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A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems
submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of
the decision variables is kept along the process, while Pareto frontsweighted by all quantiles of the objective function are determined.
Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations
embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in
instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in
solving these important stochastic optimization problems.

1. Introduction

Since Bellman [1] proposed the dynamic programming tech-
nique for multistage optimization problems, his method has
been very successfully applied to a wide range of problems,
as it is well documented (see, for instance, [1–5]). This
paper considers a dynamic programming-based method to
solve stochastic discrete-time continuous-variable dynamic
programming problems. A standard formulation of this
problem is given by

min
𝑢[0],...,𝑢[𝑛−1]

𝐸[

𝑛−1

∑

𝑘=0

𝑔
𝑘
(𝑥 [𝑘] , 𝑢 [𝑘]) + 𝑔

𝑛
(𝑥 [𝑛])] , (1)

subject to
𝑥 [𝑘 + 1] = 𝑓 (𝑥 [𝑘] , 𝑢 [𝑘] , 𝑤 [𝑘]) , 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 [0] = 𝑥
0
, 𝑥 [𝑛] = 𝑥

∗

,

(2)
in which 𝑘 = 0, 1, . . . , 𝑛 are the time stages, 𝑥[0], . . . , 𝑥[𝑛]
are the state variables, 𝑢[0], . . . , 𝑥[𝑛 − 1] are the decision

variables, 𝑤[0], . . . , 𝑤[𝑛 − 1] are the disturbance variables,
𝑓(𝑥[𝑘], 𝑢[𝑘], 𝑤[𝑘]) is the state equation, 𝑔

𝑘
(𝑥[𝑘], 𝑢[𝑘]) is the

cost associated to stage 𝑘,𝑔
𝑛
(𝑥[𝑛]) is the cost associated to the

final stage, 𝑛, and 𝐸[𝑋] is the expectation of random variable
𝑋.

The state variables track the system dynamics throughout
the states, and the decision variables are actions that should
be taken in order to achieve the optimization objective. Addi-
tionally, the disturbance variables are assumed as random
variables, from any given distribution.The objective function
is assumed separable in all variables and stages.

In discrete-variable dynamic programming problems, a
resolution algorithm might involve a sequential search in a
graph, the nodes being the admissible states, the arcs being
the possible control actions, and the arc costs being the
respective transition probabilities. Although accurate, such
an algorithm certainly would have a tremendous computa-
tional cost, suffering from what is known as the “curse of
dimensionality.” That is, the processing costs would increase
exponentially with the number of possible states (for details,
see [1, 2, 6]).
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In continuous-variable dynamic programming problems,
an exact solution can be obtained only when the system
dynamics is linear and the objective function is quadratic.
In the general case, only approximate solutions are possible,
which are usually based on a state space discretization, such
as a uniform grid discretization of points over the state space.
However, this is also not an efficient procedure due to the
exponential growth of the number of states. In order to cope
with this problem, computationally efficient approximate
discretization procedures have been tried out already (see, for
instance, [7, 8]).

In this paper, we propose numerical heuristic solutions,
coupled with Monte Carlo simulations, obtainable within
a quite reasonable amount of computational effort. Monte
Carlo simulation is a well-known and usefulmethod to deter-
mine probabilities by using highly intensive computational
experiments [9]. Solving a dynamic programming problem
by simulation is not a novelty. However, while widely used in
many contexts, Monte Carlo simulations have not been used
often in solving dynamic programming problems, perhaps
because of their high computational costs. Just recently, now
coupled with heuristics and approximations, Monte Carlo
simulations started to be considered again. Its prohibitive
computational costs were exchanged by solutions without
strict guarantee of optimality.

Indeed, neurodynamic programming is a well-known
dynamic programming approach that employs Monte Carlo
sampling in stochastic settings [10]. Another very successful
example is reported by de Farias and van Roy [11], which
reformulated the stochastic dynamic programming problem
as a linear programming problem and approximated the large
resulting number of constraints by Monte Carlo sampling.
Also Thompson and Cluett [12] considered Monte Carlo
simulation to calculate integrals related to the expected
value of the objective function of a unidimensional dual-
optimal control problem that has to be decided by iterative
dynamic programming [13]. A number-theoretic method,
called quasi-Monte Carlo, uses number theory and numerical
analysis to generate a point set that is uniformly spaced. This
technique has been successfully used byCervellera et al. [7, 8],
along with neural networks, to improve a computationally
tractable approximate method of discretization. Those are
few examples of well-succeeded reductions in the “curse of
dimensionality.”

For most of the stochastic dynamic optimization prob-
lems considered in the literature, a usual model for dis-
turbances is a zero mean and 𝜎2 variance Gaussian white
noise, although in some cases a nonzero mean may also
appear [14].These assumptions can be suitable for some real-
world applications but it certainly will not be the case for
many of them. The focus of this paper is stochastic discrete-
time continuous-variable dynamic programming problems
submitted to non-Gaussian probability distribution functions
for disturbances𝑤[𝑘]. In those problems, the analytical form
of the expected value of the objective function may be really
complex or even lead to solutions impossible to be found
by means of classic dynamic programming techniques. If
disturbances 𝑤[𝑘] are Gaussian, it is possible that the best
optimization reference is the expected value of the objective

function. However, in many practical applications, mainly
under non-Gaussian disturbances, it is almost certain that
other quantiles, greater or smaller than themedian, are better,
as we will show shortly. Thus, a multiobjective approach
seems to be quite justified [15]. That is, instead of finding
the control sequence that optimizes the expected value of the
objective function, this paper proposes finding Pareto fronts
instead, weighted by all quantiles of the objective function.

In multiobjective optimization problems [16], there may
not be a single solution that is the best (or the global
optimum) with respect to all the objectives. The presence
of multiple objectives in a problem usually gives rise to a
family of nondominated solutions, called Pareto optimal set,
in which each objective can only be improved by degrading at
least one of the other objectives. Since none of the solutions
in the nondominated set is absolutely better than the others,
any one of them is an acceptable solution. For instance, Li and
Haimes [17] presented a survey on multiobjective dynamic
programming, and Trzaskalik and Sitarz [18] proposed a
procedure that considers a partially ordered criteria structure
in dynamic programming. However, we remind that the
approach proposed here is out of the traditional multiobjec-
tive discrete-time dynamic programming methods.

A highlight of the contributions of this paper is:

(i) We propose a scheme based on Monte Carlo sim-
ulations coupled with a deterministic discrete-time
dynamic programming method, which is exact for
continuous-variable problems and asymptotically
accurate for discrete-variable problems. Details will
be given shortly, but the main idea of this dynamic
programming method is to study the system dynam-
ics as an iteration operated on closed sets, essentially
considering the problem from a geometrical point
of view, instead of using a more traditional way of
studying it in the arcs of the graph. Since the scheme
proposed is based on simulations, it will be possible to
use non-Gaussian probability distribution functions
for disturbances.

(ii) Using the proposed scheme, a multiobjective
approach is employed, because why should one ever
consider only the expected value as the reference
for the optimization when it is possible to take
into account all quantiles? To deal with this point, a
Pareto front is presented as the answer of the problem,
weighted by a function of the empirical quantiles of
the decision variables. This is true because quantiles
are functions of the random variables, which can be
sampled by Monte Carlo simulations.

The proposed methodology and the algorithm are
explained in detail in Section 2. A case study based on a clas-
sical inventory control problem is conducted and presented
in Section 3. Finally, in Section 4, we summarize this paper
and conclude it with topics for future research in the area.
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algorithm
read input;
for 𝑖 = 1 until sampleSize do
generate randomly a sequence of disturbances with a

given probability distribution function;
find a sequence of decision variables that optimizes

the objective-function, as if it were a
deterministic dynamic programming problem;

end for
mount the Pareto front of the decision variables,
weighted by its quantiles;

take the box-plot, the average, or any other quantile of
these variables as the answer of the problem.

end algorithm

Algorithm 1

2. Proposed Approach

We propose here a computationally tractable scheme for
stochastic dynamic programming problems formulated as
in (1). Our heuristic method consists of a multiobjective
approach based on Monte Carlo simulations embedded in
a deterministic dynamic programming method. For our
convenience, the deterministic method chosen here was a
geometrical algorithm, described in detail in Cardoso [19]
and Cardoso et al. [15], which is exact for continuous-
variable problems and asymptotically exact for discrete-
variable problems.

In the geometrical algorithm described by Cardoso [19],
the system dynamics is supposed to be linear, with real
variables, or else with integer variables that could be relaxed.
The objective functions could be of any type, not necessarily
quadratic, although quadratics are the most used functions
in the literature. The geometrical algorithm is inspired by
approximate dynamic programming methods, namely, the
certainty equivalent control technique and the model predic-
tive control technique (detailsmay be found in [2]). An open-
loop optimal control computation is used in conjunction
with a rolling horizon, which means that more than one
control move is generally calculated. Finally, we remark that
the scheme is flexible enough to work under any other
fast deterministic dynamic programming method as well.
The proposed algorithm may be summarized as shown in
Algorithm 1.

We remind that because the proposed procedure is
based on simulations, it would be no trouble to consider
disturbances from any probability distribution, including
those for which an analytical solution is difficult, impossible,
or mathematically intractable. For example, it is possible to
consider multivariate-Gaussian distributions with different
means and variances per coordinate, or evenmultimodal and
asymmetrical distributions. This fact is very convenient in
accurately representing real-life phenomena.Themultiobjec-
tive approach explicitly considers the random distribution of
the control variables and implicitly takes into account the
random distribution of the state variables and of the objective
functions. In other words, all variables are to be treated as

random, which is possible because they are functions of the
disturbance random variables. As a result, we can find box-
plots, histograms, and quantiles for all decision variables, as
outcomes of the proposed method for the problem at hand.

As a final remark, according to the formulation presented
in (1), Monte Carlo simulations should have been used to
compute the sequence of control variables to optimize the
expected value of the objective function for several distur-
bances randomly generated. Instead, the proposed algorithm
presents the expected value of a sequence of decision variables
to optimize the objective function, for several randomly
generated disturbances. In the appendix, we present a the-
orem that shows that (i) the result found by the proposed
methodology is a lower bound for a classical solutionmethod
and (ii) the equality is valid if the decision variable minimizes
the objective function for almost all disturbances. Under
a practical point of view, the equality occurs, for example,
if the decision variables are constrained to compact sets,
as usually happens in linear problems that are solved by
numerical methods. Finally, we remind that the convergence
of this algorithm relies on the convergence of Monte Carlo
simulations [9].

3. Simulations

3.1. Preliminaries. The algorithm was implemented in MAT-
LAB (MATLAB is a trademark ofTheMathWorks, Inc.), and
all cases were run in a common PC. For all simulations,
5,000 disturbance vectors 𝑤[𝑘] were generated. However,
with only 100 vectors 𝑤[𝑘], convergence could be verified
[20].The purpose of these case studies is just to show a simple
and yet interesting application of the proposed methodology.
Then, a classical stochastic dynamic programming example
is considered, namely, the inventory control. Details may be
found in Bertsekas [2], but in few words the problem consists
in determining optimal orders to be placed for some items
at discrete-time stages so as to meet a stochastic demand.
Moreover, it is requested that the available stock at the final
stage is null. For such a problem, the variables are inherently
discrete since items are counted, but the range of levels for
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Figure 1: Case 1, box-plots for first product optimal orders.

an item is too large to be practical for a discrete-variable
dynamic programming solution. Then, the discrete variables
will be relaxed and they will be considered as real numbers.
The initial stock will also be a decision variable.This dynamic
optimization problem can be formulated as

min
𝑢[0],...,𝑢[𝑛−1]

𝐸[

𝑛−1

∑

𝑘=0

(𝑐
𝑘
𝑥 [𝑘] + 𝑑

𝑘
𝑢 [𝑘]) + 𝑐

𝑛
𝑥 [𝑛]] , (3)

subject to

𝑥 [𝑘 + 1] = 𝑥 [𝑘] + 𝑢 [𝑘] − 𝑤 [𝑘] , 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 [𝑘] ≥ 0, 𝑢 [𝑘] ≥ 0,

𝑥 [0] = 𝑥
0
, 𝑥 [𝑛] = 𝑥

∗

,

(4)

in which each stage 𝑘 corresponds to each month, 𝑛 is
the horizon, each state vector 𝑥[𝑘] represents the inventory
level (the stock available) at the beginning of stage 𝑘, each
control action vector 𝑢[𝑘] is the amount ordered at the
beginning of stage 𝑘, and each disturbance vector 𝑤[𝑘] is
a stochastic customer demand during stage 𝑘, given from
some probability distribution, each vector having size 𝑚
corresponding to the number of products considered.

The inventory level evolves according to the linear
discrete-time dynamic system:

𝑥 [𝑘 + 1] = 𝑥 [𝑘] + 𝑢 [𝑘] − 𝑤 [𝑘] . (5)

A linear cost function per stage is composed by a penalty for
each positive stock, represented by a row per unit cost vector
𝑐
𝑘
, added to the purchasing cost, represented by a rowper unit

cost vector 𝑑
𝑘
.

We consider the following three instances of the stochas-
tic inventory control problem, all of them having an opti-
mization horizon 𝑛 = 12, vectors 𝑐

𝑘
and 𝑑

𝑘
unitary, and

programming goal 𝑥∗ equal to the null vector. The decision
criterion of the multiobjective approach is the trade-off
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Figure 2: Case 1, band of values for first product optimal orders.

between the probabilities of having some stock at the end and
the probability of not attending some demand. The instances
are as follows.

Case 1. Customer demands follow a Gaussian probability
distribution, with multiproducts and a coupling constraint.
Case 1 is composed by 𝑚 = 3 products. Demands follow
Gaussian distributions, with mean 30 and standard deviation
10, for first product, mean 60 and standard deviation 10, for
second, andmean 30 and standard deviation 20, for third.The
coupling constraint says that 2 units of product 1 and 1 unit of
product 2 are necessary to produce each unit of product 3.

Case 2. Customer demands follow a bimodal probability
distribution function. Case 2 is composed by just 𝑛 = 1

product, with demands following a mix of Gaussian distri-
butions having mean 100 and standard deviation 10, with
probability 0.3, and mean 200 and same standard deviation,
with probability 0.7.

Case 3. Customer demands follow an asymmetric probability
distribution function. Also, only 𝑛 = 1 product is considered,
with demand that follows a zero-truncated log-normal distri-
bution, with mean 2 and standard deviation 1.

3.2. Results for Case 1. For Case 1, described earlier, the
simulation results are presented in Figures 1–5. Only results
for the first product are shown, as similar outputs (not
presented) were obtained for the other two products. Figure 1
shows box-plots for the first product optimal order, and
Figure 2 presents the corresponding band of values, between
quantiles 0.3 and 0.7. As expected, it is noticeable here an
increase in the uncertainty of the orders, what is evident from
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Figure 3: Case 1, box-plots for first product inventory levels when
ordering by the median.
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Figure 4: Case 1, box-plots for first product inventory levels when
ordering by 70th percentile.

the band enlargement that is observed as time goes by. Figures
3 and 4 illustrate what is expected to happen to the inventory
level, when the orders are made by the median values and by
quantile 0.7, respectively. These are values easily obtainable
from the algorithm. From Figure 3, we can roughly estimate
that 50%-50% are the probabilities of having and not having
stock by the end of the planning horizon, which is expected
because of the probability distribution of the demands being
symmetrical. We see here a reduction in the probability of
a negative stock, in case product orders would be placed
by quantile 0.7, Figure 4. Actually, the decision maker could
play with these two conflicting objectives, namely, (i) a low
probability of having stock at the end of the horizon period
and (ii) a low probability of not having stock at all, which
would mean that some demand would not be attended.
Figure 5 presents the respective Pareto front that resulted
from our simulations.
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Figure 5: Case 1, Pareto front for a trade-off between the probabili-
ties of having and not having stock.
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Figure 6: Case 2, box-plots of optimal orders.

3.3. Results for Case 2. Results for Case 2 are depicted in
Figures 6–10.The box-plots for optimal orders and respective
band of values are presented in Figures 6 and 7, which
follow basically the same pattern observed for Case 1; that
is, we observe an increase in the width (uncertainty) of the
band of values to be ordered along the time. Comparing two
strategies of placing orders, that is, from the median values
or else from percentile 0.7, leads to the results presented in
Figures 8 and 9, from which we can notice that, by the final
stage, the probabilities of having and not having stock are
not 50%-50% anymore, for orders taken frommedian values.
This results from the asymmetry of demands. On the other
hand, ordering from quantile 0.7 will increase significantly
the probability of having stock at the final stage. Of course,
we could also estimate these probabilities for any ordering
strategy we wish, as seen in Figure 10. As a final remark, it
can be seen in this case that bimodality in demands creates
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Figure 7: Case 2, band of values for optimal orders.
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Figure 8: Case 2, box-plots for inventory levels when ordering by
the median.

some difficulty for traditional approaches for planning order
placements, as a median-based order no longer guarantees
50%-50% probabilities of having and not having stock by the
end of the stages.

3.4. Results for Case 3. Figures 11, 12, 13, 14, and 15 show
the results for Case 3, which accounts for asymmetrical
distributed demands. In this case, orders taken by themedian
lead to approximately 82% of probability of having stock at
the final stage and, of course, 18% of probability of not having
stock at all at the final stage. On the other hand, orders taken
by quantile 0.7 lead to approximately 37% of probability of
having stock at the end of stages and 63% of not having any
stock at the end. By means of our methodology, it would
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Figure 9: Case 2, box-plots for inventory levels when ordering by
70th percentile.
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Figure 10: Case 2, Pareto front for a trade-off between the probabil-
ities of having and not having stock.

be easy to identify, for instance, that the target of 50%-50%
would be reached if orders were to be placed from quantile ≈
0.64.

4. Discussions and Conclusions

In this paper, we proposed a multiobjective approach for
stochastic discrete-time real-variable dynamic programming
problems, which is based on Monte Carlo simulations cou-
pled with a deterministic dynamic programming algorithm.
Our approach was shown to be able to deliver suboptimal
(heuristic) solutions by using common desktop computers,
within a reasonable amount of computational time. Once a
Pareto front for the problem becomes built, decision makers
can choose any quantile that is perceived to be advantageous
for the specific situation. In addition, a band of values,
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histograms of the decision variables, and their box-plots
are provided as outcomes of the proposed method for a
given problem, instead of just the decision variable values
that optimize the expected value of the objective function.
For a more effective understanding of the method proposed
and the results delivered, we presented a case study based
on a classical inventory control problem. The numerical
results obtained in the simulations showed that Monte Carlo
simulations were quite effective in solving realistic cases and
that the methodology is a promising technique.

Future research will investigate the application of the
proposed methodology in instances of real-world dynamic
problems larger than those ones treated here. Additionally,
more realistic and complexmodeling of the random variables
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Figure 13: Case 3, box-plots for inventory levels when ordering by
the median.
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will be considered, for instance, with variable-dependency.
These are some few topics for future research in this area.

Appendix

ThisAppendix presents a theorem that validates the proposed
algorithm.The random variables are considered to be contin-
uous but the discrete variable case could be treated similarly.
The improper integral, which comes from the expected value
of the continuous random variable, is supposed to converge.
If a minimum does not exist, just replace it by the infimum.
All minimization could be for almost all 𝑤 instead of for all
𝑤. The theorem is based on a review of the Fatou Lemma, as
follows.

LemmaA.1 (review of Fatou Lemma). Let𝑓 : R2 → R be an
integrable function in the first coordinate and with minimum
in the second one. Thus,

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 ≤ min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.1)

Proof. For each fixed 𝑤, consider

𝑢 (𝑤) = argmin
𝑢

𝑓 (𝑤, 𝑢) . (A.2)

Then, one has that

𝑓 (𝑤, 𝑢 (𝑤)) ≤ 𝑓 (𝑤, 𝑢) , ∀𝑢. (A.3)

As the integral operator preserves monotonicity

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢 (𝑤)) 𝑑𝑤

≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤, ∀𝑢.

(A.4)

As this expression holds for all 𝑢, it holds for

𝑢
𝑜
= argmin

𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.5)

Thus,

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 ≤ min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.6)

In other words, the expected value of the minimum is
always a lower bound for theminimumof the expected value.

Theorem A.2 (validation of the algorithm). Let 𝑓 : R2 →

R be an integrable function in the first coordinate and with
minimum in the second one. If there exists 𝑢 that does not
depend on 𝑤, such that

𝑓 (𝑤, 𝑢) = min
𝑢

𝑓 (𝑤, 𝑢) , ∀𝑤, (A.7)

the following equality holds:

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 = min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.8)

Proof. (⇒) Suppose that there exists

𝑢 = argmin
𝑢

𝑓 (𝑤, 𝑢) , ∀𝑤. (A.9)

Consider

𝑢
𝑜
= argmin

𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.10)

By Lemma A.1,

∫𝑓 (𝑤, 𝑢) 𝑑𝑥 = ∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤

≤ min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤.

(A.11)

As 𝑢
𝑜
minimizes the integral, it is true that

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 ≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤, ∀𝑢. (A.12)

In particular, for 𝑢, which is fixed and minimizes 𝑓, for
all 𝑤

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 ≤ ∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.13)

Therefore, the following equality holds:

∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤 = ∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.14)

In other words,

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 = min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.15)

Thus, if minimums exist, they must coincide

𝑢
𝑜
= argmin

𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤 = 𝑢 = argmin
𝑢

𝑓 (𝑤, 𝑢) . (A.16)

(⇐) Suppose that, for all 𝑢
𝑜
given, there exists a set 𝑊

with positive measure, for which

𝑢
𝑜
̸= argmin

𝑢

𝑓 (𝑤, 𝑢) , ∀𝑤 ∈ 𝑊 ⇒

𝑢
𝑜
̸= argmin

𝑢

𝑓 (𝑤, 𝑢) , ∀𝑤.

(A.17)

In other words, ∀𝑤 ∈ 𝑊, there exists a 𝑢 which depends
on 𝑤, such that

𝑢 (𝑤) = argmin
𝑢

𝑓 (𝑤, 𝑢) . (A.18)

Therefore,

𝑓 (𝑤, 𝑢 (𝑤)) < 𝑓 (𝑤, 𝑢
𝑜
) , ∀𝑤 ∈ 𝑊. (A.19)

By the monotonicity of the integral

∫
𝑊

𝑓 (𝑤, 𝑢) 𝑑𝑤 = ∫
𝑊

min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤

< ∫
𝑊

𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤, ∀𝑢

𝑜
⇒

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 < ∫𝑓 (𝑤, 𝑢
𝑜
) 𝑑𝑤, ∀𝑢

𝑜
.

(A.20)
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In particular,

𝑢
𝑜
= argmin

𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.21)

Thus, the inequality just holds:

∫min
𝑢

𝑓 (𝑤, 𝑢) 𝑑𝑤 < min
𝑢

∫𝑓 (𝑤, 𝑢) 𝑑𝑤. (A.22)

Therefore, the equality is valid, for example, if 𝑓 is linear
and 𝑢 is considered constrained to compact sets.
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