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The paper deals with two different approaches for the analysis of electromagnetic field coupling to finite length overhead wire: the
wire antenna theory (AT) and the transmission line (TL) method. The analysis is carried out in the frequency and time domain,
respectively. Within the frequency domain analysis the wire antenna formulation deals with the corresponding set of Pocklington
integrodifferential equation, while the transmission line model uses the telegrapher’s equations. The set of Pocklington equations is
solved via the Galerkin-Bubnov scheme of the Indirect Boundary Element Method (GB-IBEM), while the telegrapher’s equations
are treated using the chain matrix method and the modal equation to derive per-unit-length parameters. For the case of the time
domain analysis AT model uses the space-time Hallen integral equation set, while TL approach deals with the time domain version
of the telegrapher’s equations. Hallen equations are handled via time domain version of GB-IBEM, while time domain telegrapher’s
equations are solved by using Finite Difference Time Domain (FDTD) method. Many illustrative computational examples for the
frequency and time domain response, respectively, for several configurations of overhead wires, obtained via different approaches,
are given in this paper.

1. Introduction

The electromagnetic field coupling to overhead wires is
of great practical interest for many EMC applications [1–
11], such as transient excitation of antennas, power, or
communications cables. The electromagnetic field coupling
to finite length overhead wires can be determined by means
of the transmission line model or the thin wire antenna
theory in either frequency or time domain [1]. In particular,
the transient response of a wire configuration of interest can
be computed directly, by solving the related time domain
equations or by the indirect approach, that is, by solving their
frequency domain counterpart. When the indirect approach
is used the frequency spectrum has to be calculated, and then
the transient response is computed by means of the Inverse
Fourier Transform (IFT).

Many practical engineering problems dealing with elec-
tromagnetic field coupling to thin wires can be analyzed
by using the Transmission Line (TL) models [1–6]. These
models include the analysis of incident electromagnetic field
exciting the line and the propagation of induced currents and
voltages along the line.

The TL models yield valid results if the line length is
significantly larger than the separation between the wires and
also larger than the actual height above ground [8].

On the other hand the TL approximation cannot provide
a complete solution for the excitation of a given wire
configuration by an incident field if the wavelength of the
electromagnetic field exciting a wire structure is comparable
to or less than the transverse electrical dimensions of the
structure. Namely, the TL model fails to predict resonances
and accounts for the presence of a lossy ground only
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approximately [1]. One of the serious problems with TL
approach occurs due to the fact that current grows to infinity
at resonant points as there are no losses and radiation
resistance to limit its flow [8]. The full wave approach, based
on the wire antenna theory and related integral equations,
is more rigorous and should be used whenever the above-
ground transmission lines of the finite length are considered.
However, a serious drawback of AT approach is rather long
computational time required for the calculations pertaining
to long lines.

This paper deals with the analysis of electromagnetic
field coupling to overhead wires in either frequency or time
domain by using both antenna model and transmission line
approach, respectively.

A number of illustrative computational examples regard-
ing electromagnetic coupling to overhead wires are given in
the paper.

The aboveground wires are subjected to electromagnetic
fields arriving from a distant source and inducing current to
flow along the wires. The key to understanding the behaviour
of induced fields is the knowledge of current distribution
induced along the wires. These currents generate scattered
fields propagating away from the equipment.

The paper is organized as follows: Section 2 deals with
the frequency domain analysis followed by related numerical
solution methods for overhead wires. Section 2 ends up with
many illustrative examples related to the aboveground lines
and PLC (power line communications) systems.

Section 3 outlines the time domain analysis and related
method of solutions of governing equations. Some compu-
tational examples pertaining to the multiconductor above-
ground lines are given. Finally, the conclusion summarizes
what has been discussed throughout this work.

2. Frequency Domain Models and Methods

This section deals with the wire antenna theory and
transmission line (TL) approximation, respectively, for the
analysis of electromagnetic field coupling to overhead lines
of finite length in the frequency domain. The formulation
arising from the wire antenna theory is based on the set
of coupled Pocklington integrodifferential equation for half-
space problems. The effect of a two-media configuration
is taken into account by means of the reflection coeffi-
cient approximation [12]. The resulting integro-differential
expressions are numerically handled via the frequency
domain Galerkin-Bubnov scheme of the Indirect Boundary
Element Method (GB-IBEM) [8].

Transmission line model in the frequency domain is
based on the corresponding telegrapher’s equations which
are handled by using the chain matrix method [10].

2.1. Antenna Theory Approach: Set of Coupled Pocklington
Equations. Modeling of arbitrarily shaped wires located at
different heights above a lossy ground is an important task
in both antenna and electromagnetic compatibility (EMC)
studies [1].

x

y
z

�r

�sR0

(x, y, z)(x, y, z)

2a

�r 
�s 

Figure 1: Single wire of arbitrary shape in free space.

This section firstly deals with an assessment of the
current induced along multiple wire configurations above
a lossy ground. Once the currents along the wire array
have been obtained, the radiated field components could be
determined.

The set of Pocklington equations for a configuration
of overhead wires can be obtained as an extension of the
Pocklington integro-differential equation for a single wire
of arbitrary shape. The Pocklington equation for a single
wire above a lossy ground can be derived by enforcing
the continuity conditions for the tangential components of
the electric field along the perfectly conducting (PEC) wire
surface. First, a single wire of arbitrary shape, insulated in
free space, as shown in Figure 1 is considered.

For the PEC wire the total field composed from the

excitation field �Eexc and scattered field �Esct vanishes [1, 8]:

�ex ·
(
�Eexc + �Esct

)
= 0 on the wire surface. (1)

Starting from Maxwell’s equations and Lorentz gauge the
scattered electric field can be expressed in terms of the vector

potential �A:

�Esct = − jω�A +
1

jωμε
∇
(
∇�A

)
. (2)

The vector potential is defined by the particular integral over
a given path C (considered conductive wire structure):

�A(s) = μ

4π

∫

C
I(s′)g0(s, s′, s∗)�s′ds′, (3)

where I(s′) is the induced current along the line and g0(s, s′)
denotes the lossless medium Green function:

g0(s, s′) = e− jkR

R
, (4)

and R is the distance from the source point to the observation
point, respectively, while the propagation constant of the
homogeneous medium is given by

k2 = ω2μ0ε0. (5)
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Figure 2: The wire of arbitrary shape and its image.

Inserting (3) into (2) gives the relation for the scattered
electric field:

�Esct = 1
j4πωε0

∫

C′
I(s′) · �s′ · [k2 +∇∇]g0(s, s′)ds′. (6)

Combining (6) and (1) results in the Pocklington integral
equation for the unknown current distribution along the
wire of arbitrary shape insulated in free space:

Eexc
tan(s) = − 1

j4πωε0

∫

C′
I(s′) ·�s · �s′ · [k2 +∇∇]g0(s, s′)ds′,

(7)

where Eexc
tan denotes the tangential component of the electric

field illuminating the wire.
Now the case of curved wire located above an imperfectly

conducting ground can be analyzed by extending integro-
differential equation (7) using the reflection coefficient
approach [12]. The geometry of an arbitrary wire and its
image, respectively, is shown in Figure 2.

The excitation function Eexc is now composed from
incident and reflected field, respectively,

Eexc = Einc + Eref. (8)

Performing certain mathematical manipulations the Pock-
lington integro-differential equation for a curved wire above
a lossy ground becomes [12]

Eexc
s (s) = j

4πωε0

∫ L

0

{[
k2�es�es′ − ∂2

∂s∂s′

]
g0(s, s′)

+ RTM

[
k2�es�es∗ − ∂2

∂s∂s∗

]
gi(s, s∗)

+ (RTE − RTM)�es�ep

·
[
k2�ep�es∗ − ∂2

∂p∂s∗

]
gi(s, s∗)

}
I(s′)ds′,

(9)

where�ep is the unit vector normal to the incident plane, while
gi(s, s∗) arises from the image theory and is given by

gi(s, s∗) = e− jkR∗

R∗
, (10)

and R∗ is the distance from the image source point to the
observation point, respectively.

An extension to the case of multiple curved wires is
straightforward, that is, it follows [12]

Eexc
sm (s)

= j

4πωε0

Nw∑

n=1

∫ Ln

0

{[
k�esm�es′n −

∂2

∂sm∂s′n

]
g0n

(
sm, s′n

)

+ RTM

[
k2�esm�es∗n −

∂2

∂sm∂s∗n

]
gin
(
sm, s∗n

)

+ (RTE − RTM)�esm�ep

·
[
k2�ep�es∗− ∂2

∂p∂s∗

]
gi
(
sm, s∗n

)}
I
(
s′n
)
ds′,

(11)

where Nw is the total number of wires and In(s′n) is the
unknown current distribution induced on the nth wire. Fur-
thermore, g0mn(x, x′) and gimn(s, s′) are the Green functions
of the form

g0mn
(
sm, s′n

) = e− jkR1mn

R1mn
, gimn

(
sm, s′n

) = e− jkR2mn

R2mn
,

(12)

where R1mn and R2mn are distances from the source point
and from the corresponding image, respectively, to the
observation point of interest.

The influence of a lossy half-space is taken into account
via the Fresnel plane wave reflection coefficient (RC) for TM
and TE polarization, respectively [12],

R′TM =
n cos θ′ −

√
n− sin2θ′

n cos θ′ +
√
n− sin2θ′

, (13)

RTE =
cos θ′ −

√
n− sin2θ′

cos θ′ +
√
n− sin2θ′

, (14)

where θ′ is the angle of incidence and n is given by,

n = εeff

ε0
, εeff = εrε0 − j

σ

ω
, (15)

and εeff is the complex permittivity of the ground.
For the special case of single horizontal straight wire

above a lossy half-space, Figure 3 integro-differential equa-
tion (9) simplifies into

Eexc
x = jω

μ

4π

∫ L

0
I(x′)g(x, x′)dx′

− 1
j4πωε

∂

∂x

∫ L

0

∂I(x′)
∂x′

g(x, x′)dx′,
(16)
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Figure 3: Horizontal wire above a lossy ground.
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Figure 4: Horizontal wires above a lossy half-space at different
heights.

where I(x′) is the induced current along the horizontal wire
and g(x, x′) denotes the Green’s function given by

g(x, x′) = g0(x, x′)− RTM gi(x, x′). (17)

Furthermore, if an array of multiple horizontal wires is
considered (Figure 4), system of (11) becomes

Eexc
xm = −

1
j4πωε0

Nw∑

n=1

∫ Ln

0

[
∂2

∂x2
+ k2

1

]
gmn(x, x′)In(x′)dx′,

m = 1, 2, . . . ,M,
(18)

where In(x′) is the unknown current distribution induced
along nth wire, Eexc

xm is the known excitation field tangential
to the jth wire surface, and gmn is the corresponding Green
function:

gmn(x, x′) = g0mn(x, x′)− R′TMgimn(x, x′)
m = 1, 2, . . . ,M.

(19)

It is worth noting that a trade-off between the rigor-
ous Sommerfeld integral approach and approximate RC
approach is presented in [12]. Although reflection coefficient

approximation causes certain error (up to 10%) it takes
a significantly less computational effort then a rigorous
Sommerfeld approach [8].

The total electric field irradiated by configuration of
multiple wires of arbitrary shape is given by [13, 14]

�E =
Nw∑

n=1

[
�E0n + RTM�Ein + (RTE − RTM)

(
�Ein ·�ep

)
�ep
]

, (20)

where

�E0n = 1
j4πωε0

⎡
⎢⎢⎢⎢⎣

k2
1

∫ Ln

0
�es′n I

(
s′n
)
g0n

(
�r, �r′

)
ds′n

+
∫ L

0

∂I
(
s′n
)

∂s′n
∇g0n

(
�r, �r′

)
ds′n

⎤
⎥⎥⎥⎥⎦

,

�Ein = 1
j4πωε0

⎡
⎢⎢⎢⎢⎣

k2
1

∫ Ln

0
�esn∗I

(
s′n
)
gin
(
�r,�r∗

)
dw′

−
∫ Ln

0

∂I(s∗)
∂s∗n

∇gin
(
�r,�r∗

)
ds′

⎤
⎥⎥⎥⎥⎦
.

(21)

Note that index 0 and i are related to the source and image
wire, respectively.

For the special case of single horizontal straight wire
above a lossy half-space (Figure 3), it follows [15]

Ex = 1
j4πωε0

[
−
∫ L

0

∂I(x′)
∂x′

∂g(x, x′)
∂x′

dx′

+k2
∫ L

0
g(x, x′)I(x′)dx′

]
,

(22)

Ey = 1
j4πωε0

∫ L

0

∂I(x′)
∂x′

∂g
(
x′, y

)

∂y
dx′, (23)

Ez = 1
j4πωε0

∫ L

0

∂I(x′)
∂x′

∂g(x′, z)
∂z

dx′. (24)

For the case of multiple horizontal wires the expressions for
electric field are given by [15]

Ex = 1
j4πωε0

Nw∑

n=1

[
−
∫ Ln

0

∂In(x′)
∂x′

∂gnm(x, x′)
∂x′

dx′

+k2
∫ Ln

0
gnm(x, x′)In(x′)dx′

]
,

(25)

Ey = 1
j4πωε0

Nw∑

n=1

∫ Ln

0

∂In(x′)
∂x′

∂gnm(x, x′)
∂y

dx′, (26)

Ez = 1
j4πωε0

Nw∑

n=1

∫ Ln

0

∂In(x′)
∂x′

∂gnm(x, x′)
∂z

dx′. (27)

The radiated magnetic field of the curved wire system can be
written as follows [13, 14]:

�H =
Nw∑

n=1

[
�HSn + RTE �HIn + (RTM − RTE)

(
�HIn ·�ep

)
�ep
]

, (28)
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where

�HSn = − 1
4π

∫ Ln

0
I
(
s′n
)
�es′ × ∇g0n

(
�r, �r′

)
ds′,

�HIn = − 1
4π

∫ Ln

0
I
(
s′n
)
�es∗ ×∇gin

(
�r,�r∗

)
ds′.

(29)

The reduction to the case of a single straight wire or straight
wire array is straightforward, as in the case of electric field
given by (22)–(27).

2.2. Numerical Solution. The set of Pocklington integro-
differential equations (11) has been solved by using the
Galerkin-Bubnov scheme of the Indirect Boundary Element
Method (GB-IBEM). An outline of the method is given here,
for the sake of completeness while the method has been
presented in detail elsewhere, for example, in [8].

Performing the Galerkin-Bubnov scheme of (GB-IBEM)
in the frequency domain the set of coupled integro-
differential equations (11) is transformed into the following
matrix equation [13]

M∑

n=1

Nn∑

i=1

[Z]eji{I}ei = {V}ej , (30)

where the mutual impedance matrix is given by [13]:

[Z]ei j

= −
∫∫ 1

−1
{D} j

{
D′
}T
i g0nm

(
sn, s′m

)ds′m
dξ′

dξ′
dsn
dξ

dξ

+ k2
1�esn�esm

∫∫ 1

−1

{
f
}
j

{
f ′
}T
i g0nm

(
sn, s′m

)ds′m
dξ′

dξ′
dsn
dξ

dξ

− RTM

∫∫ 1

−1
{D} j

{
D′
}T
i ginm

(
sn, s∗m

)ds′m
dξ′

dξ′
dsn
dξ

dξ

+ RTMk2
1�esn�es∗m

×
∫∫ 1

−1

{
f
}
j

{
f ′
}T
i ginm

(
sn, s∗m

)ds′m
dξ′

dξ′
dsn
dξ

dξ

+
j

4πωε0

∫ 1

−1
Z′T
{
f
}
j

{
f ′
}T
j

dsn
dξ

dξ,

(31)

while the voltage vector is given by [13]

{V}nj = − j4πωε0

∫ 1

−1
Eexc
sn (sn) f jn(sn)

dsn
dξ

dξn. (32)

Once the current distribution is obtained, the radiated field
can be obtained applying the similar BEM formalism [13].
Thus, the total field is given by

�E =
N∑

k=1

[
�Ee
Sk + RTM�Ee

Ik + (RTE − RTM)
(
�Ee
Ik ·�ep

)
�ep
]

, (33)

where the field components due to a wire segment radiation
are given by

�Ee
Sk =

1
j4πωε0

n∑

i=1

[
k2
∫ 1

−1
�eks′Ieik fi(ξ)g0k

(
�r, �r′

)ds′k
dξ

dξ

+
∫ 1

−1
Ieik

∂ fi(ξ)
∂ξ

∇g0k

(
�r, �r′

)ds′k
dξ

dξ

]
,

�Ee
I =

1
j4πωε0

n∑

i=1

[
k2
∫ 1

−1
�eks∗Ieik fi(ξ)gik

(
�r,�r∗

)ds′k
dξ

dξ

−
∫ 1

−1
Ieik

∂ fi(ξ)
∂ξ′

∇gik
(
�r,�r∗

)ds′k
dξ

dξ

]
.

(34)

The total magnetic field is given by [13]

�H =
N∑

k=1

[
�He
Sk + RTE �He

Ik + (RTM − RTE)
(
�He
Ik ·�ep

)
�ep
]

, (35)

while the magnetic field components are given by [13]

�He
Sk = −

1
4π

n∑

i=1

∫ 1

−1
Iik fi(ξ)�es′k ×∇g0k

(
�r, �r′

)ds′k
dξ

dξ,

�He
Ik = −

1
4π

n∑

i=1

∫ 1

−1
Ieik fi(ξ)�eks∗ ×∇gik

(
�r,�r∗

)ds′k
dξ

dξ.

(36)

The reduction to the case of a single straight wire or
straight wire array is straightforward and can be found
elsewhere, for example, in [8].

2.3. Transmission Line Approximation: Telegrapher’s Equa-
tions in the Frequency Domain. Voltages and currents along
the multiconductor transmission line shown in Figure 4
induced by an external field excitation can be obtained
using the field-to-transmission line matrix equations in the
frequency domain [10]:

d

dx

[
V̂(x)

]
+
[
Ẑ
]
·
[
Î(x)

]
= − jωμ0

∫ h

0

[
Ĥexc

y (x, z)
]
dz,

d

dx

[
Î(x)

]
+
[
Ŷ
]
·
[
V̂(x)

]
= − jωμ0

∫ h

0

[
Êexc
z (x, z)

]
dz,

(37)

where the longitudinal impedance matrix is given by
[
Ẑ
]
= jω[L] +

[
Ẑw

]
+
[
Ẑg

]
, (38)

and the transversal admittance matrix can be written as
[
Ŷ
]
= jω[C] + [G], (39)

where [L] is the per-unit-length longitudinal inductance
matrix for a perfect soil [C] and [G] are the per-unit
length transverse capacitance and conductance matrix of the
multiconductor line, respectively. Furthermore, �Ẑw� is the
per-unit length internal impedance matrix of the conductors,
and �Ẑg� is the per-unit length ground impedance matrix.

Finally, [Ĥexc
y (x, z)] and [Êexc

z (x, z)] are sources vectors
expressed in terms of the incident magnetic and electric field,
respectively [1, 8].
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Figure 5: Current induced at the center of the line above a PEC
ground versus frequency.

1E+04 5E+06 1E+07 1.5E+07 2E+07 2.5E+07 3E+07

TL
BEM

1E+01

1E+00

1E−01

1E−02

1E−03

1E−04

1E−05

1E−06

1E−07

A
bs

(I
)

(A
)

f (MHz)

NEC RC
NEC Sommerfeld

Figure 6: Current induced at the center of the line above a lossy
ground versus frequency (σ = 0.001 S/m, εr = 10).

2.4. Computational Examples. The first computational
example is related to the analysis of an overhead wire
(Figure 3) of length L = 20 m, radius a = 0.005 m located at
height h = 1 m above PEC ground and illuminated by the
plane wave. The amplitude of the electric field is E0 = 1 V/m
and it is parallel to x-axis. Figure 5 shows the frequency
response at the center of the line. The results computed
via GB-IBEM and TL are compared to the results obtained
via NEC using RC and Sommerfeld integral approach,
respectively, to account for the presence of a lossy half-space.
The agreement between the results obtained via the different
approaches is found to be satisfactory.

Figure 6 shows the frequency response for the same
line located above an imperfectly conducting half-space for
various values of ground conductivity σ = 1 mS/m. The

L

h

d s

z

y

x

Vg ZL

Figure 7: Simple PLC circuit.

results calculated via different approaches agree satisfactorily
again.

Next computational example is related to a simple Power
Line Communications (PLCs) system. PLC technology aims
to provide users with necessary communication means by
using the already existing and widely distributed power
line network and electrical installations in houses and
buildings. However, one of the principal drawbacks of this
technology is related to electromagnetic interference (EMI)
problems, as overhead power lines at the PLC frequency
range (1 MHz to 30 MHz) act as transmitting or receiving
antennas, respectively [13].

Figure 7 shows the geometry of a simple PLC system
consisting of two conductors placed in parallel above each
other at the distance d. The conductors are suspended
between two poles of equal height, thus heaving the shape
of the catenary.

The geometry of a catenary is fully defined by such pa-
rameters as the distance between the points of suspension, L,
the sag of the conductor, s, and the height of the suspension
point, h, as shown in Figure 7. The imperfectly conducting
ground is characterized with electrical permeability εr and
conductivity σ .

The conductors are modeled as thin wire antennas
excited by the voltage generator Vg at one end and termi-
nated by the load impedance ZL at the other end.

The influence of the load impedance is taken into
account by modifying continuity condition for the tangential
components of the electric field at the wire surface:

Einc
s + Esct

s = Z′LI(s), (40)

where Z′L is the corresponding conductor per length
impedance of the conductor.

The modified Pocklington equation for the wire contain-
ing the load impedance is now given by

Einc(s) = − 1
j4πωε0

∫ L

0

{[
k2

1�es�es′ −
∂2

∂s∂s′

]
g0(s, s′)

+RTM

[
k2

1�es�es∗ −
∂2

∂s∂s∗

]
gi(s, s∗)

}

× I(s′)ds′ + Z′LI(s).
(41)

Set of integral equations (41) is numerically solved using via
GB-IBEM.
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Figure 8: The current distribution along a simple PLC system.
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Figure 9: Radiated electric field.

The actual example is related to the simple PLC circuit
shown in Figure 7. The distance between poles is L =
200 m, with the radii of wires a = 6.35 mm. The wires
are suspended on the poles at heights h1 = 10 m and
h2 = 11 m. The maximum sag of the conductor is assumed
to be s = 2 m. Ground parameters are εr = 13 and
= 0.005 S/mσ . The power of the applied voltage generator
is 2.5 μW (minimum power required for the PLC system
operation) and operating frequency is chosen to be 14 MHz.
The value of the terminating load ZL is 500Ω. Figure 8 shows
the current distribution along the simple PLC system for
different values of sag.

Radiated electric and magnetic fields at the distance of
30 m from the wires and 10 m above ground are shown at the
Figures 9 and 10, respectively.

Analysis of the radiated field distributions shows that the
conductor sag does not influence the far-field region signifi-
cantly while the near-field distribution is mainly determined
by the conductor geometry. Finally, the power of the applied
voltage generator is changed to 1 mW (average power used
at the actual PLC systems) and operating frequency is varied
between 1 and 30 MHz. The values of the terminating load
ZL are chosen to be 50Ω, 500Ω, 5000Ω, thus simulating
different conditions within the power grid. The maximum
values of the radiated electric field at the distance of 30 m for
different arrangements are shown in Table 1.
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Figure 10: Radiated magnetic field.

Table 1: Maximum values of the radiated electric field at the 30 m
distance.

Frequency ZL(Ω) |E|max (mV/m)

7 MHz
50 0.459

500 0.341

5000 0.380

14 MHz
50 0.477

500 0.458

5000 0.541

28 MHz
50 2.394

500 0.853

5000 2.043

According to the available international standards [16,
17], radiated electric fields should not excide level of 30 μV/m
at the distance of 30 m. Obviously, the radiated field levels
are at best case more than 10 times higher than the proposed
limit. The spatial distributions of the radiated electric field
have been calculated for the number of frequencies in the
frequency range from 1 to 30 MHz. Maximum levels of
the calculated electric fields values are shown to excide the
limits defined by the standard for the disturbances caused by
information technology equipment.

3. Time Domain Models and Methods

This section deals with direct time domain analysis of
transient electromagnetic field coupling to straight overhead
wires using the wire antenna theory and the transmission line
method, respectively. The time domain antenna theory for-
mulation is based on a set of the space-time Hallen integral
equations. The transmission line approximation is based on
the corresponding time domain Telegrapher’s equations. The
space-time integral equations arising from the wire antenna
theory are handled by the time domain scheme of GB-IBEM.
The time domain Telegrapher’s equations are solved using
the Finite Difference Time Domain (FDTD) method. Time
domain numerical results obtained with both approaches are
compared to the results computed via NEC 2 code combined
with Inverse Fourier Transform procedure. Some illustrative
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comparisons of results obtained by means of antenna theory
and transmission line approach are presented in this section.

It is worth mentioning that, for the sake of simplicity,
only straight wires are analyzed in this paper.

3.1. The Antenna Theory Model. Generally, a direct time-
domain analysis of thin wire in the presence of a lossy
half-space can be carried out via the appropriate space-
time integral equations of either Pocklington or Hallen
type [1, 8]. When applied to the solution of the Hallen
integral equation the Galerkin-Bubnov Indirect Boundary
Element Method (GB-IBEM) [8] results in relatively complex
procedures compared to various procedures for the solution
of Pocklington equations, but, at the same time, it is proven
to be highly efficient, accurate, and unconditionally stable [8,
18, 19]. On the other hand, the implementation of GB-IBEM
to the solution of the Pocklington-type equation is relatively
simple, but suffers from serious numerical instabilities. The
origin of these instabilities is the discretization of space-
time differential operator [8]. The GB-IBEM solution of
the Pocklington equation in free space for certain values
of time domain integration parameters has been presented
elsewhere, for example, in [19], while the Hallen integral
equation solution by means of GB-IBEM has been obtained
for thin wire structures in the presence of a dielectric half-
space, for example, in [11]. In both cases, the influence of
imperfect ground has been taken into account via the corre-
sponding reflection coefficient. The numerical solution was
mostly limited to scenarios in which the finite conductivity
of the ground could be ignored. This approximation involves
cases where the wires are sufficiently far from the two-media
interface or where the ground conductivity is appreciably
low or very high, that is, where the approximation of pure
dielectric medium or perfect ground is applied. Through
these approximations the time-dependent part of the reflec-
tion coefficient function vanishes, and the resulting matrix
equation simplifies significantly.

However, for the cases where these approximations are
not valid, modifications to the original methods are required
in order to include the ground conductivity [8]. Namely, the
related reflection coefficient is space-time dependent, and the
resulting convolution integrals have to be included in the
matrix system and numerically computed. This leads to a
significant increase in the overall computational cost of the
method and consequently requires several modifications.

This section deals with the transient analysis of multiple
horizontal wires above a lossy ground using the Hallen
integral equation approach.

The set of space-time Hallen’s integral equations can be
derived as an extension of the single wire case. First, a single
wire insulated in free space is considered.

Thin wire antenna or scatterer of length L and radius
a, oriented along the x-axis, is considered. The wire is
assumed to be perfectly conducting and excited by a plane
wave electric field. For the sake of simplicity, the analysis is
restricted to the case of a normally incident electric field.

The tangential component of the total field vanishes on
the PEC wire surface, that is,

Einc
x + Esct

x = 0, (42)

where Einc
x is the incident and Esct

x scattered field on the
metallic wire surface. Starting from Maxwell equations and
obeying the Lorentz gauge one obtains a time domain
version of (2):

⎛
⎝∂2 �A
∂t2

− 1
με
∇
(
∇�A

)
⎞
⎠
∣∣∣∣∣∣

tan

= ∂�Einc

∂t

∣∣∣∣∣∣
tan

, (43)

where �A is the space-time-dependent vector potential.
According to the thin wire approximation, only the

axial component of the vector potential exists, that is, (43)
becomes

∂2Ax

∂x2
− 1

c2

∂2Ax

∂t2
= − 1

c2

∂Einc
x

∂t
, (44)

where c denotes the velocity of light.
The corresponding solution of (44) can be expressed in

terms of a sum of the general solution of the homogeneous
equation and the particular solution of the inhomogeneous
equation:

Ax(x, t) = Ah
x(x, t) + A

p
x (x, t). (45)

The solution of the homogeneous wave equation is given as
a superposition of incident and reflected wave [8]:

Ah
x(x, t) = F1

(
t − x

c

)
+ F2

(
t +

x

c

)
, (46)

while the particular solution is given by the integral [8]:

A
p
x (x, t) = 1

2Z0

∫ L

0
Einc
x

(
x′, t − |x − x′|

c

)
dx′, (47)

where L denotes the total antenna length.
On the other hand, the magnetic vector potential on the

PEC wire surface is given by the particular integral:

Ax(x, t) = μ

4π

∫

S

I(x′, t − R/c)
R

dx′. (48)

Combining (45)–(48) yields the space-time Hallen equa-
tion:
∫ L

0

I(x′, t − R/c)
4πR

dx′ = F0

(
t − x

c

)
+ FL

(
t − L− x

c

)

+
1

2Z0

∫ L

0
Einc
x

(
x′, t − |x − x′|

c

)
dx′,

(49)

where I (x′) is the equivalent axial current to be deter-
mined, Einc

x is the known tangential incident field, R =
[(x − x′)2 + a2]

1/2
is the distance from the source point (the

equivalent current in the antenna axis) to the observation
point, and Z0 is the wave impedance of a free space.
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The unknown functions F0(t) and FL(t) account for the
multiple reflections of the current at the free ends of the wire.

A direct time formulation for a straight thin wire above a
dissipative half-space can be obtained as the extension of the
free-space Hallen equation (49).

The free space Hallen equation (49) is first transferred
into the Laplace frequency domain:

∫ L

0

I(x′, s)e−sR/c

4πR
dx′ = F0(s)e−sx/c + FL(s)e−s((L−x)/c)

+
1

2Z0

∫ L

0
Einc
x (x′, s)e−s|x−x

′|/cdx′,

(50)

where s = jω is the Laplace variable.
According to the theory of images the free space integral

equation (50) is extended by an additional term multiplying
the Green function of the image source by space-frequency-
dependent reflection coefficient RTM(θ′, s) for TM polariza-
tion. The integral equation in the frequency domain is given
by

∫ L

0

I(x, s)esR/c

4πR
dx′ −

∫ L

0
RTM(θ, s)

I(x, s)esR
∗/c

4πR∗
dx′

= F0(s)e−sx/c + FL(s)e−s((L−x)/c)

+
1

2Z0

∫ L

0
Eexc
x (x′, s)e−s(|x−x

′|/c)dx′,

(51)

where R∗ =
√

(x − x′)2 + 4h2 and RTM(θ′, s) is determined
by the expression [1]

RTM(θ′, s) = εr(1 + σ/εs) cos θ′ −
√
εr(1 + σ/εs)− sin2θ′

εr(1 + σ/εs) cos θ′ +
√
εr(1 + σ/εs)− sin2θ′

,

(52)

where σ and ε are the lossy medium conductivity and
permittivity, respectively, and θ′ = arct g(|x − x′|/2h).

The reflection coefficient (RC) approach is a satisfactory
approximation in half-space calculations, as long as the field
is calculated far away from the source, and the imperfect
ground, respectively, to ensure θ′ < π/2 [8].

Performing the convolution, the time domain counter-
part of (52) is obtained in the form

∫ L

0

I(x′, t − R/c)
4πR

dx′

−
∫ t

−∞

∫ L

0
r(θ, τ)

I(x′, t − R∗/c − τ)
4πR∗

dx′dτ

= 1
2Z0

∫ L

0
Eexc
x

(
x′, t − |x − x′|

c

)
dx′

+ F0

(
t − x

c

)
+ FL

(
t − L− x

c

)
,

(53)

where r(θ, t) is the space-time reflection coefficient which,
for convenience, can be written in the form [18]

r(θ, τ) = r′(θ, τ) + r′′(θ, τ), (54)

where

r′(θ, t) = Kδ(t),

r′′(θ, t) = 4β
1− β2

e−αt

t

∞∑

n=1

(−1)n+1nKnIn(αt),

τ = σ

ε0εr
, β =

√
εr − sin2θ

εr cos θ
, γ = τ

1− (sin2θ/εr)
,

θ = arct g
|x − x′|

2h
, K = 1− β

1 + β
, α = τ

2
.

(55)

Note that In is the modified Bessel function of the first
order and nth degree.

For the case of normal incidence, which is considered for
the sake of simplicity, the excitation term is given by

Eexc
x (t) = Einc

x (t)− Eref
x (t∗), (56)

where t∗ = t − R∗/c.
The transient ground-reflected field is obtained as the

convolution of the incident field and the space-time reflec-
tion coefficient for the angle of incidence θ = 0 (in
accordance with the parallel incidence of the electric field),
as is proposed in [20]

Eref
x (t) =

∫ t

−∞
Einc
x (t − τ)r(θ = 0, τ)dτ (57)

and the integral equation (53) becomes

∫ L

0

I(x′, t − R/c)
4πR

dx′

−
∫ t

−∞

∫ L

0
r(θ, τ)

I(x′, t − R∗/c − τ)
4πR∗

dx′dτ

= F0

(
t − x

c

)
+ FL

(
t − L− x

c

)

+
1

2Z0

∫ L

0
Einc
x

(
x′, t − |x − x′|

c

)
dx′

− 1
2Z0

∫ t

−∞

∫ L

0
Einc
x

(
x′, t − |x − x′|

c
− τ

)

× r(θ = 0, τ)dx′dτ.

(58)

The unknown time functions F0(t),FL(t),F0(t − (L/c)),
and FL(t − (L/c)) can be obtained in the same manner, as in
the case of free space, in terms of as auxilliary functions K0(t)
and KL(t) [8]:

F0(t) =
∞∑

n=0

K0

(
t − 2nL

c

)
−

∞∑

n=0

KL

(
t − (2n + 1)L

c

)
,

FL(t) =
∞∑

n=0

KL

(
t − 2nL

c

)
−

∞∑

n=0

K0

(
t − (2n + 1)L

c

)
,

(59)
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where

KL(t) =
∫ L

0

I(x′, t − R0/c)
4πR0

dx′

−
∫ t

−∞

∫ L

0
r(θ′, τ)

I
(
x′, t − R∗0 /c − τ

)

4πR∗0
dx′dτ

− 1
2Z0

∫ L

0
Einc
x

(
x′, t − x′

c

)
dx′,

KL(t) =
∫ L

0

I(x′, t − RL/c)
4πRL

dx′

−
∫ t

−∞

∫ L

0
r(θ′, τ)

I
(
x′, t − R∗L /c − τ

)

4πR∗L
dx′dτ

− 1
2Z0

∫ L

0
Eexc
x

(
x′, t − L− x′

c

)
dx′,

(60)

while R0 and RL are the distances from the wire ends to the
source point and R∗0 , R∗L are the distances from the image
wire ends to the image source point.

If the case of a perfect (ideal) dielectric half-space is
considered, the Hallen equation (53) simplifies into

∫ L

0

I(x′, t − R/c)
4πR

dx′ −
∫ L

0
r(θ)

I(x′, t − R∗/c)
4πR∗

dx′

= F0

(
t − x

c

)
+ FL

(
t − L− x

c

)

+
1

2Z0

∫ L

0
Eexc
x

(
x′, t − |x − x′|

c

)
dx′.

(61)

Space-time integral equation (53) or (61), respectively, can
be solved assuming the zero current at the free ends of the
wire and with the initial conditions requiring the wire not to
be excited before the certain instant t = t0 [8].

The transient behavior of M straight horizontal thin
wires located at different heights above an infinite ground
plane is determined by a set of the coupled space-time
integral equations of the Hallen type [11]:

M∑

s=1

∫ xLs

x0s

Is(x′, t − Rvs/c)
4πRvs

dx′

−
M∑

s=1

∫ t

−∞

∫ xLs

x0s

rvs(θ, τ)
Is
(
x′, t − R∗vs/c − τ

)

4πR∗vs
dx′dτ

= F0v

(
t − x − x0v

c

)
+ FLv

(
t − xLv − x

c

)

+
1

2Z0

∫ xLv

x0v

Eexc
xv

(
x′, t − |x − x′|

c

)
dx′,

(62)

where v, s = 1, 2, . . . ,M denote the index of the observed
and source wire, respectively. Furthermore, Ls and Lv are the
lengths of the sth and vth wire, and x′, x are the x-coordinates
of the source and observation points on respective wires. The
distances between observation point (x, y, z) on the wire v
and source point (x′, y′, z′) on the wire s are given by

Rvs =
⎧⎨
⎩

√
(x − x′)2 +

(
y − y′

)2 + (z − z′)2 : v /= s√
(x − x′)2 + a2 : v = s,

R∗vs =
√

(x − x′)2 +
(
y − y′

)2 + (z + z′)2 ,

(63)

where asterisk is related to source points are located on the
image wire.

Unknown time signals F0v(t) and FLv(t) account for the
multiple reflections of transient currents at the wire open
ends and can be written in the form

F0v(t) =
∞∑

n=0

K0v

(
t − 2nLv

c

)
−

∞∑

n=0

KLv

(
t − (2n + 1)Lv

c

)
,

(64)

FLv(t) =
∞∑

n=0

KLv

(
t − 2nLv

c

)
−

∞∑

n=0

K0v

(
t − (2n + 1)Lv

c

)
,

(65)

while the auxiliary functions K are defined, as follows:

K0v(t)

=
M∑

s=1

∫ xLs

x0s

Is
(
x′, t − R(0)

vs /c
)

4πR(0)
vs

dx′

−
M∑

s=1

∫ t

−∞

∫ xLs

x0s

rvs(θ, τ)
Is
(
x′, t − R∗(0)

vs /c − τ
)

4πR∗(0)
vs

dx′dτ

− 1
2Z0

∫ xLv

x0v

Eexc
xv

(
x′, t − |x − x′|

c

)
dx′,

(66)

KLv(t)

=
M∑

s=1

∫ xLs

x0s

Is
(
x′, t − R(L)

vs /c
)

4πR(L)
vs

dx′

−
M∑

s=1

∫ t

−∞

∫ xLs

x0s

rvs(θ, τ)
Is
(
x′, t − R∗(L)

vs /c − τ
)

4πR∗(L)
vs

dx′dτ

− 1
2Z0

∫ xLv

x0v

Eexc
xv

(
x′, t − |x − x′|

c

)
dx′,

(67)

where R(0)
vs and R(L)

vs are distances from considered source
point on each wire s to a corresponding observation point
at the ends of the wire v:

R(0)
vs = Rvs|x=x0v

, R(L)
vs = Rvs|x=xLv , (68)

while R∗(0)
vs and R∗(L)

vs are distances between the source point
at the image of the wire s and observation point located at
the ends of the wire v:

R∗(0)
vs = R∗vs

∣∣
x=x0v

, R∗(L)
vs = R∗vs

∣∣
x=xLv . (69)

The space-time reflection coefficient rvs(θ, t) accounts for
the influence of the interface and is given by [11]

rvs
(
θ′vs, t

) = Aδ(t), (70)

where

A = 1− β

1 + β
, β =

√
εr − sin2θ′

εr cos θ′
,

θ′vs = Arct g

√
(x′ − x)2 +

(
y′ − y

)2

z′ + z
.

(71)
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The angle θ′vs is the angle between the source point on
the image of the wire s(x′, y′,−z′) and the observation point
(x, y, z) on wire v.

Substituting (70) into (62) yields

M∑

s=1

∫ xLs

x0s

Is(x′, t−Rvs/c)
4πRvs

dx′−
M∑

s=1

∫ xLs

x0s

rvs(θ)
Is
(
x′, t−R∗vs/c

)

4πR∗vs
dx′

= F0v

(
t − x − x0v

c

)
+ FLv

(
t − xLv − x

c

)

+
1

2Z0

∫ xLv

x0v

Eexc
xv

(
x′, t − |x − x′|

c

)
dx′,

(72)

where Eexc
xv is the space-time-dependent tangential electric

field on the vth wire.
For the case of normal incidence the total excitation field

Eexc
xv (x′, t) is given as the sum of the incident field Einc

xv (x′, t)
and the field reflected from the interface Eref

xv (x′, t) [11],

Eexc
xv (x′, z, t) = Einc

xv (x′, t − T) + Eref
xv (x′, t − T). (73)

The time shift T represents the time required for the wave
to travel from the highest wire to the height z of the observed
vth wire. Assigning the highest wire with index U , it can be
written

T = zU − z

c
, zU = max(z1, z2, . . . , z, . . . , zM). (74)

The field reflected from the interface for the case of
normal incidence is given by

Eref
xv (x′, t − T) = r(θ = 0) · Einc

xv

(
x′, t − T − 2z

c

)
, (75)

where t − T − 2z/c is the time needed for the wave to travel
from observed vth wire to the interface.

For the case of PEC ground plane, the space-time
reflection coefficient (54) simply becomes

rvs
(
θ′vs, t

) = 1. (76)

Thus, the set of (72) simplifies into

M∑

s=1

∫ xLs

x0s

Is(x′, t − Rvs/c)
4πRvs

dx′

−
M∑

s=1

∫ xLs

x0s

Is
(
x′, t − R∗vs/c

)

4πR∗vs
dx′

= F0v

(
t − x − x0v

c

)
+ FLv

(
t − xLv − x

c

)

+
1

2Z0

∫ xLv

x0v

Eexc
xv

(
x′, t − |x − x′|

c

)
dx′,

(77)

and the field reflected from PEC ground is simply given by

Eref
xv (x′, t − T) = Einc

xv (x′, t − T − 2z/c). (78)

Given the dielectric constant of the medium and the
known excitation Einc

xv (x′, t), a system of M coupled Hallen
integral equations can be solved using time domain version
of GB-IBEM and by taking into account appropriate bound-
ary and initial conditions. Boundary conditions assume zero
currents at the end of each wire, while initial conditions
assume all the currents to be zero for t ≤ 0.

3.2. The Numerical Solution. First, numerical procedure
for single wire Hallen equation is outlined. Applying the
weighted residual approach in the spatial domain and GB-
IBEM procedure [8], the following local matrix system is
obtained:

[A]{I}i|t−R/c − [A∗]{I}i
∣∣
t−R∗/c −

{
Â
}∣∣∣

t−R∗/c

= [B]{E}|t−|x−x′|/c

+[C]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R0/c)−(2nL/c)−(x/c)

−[C∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R∗0 /c)−(2nL/c)−(x/c)

−
⎧⎨
⎩
∞∑

n=0

Ĉn

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−(2nL/c)−(x/c)

−[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−(x′/c)−(2nL/c)−(x/c)

−[D]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(RL/c)−((2n+1)L/c)−(x/c)

+[D∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R∗L /c)−((2n+1)L/c)−(x/c)

+[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−((L−x′)/c)−((2n+1)L/c)−(x/c)

+

⎧⎨
⎩
∞∑

n=0

D̂n

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−((2n+1)L/c)−(x/c)

+[D]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(RL/c)−(2nL/c)−(L−x/c)

−[D∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R∗L /c)−(2nL/c)−(L−x/c)

+

⎧⎨
⎩
∞∑

n=0

D̂n

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−(2nL/c)−(L−x/c)

−[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−((L−x′)/c)−(2nL/c)−(L−x/c)

−[C]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R0/c)−((2n+1)L/c)−(L−x/c)

+[C∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭
i

∣∣∣∣∣∣
t−(R∗0 /c)−((2n+1)L/c)−(L−x/c)
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+[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−(x′/c)−((2n+1)L/c)−(L−x/c)

−
⎧⎨
⎩
∞∑

n=0

Ĉn

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−((2n+1)L/c)−(L−x/c)

.

(79)

The space-dependent local matrices representing the
interaction between ith source and jth observation element
are defined as follows:

[A] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

1
4πR

dx′dx,

[B] = 1
2Z0

∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i dx

′dx,

[C] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

1
4πR0

dx′dx,

[D] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

1
4πRL

dx′dx,

[A∗] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

r(θ)
4πR∗

dx′dx,

[C∗] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

r(θ)
4πR∗0

dx′dx,

[D∗] =
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i

r(θ)
4πR∗L

dx′dx,

(80)

where { f } stands for the shape functions, while additional
time dependent vectors are given by

{
Â
}
=
∫ t−R∗/c

0

∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i H1dx

′dx{I(τ)}idτ

{
Ĉn
}
=
∫ t−(R∗0 /c)−(2nL/c)−(x/c)

0

×
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i H2dx

′dx{I(τ)}idτ

{
D̂n
}
=
∫ t−(R∗L /c)−((2n+1)L/c)−(x/c)

0

×
∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i H3dx

′dx{I(τ)}idτ,

(81)

where

H1 = r′′(θ, t − (R∗/c)− τ)
4πR∗

,

H2 = r′′
(
θ, t − (

R∗0 /c
)− (2nL/c)− (x/c)− τ

)

4πR∗0
,

H3 = r′′
(
θ, t − (

R∗L /c
)− ((2n + 1)L/c)− (x/c)− τ

)

4πR∗0
.

(82)

Assembling the local matrices and vectors into the global
ones the following global matrix system is formed:

[A]{I}|t−R/c =
{
g
}∣∣

previous time
instants

+
{
ĝ
}∣∣

previous time
instants

, (83)

where

{
g
} = [A∗]{I}∣∣t−R∗/c + [B]{E}|t−|x−x′|/c

+[C]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R0/c)−(2nL/c)−(x/c)

−[C∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−(2nL/c)−(x/c)

−[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−(x′/c)−(2nL/c)−(x/c)

−[D]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(RL/c)−((2n+1)L/c)−(x/c)

+[D∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−((2n+1)L/c)−(x/c)

+[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−((L−x′)/c)−((2n+1)L/c)−(x/c)

+[D]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(RL/c)−(2nL/c)−(L−x/c)

−[D∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−(2nL/c)−(L−x/c)

−[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−(L−x′/c)−(2nL/c)−(L−x/c)

−[C]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R0/c)−((2n+1)L/c)−(L−x/c)

+[C∗]

⎧⎨
⎩
∞∑

n=0

In

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−((2n+1)L/c)−(L−x/c)

+[B]

⎧⎨
⎩
∞∑

n=0

En

⎫⎬
⎭

∣∣∣∣∣∣
t−(x′/c)−((2n+1)L/c)−(L−x/c)

,

(84)
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{
ĝ
} =

{
Â
}∣∣∣

t−(R∗/c)
−
⎧⎨
⎩
∞∑

n=0

Ĉn

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−(2nL/c)−(x/c)

+

⎧⎨
⎩
∞∑

n=0

D̂n

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−((2n+1)L/c)−(x/c)

+

⎧⎨
⎩
∞∑

n=0

D̂n

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗L /c)−(2nL/c)−(L−x′/c)

−
⎧⎨
⎩
∞∑

n=0

Ĉn

⎫⎬
⎭

∣∣∣∣∣∣
t−(R∗0 /c)−((2n+1)L/c)−(L−x′/c)

.

(85)

Applying the weighted residual approach in the time
domain and using the Dirac impulses as weight functions,
the time sampling is provided, and the following recurrent
formula is obtained:

I j
∣∣∣
tk
=
∑N s

i=1 a ji I j
∣∣∣
tk−R/c

− gj
∣∣∣previous time

instants
− ĝ j

∣∣∣previous time
instants

a j j
,

(86)

where I j|tk is current for the jth space node at kth time
instant, N is total number of space segments, while the
overbar indicates the absence of diagonal members.

It is worth noting that the numerical calculation of con-
volution integrals is rather tedious task leading to tremen-
dously large computational time of the overall method. The
main advantage of the method, on the other hand, is its
unconditional stability.

Time domain GB-BEM procedure for the set of Hallen
equations is undertaken in a similar manner as in the case of
a single wire.

The solution of (72) and (77), respectively, is also carried
out using the GB-IBEM technique.

Applying the boundary element discretisation to (72)
and (77), respectively, leads to a local system of linear
equations for the vth observed wire:

M∑

s=1

[∫

Δli

∫

Δl j

1
4πRvs

{
f
}
j

{
f
}T
i dx

′dx{Is}
∣∣∣∣∣
t−Rvs/c

−
∫

Δli

∫

Δl j

rvs(θ)
4πR∗vs

{
f
}
j

{
f
}T
i dx

′dx{Is}
∣∣∣∣∣
t−R∗vs/c

⎤
⎦

= 1
2Z0

∫

Δli

∫

Δl j
Eexc
xv

(
x′, t − |x − x′|

c

){
f
}
jdx

′dx

+
∫

Δl j
F0

(
t − x − x0v

c

){
f
}
jdx

+
∫

Δl j
FL

(
t − xLv − x

c

){
f
}
jdx,

(87)

where i, j = 1, 2, . . . ,N denotes the index of the elements
located on the sth source wire and the vth observed wire,
respectively, with N as the total number of space segments,
while M is the actual number of wires.

Finally, substituting (64)–(67) into (87), the following
local matrix system is obtained:

M∑

s=1

[Avs]{Is}
∣∣∣∣∣∣
t−Rvs/c

−
M∑

s=1

[
A∗vs

]{Is}
∣∣∣∣∣∣
t−R∗vs/c

= [Bv]{Ev} |t−|x−x′|/c

+
M∑

s=1

[Cvs]

⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((x−x0v)/c) − ((2n/c)Lv) − (R(0)

vs /c)

−
M∑

s=1

[
C∗vs

]
⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((x−x0v)/c) − ((2n/c)Lv) − (R∗(0)

vs /c)

−[Dv]

⎧⎨
⎩
∞∑

n=0

En
v

⎫⎬
⎭

∣∣∣∣∣∣
t−((x−x0v)/c) − ((2n/c)Lv) −(|x′−x0v|/c)

−
M∑

s=1

[Evs]

⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((x−x0v)/c) − ((2n+1/c)Lv) − R(L)

vs /c

+
M∑

s=1

[
E∗vs

]
⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((x−x0v)/c) − ((2n+1/c)Lv)− R∗(L)

vs /c

+[Dv]

⎧⎨
⎩
∞∑

n=0

En
v

⎫⎬
⎭

∣∣∣∣∣∣
t−((x−x0v)/c ) − ((2n+1/c)Lv) −(|xLv−x′|/c)

+
M∑

s=1

[Evs]

⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLv− x)/c) − ((2n/c)Lv) − (R(L)

vs /c)

−
M∑

s=1

[
E∗vs

]
⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLv− x)/c) − ((2n/c)Lv) − (R∗(L)

vs /c)

−[Dv]

⎧⎨
⎩
∞∑

n=0

En
v

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLv− x)/c) − ((2n/c)Lv) − (|xLv−x′|/c)

−
M∑

s=1

[Cvs]

⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLv− x)/c) − ((2n+1/c)Lv) − (R(0)

vs /c)
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+
M∑

s=1

[
C∗os

]
⎧⎨
⎩
∞∑

n=0

Ins

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLo− x)/c) − ((2n+1/c)Lo) − (R∗(0)

os /c)

+[Do]

⎧⎨
⎩
∞∑

n=0

En
o

⎫⎬
⎭

∣∣∣∣∣∣
t− ((xLo− x)/c) − ((2n+1/c)Lo) − (|x′−x0o|/c)

,

(88)

where {E} denotes excitation vector and space-dependent
matrices are of the form

[Avs] =
∫

Δl j

∫

Δli

1
4πRvs

{
f
}
j

{
f
}T
i dx

′dx,

[
A∗vs

] =
∫

Δl j

∫

Δli

rvs(θ)
4πR∗vs

{
f
}
j

{
f
}T
i dx

′dx,

[Bv] = 1
2Z0

∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i dx

′dx,

[Cvs] =
∫

Δl j

∫

Δli

1

4πR(0)
vs

{
f
}
j

{
f
}T
i dx

′dx,

[
C∗vs

] =
∫

Δl j

∫

Δli

rvs(θ)

4πR∗(0)
vs

{
f
}
j

{
f
}T
i dx

′dx,

[Dv] = 1
2Z0

∫

Δl j

∫

Δli

{
f
}
j

{
f
}T
i dx

′dx,

[Evs] =
∫

Δl j

∫

Δli

1

4πR(L)
vs

{
f
}
j

{
f
}T
i dx

′dx,

[
E∗vs

] =
∫

Δl j

∫

Δli

rvs(θ)

4πR∗(L)
vs

{
f
}
j

{
f
}T
i dx

′dx.

(89)

Relations containing summation from n = 0 to infinity
pertain to the reflections of transient current from the wire
ends. Note as the observed time interval is always finite,
only a finite number of reflections occurs within a given
observation interval. A shorter observed interval requires
smaller number of summands and vice versa.

According to GB-IBEM, a global matrix system is
assembled from the local matrix systems for all wires v =
1, 2, . . . , M. Finally, the resulting global matrix system can
be written as follows:

[A]{I}|t−Rvs/c − [A∗]{I}∣∣t−R∗vs/c =
{
g
}
. (90)

The time-domain solution on the ith boundary element
is given by

Ii(t) =
Nt∑

k=1

Iki T
k(t′), (91)

where Iki are unknown coefficients, Tk are the linear time-
domain shape functions, and Nt is the total number of time
samples.

Applying the weighted residual approach to (90) leads to
the expression

∫ tk+Δt

tk

(
[A]{I}|t−Rvs/c − [A∗]{I}∣∣t−R∗vs/c −

{
g
}
θk
)
dt = 0,

k = 1, 2, . . . ,Nt,
(92)

where θk denotes the set of time-domain weights.
Using the set of Dirac impulses for the test functions,

time sampling is ensured and (92) becomes

[A]{I}|tk−Rvs/c − [A∗]{I}∣∣tk−R∗vs/c = g
∣∣

all previous discrete instants .

(93)

If the space-time discretization is performed by satisfying
the Courant condition, Δx ≥ cΔt, the transient current for
a jth space node and kth time node can be obtained from
a recurrence formula. Separating the terms relating to the
current induced at the instant tk in (93) yields

Aj jI j
∣∣∣
tk

+
[
A
]
{I}

∣∣∣
tk−Rvs/c

−[A∗]{I}∣∣tk−R∗vs/c =
{
g
}∣∣

all previous discrete instants ,
(94)

where overbar indicates the absence of diagonal terms.
The first term in (94) pertains to the current at the jth

space node and kth time node, that is, the present instant.
Other terms are related to all previous instants. Finally, the
recurrence formula for the transient current at jth space node
and kth time node is obtained in the forms

I j
∣∣∣
tk
=
−∑N

i=1

(
AjiIi

∣∣∣
tk−Rvs/c

+ A∗jiI i

∣∣∣
tk−R∗vs/c

)
+ gj

∣∣∣
all previous discrete instants

Aj j

, (95)

where N is total number of space elements, k =
1, 2, . . . , Nt is the index of the kth time instant.

3.3. The Transmission Line Model. The time-domain field-to-
transmission line coupling equations can be written in the
matrix form [11]

∂

∂x
[V(x, t)] + [R][I(x, t)] + [L] · ∂

∂t
[I(x, t)]

= [EF(x, t)]− [z′(t)]∗ [I(x, t)],

(96)

∂

∂x
[I(x, t)] + [G] · [V(x, t)] + [C] · ∂

∂t
[V(x, t)]

= [HF(x, t)],

(97)
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where “∗” stands for the convolution product, [z′(t)] is
the transient inverse Fourier transform of the ground,
conductors matrix [Ẑw(s) + Ẑg(s)], and s = jω is the Laplace
variable.

[EF(x, t)]and [HF(x, t)] are the excitation terms, given by
[11]

[EF(x, t)] = − ∂

∂x
[VT(x, t)] + [EL(x, t)],

[HF(x, t)] = −[G][VT(x, t)]− [C]
∂

∂t
[VT(x, t)],

(98)

where [VT(x, t)] is the transverse voltage derived from
the transverse incident field excitation [11], and [EL(x, t)]
represents the longitudinal electrical field excitation.

The classical per-unit-length inductances of [L] matrix
have been used:

Lii = μ0

2π
ln
(

2hi
ai

)
, Li j = μ0

2π
ln

(
Dij

di j

)
, (99)

where hi, ai are, respectively, the height and the radius of the
ith conductor. Dij is the distance between the ith conductor
and the image of jth conductor and di j is the distance
between the ith conductor and the jth conductor.

The capacitance matrix �C� is derived from the induc-
tance matrix �L� by [C] = ε0μ0[L]−1.

In case of PEC ground, the transient ground matrix
[z′(t)] is equal to [ZW (t)] while if a dielectric half-space is
of interest, the ground matrix [Ẑg(s)] is given by Carson
integral [11].

It is worth emphasizing that, for both cases, the conduc-
tivity matrix is neglected.

3.4. The Solution of Transmission Lineequations via FDTD.
Discretizing each conductor of the multiconductor trans-
mission line (MTL) into Nx sections each of length Δx
and discretizing the entire time interval into increments of
duration Δt, the FDTD method is applied to (88) and (97).

The solutions of (91) and (99) for lossy MTL by FDTD
are given by

[Z+]
[
In+1/2
k

]
= −[Z−]

[
In−1/2
k

]
+
[
Vn
k−1/2

]

+
[
Vn
T ,k−1/2

]
−
[
Vn
k+1/2

]

−
[
Vn
T ,k+1/2

]
+
([
En
L,k

]
−
[
Snk
])

Δx

for 0 ≤ k ≤ Nx − 1, n ≥ 1,

(100)

where

[Z±] = [R]
2
± [L] + [Z0(1)]Δt

Δt
, (101)

[Y+]
([
Vn+1
k+1/2

]
+
[
Vn+1
T ,k+1/2

])

= −[Y−]
([

Vn
k+1/2

]
+
[
Vn
T ,k+1/2

])

−
[
In+1/2
k+1

]
+
[
In+1/2
k

]

for 0 ≤ k ≤ Nx − 1, n ≥ 1,

(102)

[Y±] = [G]
2
± [C]

Δt
. (103)

The expressions for [V], [I], [VT], [EL], [S] are given
for time n ≥ 1 and space k ≥ 0:

[
Vn
k+1/2

]
= [V((k + 1/2)Δx,nΔt)], 0 ≤ k ≤ Nx − 1.

(104)

Voltage and adjacent current are interlaced in time and
space, respectively, by Δt/2 and Δx/2, then

[
In−1/2
k

]
=
[
I
(
kΔx,

(
n− 1

2

)
Δt
)]

,

[
Vn
T ,k+1/2

]
=
[
VT

((
k +

1
2

)
Δx,nΔt

)]
,

[
En
L,k

]
= [EL(kΔx,nΔt)],

[
Snk
]
= [S(kΔx,nΔt)], 0 ≤ k ≤ Nx.

(105)

The convolution product [Snk] appearing in (100) can be
written as follows:

[
Snk
]
= [Z0(2)]

[
In−1/2
k

]
+

n−1∑

l=1

[Z0(l + 1)− Z0(l)]
[
In−l+1/2
k

]

− [Z0(n)]
[
I1/2
k

]
,

(106)

where

[Z0(l)] = [Z0w(l)] +
[
Z0g(l)

]

=
∫ l

l−1

[
Zw + Zg

]
(uΔt)du, 1 ≤ l ≤ n,

(107)

t = nΔt, Nx is the number of space steps, and n is the number
of time steps.

The corresponding components of the M × 1 vectors
[En

T ,k], [En
L,k] are as follows:

[
Vn
T ,k

]
i
= yiE

inc
y

(
xi = kΔx, yi, zi,nΔt

)

+ ziE
inc
z

(
xi = kΔx, yi, zi,nΔt

)
,

(108)

[
En
L,k

]
i
= Einc

x

(
xi = kΔx, yi, zi,nΔt

)

− Einc
z (xi = kΔx, 0, 0,nΔt).

(109)

Equations (107) and (108) are valid for 1 ≤ i ≤ M,
where M is the number of conductors, and yi, zi are the
positions of ith conductor. Einc

x ,Einc
y ,Einc

z are the components
of the incident electromagnetic field evaluated in the absence
of conductors. [R], [L], [G], and [C] are, respectively, the
per-unit-length resistance, inductance, conductance, and
capacitance matrices of dimension M ×M.

[Zg(t)] is the transient ground resistance and is equal to
the inverse Fourier of [Zg(s)/s]:

Zg i j(t) = F−1

(
Zgij (s)

s

)
, (110)

where the ground impedance in frequency domain is given
by Carson formula:

Zgij (s)

s
= μ0

π

∫∞
0

e−(hi+h j )λ
√
λ2 + γ2

g + λ
· cos

(
di jλ

)
dλ. (111)
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[Zw(t)] is a diagonal matrix and corresponds to the transient
conductor resistance, where each element is given by

Zwi(t) = 1
πσwia

2
i

∞∑

m=1

e−x
2
m(t/τwi ) , where τwi = μ0σwia

2
i ,

(112)

and hi,h j ,di j are the corresponding heights of the two
conductors i, j and the distance between the two conductors
in the horizontal plane.

Terms xm stand for the zeros of J1, Bessel function of first
kind.

Finally, γg is the propagation constant defined as

γ2
g = sμ0

(
σg + sε0εrg

)
, (113)

where σg and εrg are, respectively, ground conductivity and
permittivity.

For the cases considered in this paper, all conductors are
in open circuit at both ends, so the currents vanishes at near
and far ends.

By using the boundary formulation [11], voltages at both
ends are simply expressed as follows:

[
Vn

0

] =
[
Vn

(1/2)

]
,

[
Vn
Nx

]
=
[
Vn
Nx−(1/2)

]
, (114)

[
In0
] = [0],

[
InNx

]
= [0]. (115)

4. Numerical Results

Figure 11 shows the transient response at the centre of the
straight wire L = 20 m, a = 0.005 m, located at height
h = 1 m above a dielectric half-space (εr = 10) excited by
the electromagnetic pulse (EMP):

Einc
x = E0

(
e−at − e−bt

)
, (116)

with E0 = 1.1 V/m, a = 7.92∗ 104 s−1, b = 4∗ 104 s−1.
The next example is related to a transient scattering from

a straight thin wire of length is L = 1 m, radius a = 2 mm,
located at height h = 0.25 m above ground with permittivity
εr = 10, while the conductivity is varied. The wire is
illuminated by the tangential electromagnetic pulse (EMP)
plane wave with E0 = 1 V/m, a = 4 · 107 s−1, b = 6 · 108 s−1.

Figure 12 shows the transient current induced at the wire
center for different ground conductivities.

The influence of the ground conductivity to the transient
response is particularly visible from around 0.1 S/m to 1 S/m.

The time domain results obtained via different
approaches are found to agree satisfactorily.

Next set of examples is related to a two-wire array above a
PEC ground Figure 13, (Geometry No. 1) and dielectric-half
space (εr = 10), Figure 14 (Geometry No. 2), respectively.

Figures 15 and 16 show the transient current induced at
the center of wire 2 for the case of Geometry No. 1 and No.
2, respectively, obtained via TD GB-IBEM, TL, and NEC 2
combined with inverse fast Fourier transform (IFFT).

Generally, the results calculated via different approaches
are in relatively acceptable agreement. Nevertheless, some
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Figure 11: The transient current induced at the center of the line
above dielectric half-space (εr = 10).
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Figure 12: Transient current at the wire center, L = 1 m, a = 2 mm,
h = 0.25, εr = 10.
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Figure 13: Geometry No. 1: Two-wire array above a PEC ground
(a = 2 cm, L = 10 m, d = 1 m, h1 = 1 m, and h2 = 2 m).

discrepancies can be noticed, in particular for the case of PEC
ground. In this analysis, the applied TL model accounts not
only for classical propagation effect but also for skin effects
and for a correction resistance representing the radiation
effect.

In order to include the radiation effect in TL model, a
small DC resistance (1Ω/m) has been used to to represent
the attenuation effect.
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Figure 14: Geometry No. 2: Two-wire array above a dielectric half-
space (εr = 10, a = 2 cm, L = 10 m, d = 1 m, h1 = 1 m, and
h2 = 2 m).
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Figure 15: Transient current induced at the center of wire 2
(Geometry No. 1)—comparison between IFFT-NEC2, TD GB-
IBEM and TL results.

It is known that TL model accounts for coupling between
transverse cells only while AT takes into account mutual
effects. This phenomenon is assumed to be the source of the
differences in propagation velocities which are observed.

5. Conclusion

The paper reviews the models and methods used for the
analysis of electromagnetic field coupling to overhead wires
in the frequency and time domain, respectively, using the
wire antenna theory and the transmission line approxima-
tion, respectively. The frequency domain wire antenna model
is based on the space-time Pocklington integral equations,
while the transmission line model is based on the frequency
domain Telegrapher’s equations. The time domain wire
antenna model is based on a set of the space-time Hallen
integral equations, while the transmission line model is
based on the time domain Telegrapher’s equations. The
set of Pocklington equations is solved via the Galerkin-
Bubnov variant of the Indirect Boundary Element Method
(GB-IBEM), while the frequency domain transmission line
equations are treated using the chain matrix method and
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Figure 16: Transient current induced at the center of wire 2
(Geometry No. 2)—comparison between IFFT-NEC2, TD GB-
IBEM and TL results.

modal equation to derive per-unit-length parameters. A
number of illustrative computational examples for the fre-
quency response of several configurations of overhead wires,
obtained via different approaches, are given in this paper.

The coupled space-time Hallen integral equations are
numerically solved via the time domain Galerkin-Bubnov
scheme of the Indirect Boundary Element Method (GB-
IBEM), while the time-domain transmission line equations
are solved by the finite difference time domain (FDTD)
method.

Some numerical results pertaining to the transient be-
haviour of overhead wires, obtained via different approaches,
are given in this paper.
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