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A novel current-mode first-order all-pass filter with low input and high output impedance feature is presented. The circuit
realization employs a single dual-X-second-generation current conveyor, one grounded capacitor, and one grounded resistor, which
is a minimum component realization. The theoretical results are verified using PSPICE simulation program with TSMC 0.35 𝜇m
CMOS process parameters.

1. Introduction

Current-mode circuit design using current conveyor has
received a considerable attention owning to its poten-
tial advantages such as wider dynamic range, greater lin-
earity, wide bandwidth, simple circuitry, and low power
consumption [1]. Considering these advantages of current
conveyor, recently several current mode first-order all-pass
filters employing different types of current conveyor such
as second-generation current conveyor [2–4], four terminal
floating nullor [5], third-generation current conveyor [6], dif-
ferential voltage current conveyor [7, 8], current differencing
buffered amplifier [9], current operational amplifier [10], and
dual-X second-generation current conveyor [11, 12] have been
reported. These reported filters reveal some useful features
depending on the individual topology as summarized in
Table 1.The comparison between the proposed circuit and the
previously reported circuits is based on the use of number
of active elements, number of grounded passive components,
and low input and high output impedance feature(s). In
general, the input impedance should be lower in comparison
to the output impedance to avoid loading problem while
cascading such current-mode circuits to form larger system.

In this paper, a novel cascadable current-mode (CM)
first-order all-pass filter is proposed. The circuit uses a

dual-X second generation multioutput current conveyor
(DX-MOCCII), a grounded resistor, and a grounded capaci-
tor, which is ideal for IC implementation. The circuit offers
low-input impedance and high-output impedance feature
and also free from matching constraints. Nonideal gain and
parasitic effects of the DX-MOCCII on the transfer function
of the proposed filter are also analysed.

2. The Proposed Circuit

Dual-X second-generation current conveyor [13] is a use-
ful and versatile active element, which has found several
applications in analog signal processing [14–18]. The DX-
MOCCII symbol is shown in Figure 1 and is characterized by
the following port relationships:
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where the suffixes refer to the respective terminals. The
active element is characterized by high input impedance at
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Table 1: Comparison of various current-mode all-pass filters.

References No. of active
elements

Single active
element

No. of resistors
and capacitors

All-grounded
passive elements

Low input
impedance

High output
impedance

Component
matching constraint

Higashimura and Fukui [2] 1-CCII Yes 4 No No Yes Yes
Higashimura [5] 1-FTFN Yes 3 No No No Yes
Toker et al. [9] 1-CDBA Yes 2 No No Yes No
Maheshwari and Khan [6] 1-CCIII Yes 2 No No No No
Kilinç and Çam [10] 1-COA Yes 2 No No Yes No
Minaei and Ibrahim [7] 1-DVCC Yes 3 No No Yes Yes
Khan et al. [3] 2-MOCCII No 2 Yes No Yes No
Maheshwari [8] 1-DVCC Yes 2 Yes No Yes No
Minaei and Yuce [4] 2-DOCCII No 2 Yes Yes Yes No
Minaei and Yuce [11] 1-DXCCII Yes 4 Yes No Yes Yes
Beg et al. [12] 1-DX-MOCCII Yes 4 Yes No Yes Yes
Proposed Circuit 1-DX-MOCCII Yes 2 Yes Yes Yes No
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Figure 1: Symbol of DX-MOCCII.

the𝑌 terminal, high output impedance at the𝑍1+,𝑍2+,𝑍1−,
and 𝑍2− terminals, and low impedance at the 𝑋+ and 𝑋−

terminals.
The proposed current-mode (CM) first-order all-pass

filter employing a DX-MOCCII, a grounded capacitor, and
a grounded resistor is shown in Figure 2. Routine analysis of
the circuit, using (1), yields the following transfer function:

𝐼out
𝐼in

= −(
𝑠 − (1/𝐶𝑅)

𝑠 + (1/𝐶𝑅)
) . (2)

The frequency-dependent phase response of (2) is

Φ = −2 tan−1 (𝜔𝑅𝐶) . (3)

From (3), it can be seen that the proposed circuit can provide
a phase shift between 0∘ and −180∘ at output terminal (𝐼out).

The salient features of the proposed circuit are the use of
single active element, two grounded passive components, and
providing low input and high output impedance. As all the
passive components used are in grounded form, it is suitable
for integrated circuit implementation and also reduces the
associated parasitic effects [19].
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Figure 2: Proposed cascadable current-mode first-order all-pass
filter.

By interchanging the resistor (𝑅) with a capacitor (𝐶)
in Figure 2, an additional circuit can be derived from the
proposed circuit. However, the use of capacitor at the 𝑋−
terminal degrades the high frequency operation [20].

3. Nonideal Analysis and Parasitic Effects

3.1. Non-Ideal Analysis. Taking the nonidealities of the DX-
MOCCII into account, the port relationship of the voltage
and current terminals of the active element can be rewritten
as
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Here, 𝛼
1
and 𝛼

2
are the current transfer gains from 𝑋+

terminal to𝑍1+ and𝑍2+ terminals, 𝛼
3
and 𝛼
4
are the current

transfer gains from 𝑋− terminal to 𝑍1− and 𝑍2− terminals,
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Figure 3: CMOS implementation of DX-MOCCII.
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Figure 4: Simulated gain and phase responses of the all-pass filter.

respectively, and 𝛽
1
and 𝛽

2
are the voltage transfer gains from

input to𝑋+ and𝑋− terminals, respectively.More specifically,
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), where 𝜀 is the current

transfer error (tracking error) and 𝛿 is the voltage transfer
error (tracking error) of the DX-MOCCII. However, these
transfer gains differ from unity by the voltage and current
tracking errors of the DX-MOCCII.

The proposed circuit is reanalyzed by taking the tracking
errors of the nonideal MO-DXCCII into account, and the
modified current transfer function is given as
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Equation (5) reveals that the nonidealities do affect the filter
gain and the pole frequency as well as the zero frequency.
Assuming matched current transfer gains (𝛼

1
and 𝛼

3
) the

phase characteristics would not be affected. The sensitivities
of pole frequency (𝜔o) and gain (𝐻) with respect to active and
passive components are derived from (5).These are as follows:
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From the results, it is evident that the sensitivities are within
unity in magnitude, thus ensuring a low sensitivity perform-
ance.

Table 2: Aspect ratios of the transistors.

Transistors 𝑊 (𝜇m) 𝐿 (𝜇m)
M1-M2 1.4 0.7
M3–M5 2.8 0.7
M17-M18 2.4 0.7
M19–M21 4.8 0.7
M6–M16, M22–M28 9.6 0.7
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Figure 5: Time-domain input and output responses of all-pass filter.

3.2. Parasitic Effects. Next study is carried on the effect
of device parasitics on the performance of the proposed
circuit. The various parasitics are a low value parasitic serial
resistance 𝑅

𝑋
at 𝑋 the terminal 𝑌 exhibits a high value

parasitic resistance𝑅
𝑌
in parallel with low value capacitor𝐶

𝑌
,

and the terminals 𝑍 exhibit a high value parasitic resistance
𝑅
𝑍

in parallel with low value capacitance 𝐶
𝑍
. The main

among these are the 𝑌 and𝑍 terminals parasitic capacitances
and the 𝑋 terminal’s parasitic resistances. A reanalysis of the
proposed circuit yields the modified transfer function as
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(7)

where 𝐶 = 𝐶 + 𝐶
𝑍1−

+ 𝐶
𝑍1+

.
From (7), the effect of capacitance 𝐶

𝑍2+
becomes non-

negligible at very high frequencies. Most of the parasitic
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Figure 6: Fourier spectrum of the input and output.
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Figure 7: THD variation at output (𝐼out) with sinusoidal signal
amplitude at 6.36MHz.

capacitances get absorbed with the external grounded capac-
itor, as are in shunt with it. Also the parasitic resistance
gets absorbed with the external grounded resistor, as it is in
series with it. Such a merger will cause a slight deviation in
circuit parameters, which can be corrected by predistorting
the passive element values used in the circuit.

4. Simulation Results

To demonstrate the performance of the proposed circuit, the
PSPICE simulation program is used. In the simulation, the
TSMC 0.35 𝜇m CMOS process parameters were used. The
CMOS implementation of DX-MOCCII is shown in Figure 3
[13]. The aspect ratios of the CMOS transistors of the DX-
MOCCII are listed in Table 2. DC supply voltages of ±1.8V
and biasing voltage of 𝑉

𝐵𝐵
= −0.7V were used.The proposed

circuit of Figure 2 was designed with𝑅 = 1 kΩ and𝐶 = 25 pF
to obtain a pole frequency of 6.36MHz. The gain and phase
responses are shown in Figure 4, where a phase shift of 90∘
at a pole frequency of 6.27MHz is obtained, which is close
to the theoretical designed value. The time-domain input
and output responses of the circuit at the pole frequency are
shown in Figure 5. Also, the Fourier spectrum of input signal
and output signal is shown in Figure 6. Next, the amplitude of
the input sinusoidal signal is varied from 0.1 𝜇A to 1000𝜇A,

and the total harmonic distortion (THD) curve is plotted at a
pole frequency of 6.36MHz and is shown in Figure 7.

5. Conclusion

In this paper, a new current-mode cascadable all-pass filter
is presented. The proposed circuit uses single DX-MOCCII,
a grounded resistor, and a grounded capacitor, which is
the minimum component realization for an active RC filter
circuit. The circuit requires no matching constraints and low
active and passive sensitivities and employs grounded passive
components only, which makes it suitable for integrated
circuit implementation. The circuit also exhibits the feature
of low-input impedance and high-output impedance. The
PSPICE simulation results of the proposed circuit are in good
agreement with the theoretical results.
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