4; (vi)
the initial estimated states covariance is 1 km2 along each
position axis, and 0.01 km2/s2 along each velocity axis; (vii)
the simulation is run at the interval time of Δt = 10 seconds
for all scenarios.

In the simulations conducted in this paper, we assume
that each relative position in the formation is measured
only once. Thus, for a two-spacecraft formation, there is
one relative measurement. Similarly, for three, four, and six
spacecraft formation, there are three, six, and fifteen relative
position measurements, respectively.

Figure 5 shows the accuracy performance of the EKF
estimation using the the WLPS measurement with respect
to different numbers of spacecraft in the formation. All the

Table 1: Third and fourth spacecrafts’ orbital elements.

Inclination
(deg)

Arg. perigee
(deg)

RAAN
(deg)

Initial
anomaly

(deg)

S/C 1 5 0 5 3

S/C 2 −5 0 0 2

S/C 3 −3 0 7 −4

S/C 4 3 0 −4 10

S/C 5 −2.5 0 −3 2

S/C 6 −10 0 0 .5

3
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Figure 5: WLPS only—RMSE performance.

spacecraft have the same true semimajor axis of 7000 km and
eccentricity of 0.05. The orbital elements of all spacecraft
are shown in Table 1. Figure 5 shows that the performance
improves as the number of spacecraft in formation increases.
The convergence time of the EKF process is about 400
minutes for the two-spacecraft formation. It is 300 minutes
in the three-spacecraft formation and is about 70 minutes for
four spacecraft formations. The number of measurements
in the three-spacecraft formation is three times higher than
that of the two-spacecraft formation, and the number of
measurements in the four-spacecraft formation is two times
higher than that of the three-spacecraft formation. This leads
to higher spacecraft orbit observability gain and results in
significant convergence time improvement.

5.1. One DOA Measurement. In this section, we compare
the estimation performance between one DOA measurement
and two DOA measurements. Both case studies include a
TOA measurement. To study the feasibility of estimating
the absolute positions from measurements of only the range
and the azimuth angle, an observability analysis is needed.
The EKF algorithm of 1-DOA is similar as the 2-DOA case.
However, only the first two rows of sensitivity matrix in
(11) are considered, because only one TOA and one DOA
measurements are available.
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Figure 6: RMSE comparison of Azimuth only (1 DOA) versus Azimuth and elevation (2 DOA) measurements.

It is common that the observability analysis is conducted
by linearizing the nonlinear problem. A numerical method
for observability investigation is presented in detail in [9]. It
can be shown that in this problem, the system is observable
except in some special configurations of formations. One of
those special cases is when two spacecraft are in the same
circular orbit. In this section, we present simulation results
for one observable case.

A two-spacecraft formation is considered. The spacecraft
orbits have a semimajor axis of 7000 km. The first spacecraft
(observer) orbits in a circular orbit, with 0 degree in
inclination, argument of perigee, RAAN, and initial true
anomaly. The second spacecraft (target) orbits in an elliptic
orbit with eccentricity of 0.05 degree, inclination of 15
degrees, argument of perigee of 0 degree, right ascension of
ascending node (RAAN) of 0 degree, and initial true anomaly
of 5 degrees.

We assume that only spacecraft 1 (S/C 1) is equipped
with DBS, while spacecraft 2 (S/C 2) is equipped with only
a TRX. In this case study, the WLPS antenna array is rotated
at 5 degrees about the body x-axis, and both spacecraft
experience no spinning motion. In this simulation, we
assume that the initial condition for both spacecraft is
known, and there are no signal transmission and signal
processing time delay.

Figures 6(a) and 6(b) compare the RMSE performance
between one DOA measurement and two DOA measure-
ments, for different levels of measurements noises. The
results indicate that it is possible to estimate the spacecraft
absolute position with only one DOA measurement along
with a TOA measurement, in the case presented.

Figure 6(b) compares the RMSE performance when both
TOA and DOA noise levels are increased to 0.1 meter
and 0.1 degree, respectively. The result shows that there
is a significant difference between one DOA measurement

performance and two DOA measurements performance.
The two DOA measurements has a better overall accuracy
compared to the one DOA measurement performance.

5.2. GPS and WLPS versus GPS Standalone System. In this
section, the performance of orbit estimation algorithm using
only GPS for position measurements is compared with the
estimation algorithm that has an additional WLPS sensor
(GPS/WLPS) installed on the spacecraft. We assume that
signal transmission time delay occurs between DBS and TRX.
Here, a four-spacecraft formation flying is considered. These
comparisons will be carried out for several parameters ranges
as detailed below.

5.2.1. Formation Size. First, the impact of formation size
on the performance is studied. All spacecraft orbit at a
semimajor axis of 7000 km, with eccentricity of 0.05. There
are a total of four spacecraft in the formation. Here, ranges
for the orbital elements of each spacecraft are listed in
Table 2.

Table 3 compares the estimation performance with
respect to different formation sizes. The results show that if
only GPS measurement is available, the formation size does
not impact the estimation performance in terms of accuracy.
Because the GPS provides independent absolute position for
each spacecraft in the formation, the relative spacing between
spacecraft does not really affect the estimation accuracy, if
GPS measurements only are used. In addition, the simulation
results show that the convergence rate for all case studies
is the same, which is 20 minutes. This is because the GPS
measurement has more impact on the convergence rate of
the estimation process than the WLPS measurement.

When the WLPS is implemented into the formation
along with the GPS, the results show that the formation size
impacts the estimation accuracy. Table 3 shows that as the
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Figure 7: (a) RMSE comparison of GPS only and GPS/WLPS with respect to the number of spacecraft. (b) GPS/WLPS position error with
three-sigma boundary.

Table 2: Four-Spacecraft configuration for different formation size.

Formation size
100 km/200 km 700 km/1400 km 1445 km/2450 km

Min. Max Min. Max Min. Max

Inclination (deg) −0.5 0.3 −5 5 −10 10

Arg. perigee (deg) 0 0 0 0 0 0

RAAN (deg) −0.5 0.2 −4 7 −3 3

True anomaly (deg) 0 0.5 −4 10 −2 5

Table 3: Performance comparison between different formation
sizes.

Form. Size Setup Ave. RMSE (m)

100 km/200 km
GPS/WLPS 1.068

GPS 2.114

700 km/1400 km
GPS/WLPS. 1.214

GPS 2.087

1445 km/2450 km
GPS/WLPS. 1.384

GPS 2.042

formation size decreases, the estimation accuracy increases.
Although the improvement may seem insignificant (only 30
decimeters) when the WLPS is implemented together with
GPS, there is about 25% improvement when the formation
size decreases from 1445 km/2450 km to 100 km/200 km. For
other cases where the RMSE is higher, the impact may
become more significant.

Table 4: Performance comparison between high GPS noise and
high WLPS noise.

Noise level Setup Ave. RMSE (m) Conv. time (min)

High GPS GPS/WLPS 9.529 70

Noise GPS 62.745 70

High WLPS GPS/WLPS 1.669 20

Noise GPS 2.090 20

5.2.2. Measurement Noise Level. Next, consider the 700 km/
1400 km formation size configuration shown in Table 2. The
measurement noises of WLPS and GPS are varied in the
following order: (a) high GPS noise; both TOA and DOA
noises levels are 0.001 km and 0.001 degrees, respectively, and
GPS noise level is 1 km; (b) high WLPS noise; both TOA and
DOA noises levels are 0.01 km and 0.01 degrees, respectively,
and GPS noise level is 0.01 km.

Table 4 compares the RMSE and convergence rate with
respect to two different noise levels, high GPS noise level,
and high WLPS noise level. In high GPS noise situation (such
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as signal jamming), the result shows that we are still able to
achieve good estimation accuracy (up to meters accuracy)
with the aid of WLPS measurements. In addition, including
the WLPS measurement is still capable of improving the
estimation performance if compared to the GPS standalone
system, even though the WLPS measurement noise level is
high. In addition, the convergence rate is highly increased
if GPS measurement noise increased. This result confirms
that the GPS has more impact on the convergence rate of
estimation.

5.2.3. Number of Spacecraft in Formation. The impact of dif-
ferent number of spacecraft on the estimation performance
is studied. Four formations are considered: two, three, four,
and six spacecraft. The size of the formation in the four cases
is 700 km/1400 km.

Figure 7(a) compares the accuracy and convergence
performance with respect to the number of spacecraft in the
formation. Because GPS offers absolute position measure-
ments for each spacecraft, independent from other spacecraft
in the formation, increasing the number of spacecraft in
the formation does not affect the estimation accuracy, if
no WLPS is used. Figure 7(a) shows that as the number of
spacecraft increases, the RMSE performance improves. It is
noted that we assume that the spacecraft i measures the
spacecraft j’s relative position, but the spacecraft j does not
measure the spacecraft i’s relative position in the simulation.

Figure 7(b) shows the spacecraft’s estimated absolute
position error with a three-sigma boundary for the WLPS
and GPS scenario. The simulation is processed for 100 Monte
Carlo runs with the initial condition error of 1 km in absolute
position vector and 1 ms−1 in absolute velocity vector for
each spacecraft in the formation. The initial state covariance
remains the same as presented in the simulation assumption.
Figure 7(b) shows that the estimated absolute position error
falls within the three-sigma boundary. The estimated state
error converges at the same pace as the state covariance in
the presence of GPS measurements.

6. Conclusion

The WLPS implementation as a relative position sensor
for absolute position estimation in SFF is introduced. It is
depicted that 2D WLPS improves positioning accuracy when
both WLPS and GPS measurements are used. The results
are compared to a GPS standalone system. Moreover, the
implementation of 1D WLPS is investigated, and simula-
tions are conducted to show the feasibility of obtaining a
converging estimation for the absolute positions. The results
confirm that the accuracy of 2D WLPS is higher than 1D
WLPS. In addition, increasing the number of spacecraft in
the formation improves the estimation’s convergence time
when only relative position measurements are available.
Simulation results show, in general, that as the formation
size decreases, the WLPS estimation accuracy improves. The
impact of formation size becomes significant when either
GPS noise is high or GPS measurements are not available.
Examples of these situations are deep space missions such as
Mars exploration and Lunar GRAIL mission, and in the low-

altitude aircraft applications when ground reflection effects
are significant. The results also confirm that as the number
of spacecraft in the formation increases, a better absolute
position estimation performance is attainable.
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