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We attempt to address the issues associated with reliability estimation for phased-mission systems (PMS) and present a novel data-
driven approach to achieve reliability estimation for PMS using the conditionmonitoring information and degradation data of such
system under dynamic operating scenario. In this sense, this paper differs from the existing methods only considering the static
scenario without using the real-time information, which aims to estimate the reliability for a population but not for an individual. In
the presented approach, to establish a linkage between the historical data and real-time information of the individual PMS, we adopt
a stochastic filtering model to model the phase duration and obtain the updated estimation of the mission time by Bayesian law at
each phase. At the meanwhile, the lifetime of PMS is estimated from degradation data, which are modeled by an adaptive Brownian
motion. As such, themission reliability can be real time obtained through the estimated distribution of themission time in conjunc-
tion with the estimated lifetime distribution. We demonstrate the usefulness of the developed approach via a numerical example.

1. Introduction

1.1. Background. Many complex systems are designed to
perform missions that consist of phases or stages in which
deterioration and configuration of the system may change
fromphase to phase.These systems are called phased-mission
systems in the literature. Formally, phased-mission system
(PMS) is defined as the system subject to multiple, consec-
utive, and nonoverlapping phases of operation required to
finish the final product or service [1, 2]. These systems were
first introduced by [3] and a vast literature has accumulated
since then.Most of real-world systems operate in phasedmis-
sions where the reliability structure varies over consecutive
time periods, known as phases. During each phase, the PMS
has to accomplish a specified task. Thus, the system behavior
can change from phase to phase. Particularly, a typical PMS
which is frequently studied is represented by the on-board
systems for the aided guide of aircraft, whosemission consists
of takeoff, ascent, cruise, approach, and landing phases.

Another example is NASA’sMars Exploration RoverMission,
which consists of many phases like vehicle launch, cruise,
approach, entry, descent and landing to Mars, rover egress,
and a number of surface operations that involve scientific data
collection and transmission to earth. For mission success,
all phases must be completed without failure. If the system
cannot be repaired during the mission then it is known as a
nonrepairable phased mission [4].

Reliability serves as an important measure for system
design, operation, and maintenance and has been long
recognized as a metric to quantify the performance of
the engineering systems. Therefore, reliable and accurate
estimates of the reliability of PMS are important for the
maintenance and logistic support of such systems, which
can lead to lifecycle cost reduction and avoiding catastrophic
failures. In this paper we focus on the reliability estimation
for PMS but with an emphasis on data-driven method as
discussed later. Here the data mean the conditionmonitoring
data obtained from the sensors.
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1.2. The Literature Review. Reliability engineering research
has developed many methods to analyze the reliability of
the PMS, in which the fault tree analysis methods are
mainstream. The earliest of these methods involved the
direct manipulation of the fault trees. Esary and Ziehms
[3] introduced a fault tree based method to transform a
phased mission into an equivalent single phase mission.
The transformed phase fault trees are then combined into a
single fault tree, and standard fault tree methods are used to
derive the system’s reliability (see, e.g., [5–8]) However, these
methods cause the size of the problem to become very large
as the number of phases increases.

Recently, it is recognized that increasing the solution
efficiency is particularly important for real-time analysis,
where the timeliness of the analysis results is crucial [9].
Several papers addressed the issue of reducing the compu-
tational burden, including [10–13]. Even so, the fault tree
basedmethods remain unsuitable for analyzing large systems
within reasonable timeframes. This led to the adoption of
the more efficient, powerful binary decision diagram (BDD)
technique [4, 9].

Over the past decade, researchers have proposed a set
of new algorithms based on BDD for fault tree analysis of a
wide range of PMS. Zang et al. [14] proposed an algorithm
for nonrepairable systems with general failure distribution.
This work was the first to use the BDD method to analyze
the reliability of phased-mission systems and marked a
significant step forward by enabling large phased-mission
systems to be analyzed. Xing and Dugan [15] analyze a
more general class of systems which includes phased-mission
systems with combinational phase requirement and imper-
fect coverage. Other important recent papers on generalized
phased-mission systems including [16–19]. In a recent study,
Çekyay and Özekici [20] analyzed the reliability of mission-
based systems under a general setting by proposing three dif-
ferent reliability definitions. Çekyay and Özekici [21] further
extended this line of research by analyzing the availability of
mission-based systems under the maximal repair policy.

As observed in the literature, the current approaches are
heavily dependent on the knowledge of the structure of the
PMS to estimate the reliability of PMS. However, in practice,
the structure of themission system at hand is too complicated
to determine and the complete knowledge is not always avail-
able. This leads to a great difficulty to apply these approaches
for reliability estimation of a practical PMS. In addition, all
focuses on a population of common type and there is no
work directly establishing the link between the reliability
and the historical data/real-time condition monitoring (CM)
information of individual PMS in service. These approaches
only consider the static scenario with an offline nature.
Finally, most of previous works assume that the degradation
of the PMS follows a finite state continuous/discrete-time
Markov chain.This makes the lifetime estimation of the PMS
depends only upon the current state. These limits drive our
primary motivation to develop a novel reliability estimation
approach for PMS.

1.3. The Proposed Approach. Due to the rapid development
of information and sensing technologies, an abundance of

data is now readily available in many real-world PMS. This
profusion of process/product measurement data provides
opportunities for effective reliability estimation through the
full exploitation of the data-rich environment [22, 23]. To
our best knowledge, there is no report on how to use such
CM data to analyze the reliability of the PMS. Therefore, the
primary purpose in the paper is to provide a useful answer to
the above question.

In this paper we attempt to address the issues associated
with reliability estimation for PMS and present a novel
approach to achieve reliability estimation for PMS using the
CM information and degradation data of such system under
dynamic operating scenario. In order to establish a linkage
between the historical data and real-time information of the
individual PMS, we adopt a stochastic filtering model to
model the phase duration and obtain the updated estimation
of the mission time by the Bayesian law. At the meanwhile,
the lifetime of PMS is estimated by the degradation data,
which is modeled by an adaptive Brownian motion. As such,
the mission reliability can be obtained through the estimated
distribution of the mission time in conjunction with the
estimated lifetime distribution.This is a new contribution but
not documented before.Wedemonstrate the usefulness of the
developed approach via a numerical example.

The remainder parts are organized as follows. Section 2
gives the problem description. In Section 3, we formulate the
mission time estimation from the CM information. Section 4
formulates the degradation data-based lifetime estimation for
themission system. Section 5 discusses themission reliability
and presents the formulations. In Section 6, we provide a
numerical study for illustration. Section 7 draws up the main
conclusions and comments on the future research.

2. Problem Description and Assumptions

2.1. Problem Description. In this paper, we consider a multi-
phase mission process having 𝑁 phases. Let 𝑋

𝑛
denote the

duration of the 𝑛th phase, which is a random variable taking
values in R+ = [0, +∞). Further, we let a random variable
𝑇
𝑀
denote the total time of completing themission.Thus, the

random variable 𝑇
𝑀

can be represented as 𝑇
𝑀

= ∑
𝑁

𝑛=1
𝑋
𝑛
.

If there are some linkages among 𝑋
𝑛
, 𝑛 = 1, . . . , 𝑁, such

as the probability density function (PDF) 𝑝
𝑋
𝑛
|𝑋
1
,𝑘,𝑋
𝑛−1

(𝑥
𝑛
|

𝑥
1
, 𝐾, 𝑥
𝑛−1
), for 2 ≤ 𝑛 ≤ 𝑁, then the PDF of the mission

time 𝑇
𝑀
can be estimated from the historical data. However,

this mechanism is aimed for the population of this type of
mission systems. To achieve the aim for a specific system, we
need to estimate themission time at each phase using the CM
information at the current time 𝑡

𝑖
, denoted by Φ

𝑖,𝑛
, which is

related to the mission phase duration 𝑋
𝑛
. Here we represent

the estimated PDF of the mission time as 𝑝
𝑇
𝑀
|Φ
1:𝑖

(𝑡
𝑚
| Φ
𝑖,1
),

which shows the dependency of the estimated mission time
on the CM information to date. Further, let a random variable
𝑇
𝑑
denote the lifetime of the mission system. To estimate the

PDF of the lifetime from the observed degradation data to 𝑡
𝑖
,

denoted by𝑌
𝑖
, we use the degradationmodeling technique, in

which the estimated PDFof𝑇
𝑑
is represented as𝑓

𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
).

After obtaining the estimated 𝑝
𝑇
𝑀
|Φ
1:𝑖

(𝑡
𝑚

| Φ
𝑖,1
) and

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
), our primary objective is to compute two kinds
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of the mission reliability. Here we specifically summarize the
general formulations for these two cases as follows.

(i) Compute the probability that the mission can be suc-
cessfully accomplished before a given time 𝑅 without
the system failure, formulated as Pr(𝑇

𝑀
≤ 𝑅 | 𝑇

𝑀
≤

𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
).

(ii) Compute the probability that the mission can be suc-
cessfully accomplished before the system fails, formu-
lated as Pr(𝑇

𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
).

2.2. Assumptions

(1) No maintenance activities are involved during the
process of carrying out a mission.

(2) The mission consists of a set of consecutive phases.
(3) For mission success, all phases must be completed.
(4) The phases of mission are sequential; that is, the order

of the mission phase is deterministic.
(5) The durations of the different phases are dependent.
(6) The duration of every phase is random following a

general distribution.
(7) The degradation process is independent of the mis-

sion process.
(8) Failure resulting from degradation will lead to a

mission failure.
(9) The duration of the future phase is only dependent

on the current and previous phases’ duration; for
example, 𝑝

𝑋
2
|𝑋
1
,Φ
𝑖,1

(𝑥
2
| 𝑥
1
, Φ
𝑖,1
) = 𝑝

𝑋
2
|𝑋
1
=𝑥
1

(𝑥
2
|

𝑥
1
), and 𝑝

𝑋
3
|𝑋
1
,𝑋
2
,Φ
𝑖,1

(𝑥
3

| 𝑥
1
, 𝑥
2
, Φ
𝑖,1
) =

𝑝
𝑋
3
|𝑋
1
,𝑋
2

(𝑥
3
| 𝑥
1
, 𝑥
2
).

Assumptions except (6) and (9) have already been widely
adopted in the literature. Assumption (6) makes our focus
on the random phase duration with a general distribution.
Assumption (9) is used for model simplification but is also
practical. For example, at the first phase, we only observe
the CM information Φ

𝑖,1
which is related to the duration of

the first phase. Therefore, given 𝑋
1
and Φ

𝑖,1
, it is reasonable

to assume that the duration 𝑋
2
of the second phase is only

dependent on 𝑋
1
. Following the same procedure, given 𝑋

1
,

𝑋
2
, and Φ

𝑖,1
, the duration 𝑋

3
of the third phase is only

dependent on𝑋
1
and𝑋

2
, and so on.

3. Model Formulation for Mission Process to
Estimate the Mission Time

Without loss of generality, we consider a three-phase mission
process for illustration. In the following, we treat the model
formation for the mission system phase by phase.

3.1. Model Formulation for the First Phase. Considering that
the exact duration of the phase is unknown in its operation,
but one thing we do know is that, over a monitoring interval
of time, the duration is just an interval shorter at the end
of the interval than at the beginning of the interval if

nothing happened during that interval. In the meantime
we may observe an increasing or decreasing trend of the
monitoredCM information𝜙

𝑖,1
. Based on these observations,

the problem can be formulated as follows with a simple and
intuitive form. If we define 𝐿

𝑖,1
as the remaining duration of

the first phase at time 𝑡
𝑖
, the current monitoring check point,

with the realization 𝑙
𝑖,1
, and the relationship between 𝐿

𝑖,1
and

𝐿
𝑖+1,1

can be described as 𝐿
𝑖+1,1

= 𝐿
𝑖,1
− (𝑡
𝑖+1
− 𝑡
𝑖
), if 𝐿

𝑖+1,1
>

𝑡
𝑖+1

− 𝑡
𝑖
. It is noted that 𝐿

0,1
is actually the duration of the

first phase. Furthermore, the duration of the mission time is
always positive and thus we use the transformation 𝑍

𝑖,1
=

ln 𝐿
𝑖,1
with the realization 𝑧

𝑖,1
to guarantee 𝐿

𝑖,1
> 0. In order

to estimate 𝐿
𝑖,1

from 𝜙
𝑖,1
, we need to model the stochastic

relationship between 𝑙
𝑖,1

and 𝜙
𝑖,1
. To do so, we use a concept

called a floating scale parameter to model the relationship
between 𝑧

𝑖,1
and 𝜙

𝑖,1
which is modeled by a stochastic

distribution in this paper [24–26]. The basic idea was to let
themean parameter of 𝜙

𝑖,1
be a function of 𝑧

𝑖,1
, which enables

an updating mechanism of the mean parameter.
Together with the above description, the relationship

among 𝐿
𝑖,1
, 𝐿
𝑖+1,1

, 𝑍
𝑖,1
, and 𝜙

𝑖,1
can be described in [24] as

follows:

𝐿
𝑖+1,1

= {
𝐿
𝑖,1
− (𝑡
𝑖+1

− 𝑡
𝑖
) if 𝐿

𝑖+1,1
> 𝑡
𝑖+1

− 𝑡
𝑖
,

not defined otherwise,

𝑍
𝑖,1
= ln 𝐿

𝑖,1
,

𝜙
𝑖,1
= 𝑔
1
(𝑧
𝑖,1
) + 𝜂
𝑖,1
,

(1)

where 𝑔
1
(𝑧
𝑖,1
) is a function to be determined, which describes

the relationship between themission process and theCMdata
relative to the duration of the phase, and 𝜂

𝑖,1
is the normally

distributedmeasurement error represented as 𝜂
𝑖,1
∼ 𝑁(0, 𝜎

2

1
).

Therefore, the key for remaining time estimation is to
formulate the relationship between 𝑙

𝑖+1,1
and the condition

monitoring history Φ
𝑖,1
. By the classical stochastic filtering

theory, it can be shown that this relationship can be estab-
lished recursively as follows:

𝑝
𝐿
𝑖+1,1
|Φ
𝑖,1

(𝑙
𝑖+1,1

| Φ
𝑖,1
)

= (𝑝 (𝜙
𝑖,1
| 𝑙
𝑖+1,1

) 𝑝
𝐿
𝑖,1
|Φ
𝑖−1,1

(𝑙
𝑖+1,1

+ 𝑡
𝑖+1

− 𝑡
𝑖
| Φ
𝑖−1,1

))

× (∫

∞

0

𝑝 (𝜙
𝑖,1
| 𝑙
𝑖+1,1

) 𝑝
𝐿
𝑖,1
|Φ
𝑖−1,1

× (𝑙
𝑖+1,1

+ 𝑡
𝑖+1

− 𝑡
𝑖
| Φ
𝑖−1,1

) 𝑑𝑙
𝑖+1,1

)

−1

.

(2)

In order to solve and formulate the above equation
explicitly, we here develop a method using the extended
Kalman filtering (EKF) technique based on the work in [24],
in which the EKF technique was used to estimate the residual
life. As aforementioned, the duration of the mission time
must be positive. As such, we define 𝐿

𝑖,1
as a log-normal

random variable and thus 𝑍
𝑖,1
= ln 𝐿

𝑖,1
as the unknown state

of themodel (1). After obtaining the CM information𝜙
𝑖,1
at 𝑡
𝑖
,

we can use the EKF to estimate/update the conditional PDF
of 𝑍
𝑖,1

and further the remaining duration 𝐿
𝑖,1
. We denote
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the updated and one-step predicted conditional PDF of 𝑍
𝑖,1

as 𝑍
𝑖,1

| Φ
𝑖,1

∼ 𝑁(𝑧
𝑖|𝑖,1
, 𝑃
𝑖|𝑖,1
) and 𝑍

𝑖+1,1
| Φ
𝑖,1

∼

𝑁(𝑧
𝑖+1|𝑖,1

, 𝑃
𝑖+1|𝑖,1

), respectively, where the parameters 𝑧
𝑖|𝑖,1

,
𝑃
𝑖|𝑖,1

, 𝑧
𝑖+1|𝑖,1

, and𝑃
𝑖+1|𝑖,1

can be obtained by the EKF as follows.
Specifically, the updating equation of the expectation of the
state 𝑍

𝑖,1
can be formulated as

𝑧
𝑖|𝑖,1

= 𝑧
𝑖|𝑖−1,1

+ 𝐾
𝑖,1
[𝜙
𝑖,1
− 𝑔
1
(𝑧
𝑖|𝑖−1,1

)] , (3)

where𝐾
𝑖,1
is the Kalman gain function formulated by

𝐾
𝑖,1
= [𝑃
𝑖|𝑖−1,1

𝑔


1
(𝑧
𝑖|𝑖−1,1

)] [𝑔


1
(𝑧
𝑖|𝑖−1,1

)
2

𝑃
𝑖|𝑖−1,1

+ 𝜎
2

1
]
−1

, (4)

where 𝑔
1
(𝑧
𝑖|𝑖−1,1

) = 𝑑𝑔
1
(𝑧
𝑖,1
)/𝑑𝑧
𝑖,1
|
𝑧
𝑖,1
=𝑧
𝑖|𝑖−1,1

.
Correspondingly, the updating equation for the estima-

tion variance can be obtained as

𝑃
𝑖|𝑖,1

= 𝑃
𝑖|𝑖−1,1

(1 − 𝐾
𝑖,1
𝑔


1
(𝑧
𝑖|𝑖−1,1

)) . (5)

When applying the above EKF methodology, we need to
initiate the algorithm at the start of the mission phase using
the parameters 𝑧

0|0,1
and 𝑃

0|0,1
, which can be estimated from

historical data. In addition, in the above updating equations,
it is required to calculate the one-step estimation for the
expectation 𝑧

𝑖|𝑖−1,1
and variance 𝑃

𝑖|𝑖−1,1
. In the following, we

present one method to obtain these quantities.
Considering that 𝑍

𝑖,1
| Φ
𝑖,1
∼ 𝑁(𝑧

𝑖|𝑖,1
, 𝑃
𝑖|𝑖,1
) and 𝑍

𝑖,1
=

ln 𝐿
𝑖,1
, we can obtain

𝐸 [𝐿
𝑖,1
| Φ
𝑖,1
] = 𝑒
𝑧
𝑖|𝑖,1
+0.5𝑃

𝑖|𝑖,1 , (6)

with the associated variance

var [𝐿
𝑖,1
| Φ
𝑖,1
] = (𝑒

𝑃
𝑖|𝑖,1 − 1) 𝑒

2𝑧
𝑖|𝑖,1
+𝑃
𝑖|𝑖,1 . (7)

The above two equations are implied from the rela-
tionship between the normal distribution and the log-
normal distribution. Thus, we further have 𝐿

𝑖,1
| Φ
𝑖,1

∼

log𝑁(𝑧
𝑖|𝑖,1
, 𝑃
𝑖|𝑖,1
). Then, based on the first equation in (1), a

one-step forecasting of the remainingmission phase duration
from 𝑡

𝑖
to 𝑡
𝑖+1

is

𝐸 [𝐿
𝑖+1,1

 Φ𝑖,1]

=

{{

{{

{

𝐸 [𝐿
𝑖,1

 Φ𝑖,1] − (𝑡𝑖+1 − 𝑡𝑖) ,

if 𝐸 [𝐿
𝑖,1

 Φ𝑖,1] > 𝑡𝑖+1 − 𝑡𝑖

0, otherwise.

(8)

Since the change in the established state equation is
deterministic over the interval (𝑡

𝑖
, 𝑡
𝑖+1
), the variance about the

mean estimate is thus formulated as

var [𝐿
𝑖+1,1

| Φ
𝑖,1
] = var [𝐿

𝑖,1
| Φ
𝑖,1
] . (9)

By reversing the relationships given in (6) and (7) and
together with the previous results, 𝐸[𝐿

𝑖+1,1
| Φ
𝑖,1
] can be

transformed into 𝑧
𝑖+1|𝑖,1

for the next CM time as

𝑧
𝑖+1|𝑖,1

= ln [𝐸 (𝐿
𝑖+1,1

| Φ
𝑖,1
)]

− 0.5 ln(1 +
var (𝐿

𝑖+1,1
| Φ
𝑖,1
)

𝐸(𝐿
𝑖+1,1

| Φ
𝑖,1
)
2
)

= ln [𝐸 [𝐿
𝑖,1
| Φ
𝑖,1
] − (𝑡
𝑖+1

− 𝑡
𝑖
)]

− 0.5 ln(1 +
var (𝐿

𝑖,1
| Φ
𝑖,1
)

[𝐸 (𝐿
𝑖,1
| Φ
𝑖,1
) − (𝑡
𝑖+1

− 𝑡
𝑖
)]
2
)

= ln [𝑒𝑧𝑖|𝑖,1+0.5𝑃𝑖|𝑖,1 − (𝑡
𝑖+1

− 𝑡
𝑖
)]

− 0.5 ln(1 +
(𝑒
𝑃
𝑖|𝑖,1 − 1) 𝑒

2𝑧
𝑖|𝑖,1
+𝑃
𝑖|𝑖,1

[𝑒
𝑧
𝑖|𝑖,1
+0.5𝑃

𝑖|𝑖,1 − (𝑡
𝑖+1

− 𝑡
𝑖
)]
2
) .

(10)

Furthermore, without any random variation in the prediction
of the state, we have

𝑃
𝑖+1|𝑖,1

= 𝑃
𝑖|𝑖,1
. (11)

Using these results, the expectation 𝑧
𝑖|𝑖−1,1

and variance𝑃
𝑖|𝑖−1,1

can be straightforwardly formulated as

𝑧
𝑖|𝑖−1,1

= ln [𝑒𝑧𝑖−1|𝑖−1,1+0.5𝑃𝑖−1|𝑖−1,1 − (𝑡
𝑖
− 𝑡
𝑖−1
)]

− 0.5 ln(1 +
(𝑒
𝑃
𝑖−1|𝑖−1,1 − 1) 𝑒

2𝑧
𝑖−1|𝑖−1,1
+𝑃
𝑖−1|𝑖−1,1

[𝑒
𝑧
𝑖−1|𝑖−1,1
+0.5𝑃

𝑖−1|𝑖−1,1 − (𝑡
𝑖
− 𝑡
𝑖−1
)]
2
) ,

𝑃
𝑖|𝑖−1,1

= 𝑃
𝑖−1|𝑖−1,1

.

(12)

From the above updating equation, the estimated PDF of
the remaining duration of the first phase, 𝑝

𝐿
𝑖,1
|Φ
𝑖,1

(𝑙
𝑖,1
| Φ
𝑖,1
),

can be formulated as

𝑝 (𝐿
𝑖,1
| Φ
𝑖,1
) =

1

𝑙
𝑖,1
√2𝜋𝑃

𝑖|𝑖,1

𝑒
−(2𝑃
𝑖|𝑖,1
)
−1

(ln 𝑙
𝑖,1
−𝑧
𝑖|𝑖,1
)
2

. (13)

According to the relationship between the duration of the
first phase and its remaining duration, we have

𝑋
1
| Φ
𝑖,1
= 𝐿
𝑖,1
+ 𝑡
𝑖
. (14)

Then we directly estimate the distribution of 𝑋
1
accord-

ing to the variable transformation as

𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) = 𝑝
𝐿
𝑖,1
|Φ
1:𝑖

(𝑥
1
− 𝑡
𝑖
| Φ
𝑖,1
) , (15)

where 𝑝
𝐿
𝑖,1
|Φ
1:𝑖

(𝑥
1
− 𝑡
𝑖
| Φ
𝑖,1
) can be calculated by (13).

Therefore, the duration of the second stage conditional on the
data up to 𝑡

𝑖
and𝑋

1
can be computed as

𝑝
𝑋
2
|Φ
𝑖,1

(𝑥
2
| Φ
𝑖,1
)

= ∫𝑝
𝑋
2
,𝑋
1
|Φ
𝑖,1

(𝑥
1
, 𝑥
2
| Φ
𝑖,1
) 𝑑𝑥
1

= ∫𝑝
𝑋
2
|𝑋
1
,Φ
𝑖,1

(𝑥
2
| 𝑥
1
, Φ
𝑖,1
) 𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) 𝑑𝑥
1

= ∫𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
) 𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) 𝑑𝑥
1

= ∫𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
) 𝑝
𝐿
𝑖,1
|Φ
1:𝑖

(𝑥
1
− 𝑡
𝑖
| Φ
𝑖,1
) 𝑑𝑥
1
.

(16)



Mathematical Problems in Engineering 5

Similarly, the duration of the third phase conditional on the
data up to 𝑡

𝑖
and𝑋

1
can be computed as

𝑝
𝑋
3
|Φ
𝑖,1

(𝑥
3
| Φ
𝑖,1
)

= ∫𝑝
𝑋
1
,𝑋
2
,𝑋
3
|,Φ
𝑖,1

(𝑥
1
, 𝑥
2
, 𝑥
3
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2
.

(17)

Since 𝑝
𝑋
1
,𝑋
2
,𝑋
3
|Φ
𝑖,1

(𝑥
1
, 𝑥
2
, 𝑥
3
| Φ
𝑖,1
) = 𝑝

𝑋
3
|𝑋
1
,𝑋
2

(𝑥
3
| 𝑥
1
,

𝑥
2
)𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
), we have

𝑝
𝑋
3
|Φ
𝑖,1

(𝑥
3
| Φ
𝑖,1
)

= ∫𝑝
𝑋
3
|𝑋
1
,𝑋
2
,Φ
𝑖,1

(𝑥
3
| 𝑥
1
, 𝑥
2
, Φ
𝑖,1
) 𝑝
𝑋
2
|𝑋
1
,Φ
𝑖,1

× (𝑥
2
| 𝑥
1
, Φ
𝑖,1
) 𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2

= ∫𝑝
𝑋
3
|𝑋
2
,𝑋
1

(𝑥
3
| 𝑥
2
, 𝑥
1
) 𝑝
𝑋
2
|𝑋
1

× (𝑥
2
| 𝑥
1
, Φ
𝑖,1
) 𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2

= ∫𝑝
𝑋
3
|𝑋
2
,𝑋
1

(𝑥
3
| 𝑥
2
, 𝑥
1
) ∫𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
) 𝑝
𝐿
𝑖,1
|Φ
𝑖,1

× (𝑥
1
− 𝑡
𝑖
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2
.

(18)

Therefore, the distribution of themission time𝑇
𝑚
, denot-

ed by 𝑇
𝑀
| Φ
𝑖,1
= (𝑋
1
+ 𝑋
2
+ 𝑋
3
) | Φ
𝑖,1
, can be calculated

as

Pr (𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,1
)

= Pr (𝑋
1
+ 𝑋
2
+ 𝑋
3
≤ 𝑡
𝑚
| Φ
𝑖,1
)

= Pr (0 < 𝑋
1
≤ 𝑡
𝑚
, 0 < 𝑋

2
≤ 𝑡
𝑚

−𝑋
1
, 0 < 𝑋

3
≤ 𝑡
𝑚
− 𝑋
1
− 𝑋
2
| Φ
𝑖,1
)

= ∫

𝑡
𝑚

0

∫

𝑡
𝑚
−𝑥
1

0

∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
1
,𝑋
2
,𝑋
3
|Φ
𝑖,1

× (𝑥
1
, 𝑥
2
, 𝑥
3
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3

= ∫

𝑡
𝑚

0

∫

𝑡
𝑚
−𝑥
1

0

∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
3
|𝑋
1
,𝑋
2

(𝑥
3
| 𝑥
1
, 𝑥
2
)

× 𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)

× 𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
) 𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3

= ∫

𝑡
𝑚

0

𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
)

× ∫

𝑡
𝑚
−𝑥
1

0

𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)

× ∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
3
|𝑋
1
,𝑋
2

(𝑥
3
| 𝑥
1
, 𝑥
2
) 𝑑𝑥
3
𝑑𝑥
2
𝑑𝑥
1

= ∫

𝑡
𝑚

0

𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
)

× ∫

𝑡
𝑚
−𝑥
1

0

𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)

× Pr
𝑋
3
|𝑋
1
,𝑋
2

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| 𝑥
1
, 𝑥
2
) 𝑑𝑥
2
𝑑𝑥
1
.

(19)

Then, by differentiating Pr(𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,1
) regarding to

𝑡
𝑚
, we have the PDF of the mission time as follows:

𝑝
𝑇
𝑀
|Φ
1:𝑖

(𝑡
𝑚
| Φ
𝑖,1
)

= ∫

𝑡
𝑚

0

𝑝
𝑋
1
|Φ
𝑖,1

(𝑥
1
| Φ
𝑖,1
)

× ∫

𝑡
𝑚
−𝑥
1

0

𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)

× 𝑝
𝑋
3
|𝑋
1
,𝑋
2

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| 𝑥
1
, 𝑥
2
) 𝑑𝑥
2
𝑑𝑥
1
.

(20)

From the above formulation, we can obtain the estimated
mission time from the observed CM data associated with the
duration of the first phase.

3.2. Model Formulation for the Second Phase. In this case, it
is worth noting that the second phase duration is dependent
on the termination time of the first phase. In a similar way to
the case of the first phase, the relationship between𝐿

𝑖,2
, 𝐿
𝑖+1,2

,
𝑍
𝑖,2
, and 𝜙

𝑖,2
can be described as

𝐿
𝑖+1,2

= {
𝐿
𝑖,2
− (𝑡
𝑖+1

− 𝑡
𝑖
) if 𝐿

𝑖+1,2
> 𝑡
𝑖+1

− 𝑡
𝑖

not defined otherwise,

𝑍
𝑖,2
= ln 𝐿

𝑖,2
,

𝜙
𝑖,2
= 𝑔
2
(𝑧
𝑖,2
) + 𝜂
𝑖,2
,

(21)

where 𝑔
2
(𝑧
𝑖,2
) is a function to be determined and 𝜂

𝑖,2
is the

measurement error which is normally distributed as 𝜂
𝑖,2

∼

𝑁(0, 𝜎
2

2
).

After obtaining the CM information 𝜙
𝑖,2

at 𝑡
𝑖
, we can

use the EKF to estimate/update the conditional PDF of the
remaining duration 𝐿

𝑖,2
on the basis of Φ

𝑖,2
. Define 𝑍

𝑖,2
|

Φ
𝑖,2
∼ 𝑁(𝑧

𝑖|𝑖,2
, 𝑃
𝑖|𝑖,2
) and 𝑍

𝑖+1,2
| Φ
𝑖,2
∼ 𝑁(𝑧

𝑖+1|𝑖,2
, 𝑃
𝑖+1|𝑖,2

). As
Section 3.1, the updating equation of the expectation of the
state 𝑍

𝑖,2
can be formulated as

𝑧
𝑖|𝑖,2

= 𝑧
𝑖|𝑖−1,2

+ 𝐾
𝑖,2
[𝜙
𝑖,2
− 𝑔
2
(𝑧
𝑖|𝑖−1,2

)] ,

𝐾
𝑖,2
= [𝑃
𝑖|𝑖−1,2

𝑔


2
(𝑧
𝑖|𝑖−1,2

)] [𝑔


2
(𝑧
𝑖|𝑖−1,2

)
2

𝑃
𝑖|𝑖−1,2

+ 𝜎
2

2
]
−1

,

𝑃
𝑖|𝑖,2

= 𝑃
𝑖|𝑖−1,2

(1 − 𝐾
𝑖,2
𝑔


2
(𝑧
𝑖|𝑖−1,2

)) ,

(22)

where 𝑔
2
(𝑧
𝑖|𝑖−1,2

) = 𝑑𝑔
2
(𝑧
𝑖,2
)/𝑑𝑧
𝑖,2
|
𝑧
𝑖,2
=𝑧
𝑖|𝑖−1,2

.
Further, the one-step estimation for the expectation

𝑧
𝑖|𝑖−1,2

and variance 𝑃
𝑖|𝑖−1,2

can be formulated as follows:

𝑧
𝑖|𝑖−1,2

= ln [𝑒𝑧𝑖−1|𝑖−1,2+0.5𝑃𝑖−1|𝑖−1,2 − (𝑡
𝑖
− 𝑡
𝑖−1
)]

− 0.5 ln(1 +
(𝑒
𝑃
𝑖−1|𝑖−1,2 − 1) 𝑒

2𝑧
𝑖−1|𝑖−1,2
+𝑃
𝑖−1|𝑖−1,2

[𝑒
𝑧
𝑖−1|𝑖−1,2
+0.5𝑃

𝑖−1|𝑖−1,2 − (𝑡
𝑖
− 𝑡
𝑖−1
)]
2
) ,

𝑃
𝑖|𝑖−1,2

= 𝑃
𝑖−1|𝑖−1,2

.

(23)
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From the above updating equation, upon obtaining the
CM information 𝜙

𝑖,2
at 𝑡
𝑖
, the estimated PDF of the remaining

duration of the second phase, 𝑝
𝐿
𝑖,2
|Φ
𝑖,2

(𝑙
𝑖,2

| Φ
𝑖,2
), can be

formulated as

𝑝 (𝐿
𝑖,2
| Φ
𝑖,2
) =

1

𝑙
𝑖,2
√2𝜋𝑃

𝑖|𝑖,2

𝑒
−(2𝑃
𝑖|𝑖,2
)
−1

(ln 𝑙
𝑖,2
−𝑧
𝑖|𝑖,2
)
2

. (24)

According to the relationship between the duration of the
second phase𝑋

2
and its remaining duration 𝐿

𝑖,2
, we have

𝑋
2
| Φ
𝑖,2
= 𝐿
𝑖,2
+ (𝑡
𝑖
− 𝑥
1
) . (25)

Here, 𝑥
1
is known since at this time the first phase of

the mission process has been accomplished by our model
setting of the sequential nature of the mission phase. This
distinguishes the second phase from the first phase. Based on
this fact, we directly have the distribution of𝑋

2
according to

the variable transformation as

𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
) = 𝑝
𝐿
𝑖,2
|Φ
𝑖,2

(𝑥
2
− (𝑡
𝑖
− 𝑥
1
) | Φ
𝑖,2
) , (26)

where 𝑝
𝐿
𝑖,2
|Φ
𝑖,2

(𝑥
2
− (𝑡
𝑖
− 𝑥
1
) | Φ
𝑖,2
) can be calculated by (24).

Therefore, the duration of the third stage conditional on
the data up to 𝑡

𝑖
can be estimated as

𝑝
𝑋
3
|Φ
𝑖,2

(𝑥
3
| Φ
𝑖,2
)

= ∫𝑝
𝑋
2
,𝑋
3
|,Φ
𝑖,2

(𝑥
3
, 𝑥
2
| Φ
𝑖,2
) 𝑑𝑥
2

= ∫𝑝
𝑋
3
|𝑋
2
,Φ
1:𝑖

(𝑥
3
| 𝑥
2
, Φ
𝑖,2
) 𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
) 𝑑𝑥
2

= ∫𝑝
𝑋
3
|𝑋
2

(𝑥
3
| 𝑥
2
) 𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
) 𝑑𝑥
2

= ∫𝑝
𝑋
3
|𝑋
2

(𝑥
3
| 𝑥
2
) 𝑝
𝐿
𝑖,2
|Φ
𝑖,2

(𝑥
2
− (𝑡
𝑖
− 𝑥
1
) | Φ
𝑖,2
) 𝑑𝑥
2
.

(27)

Accordingly, the distribution of the mission time 𝑇
𝑚
can

be calculated by

Pr (𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,2
)

= Pr (𝑥
1
+ 𝑋
2
+ 𝑋
3
≤ 𝑡
𝑚
| Φ
𝑖,2
)

= Pr (𝑋
2
+ 𝑋
3
≤ 𝑡
𝑚
− 𝑥
1
| Φ
𝑖,2
)

= Pr (0 < 𝑋
2
≤ 𝑡
𝑚
− 𝑥
1
, 0 < 𝑋

3
≤ 𝑡
𝑚
− 𝑥
1
− 𝑋
2
| Φ
𝑖,2
)

= ∫

𝑡
𝑚
−𝑥
1

0

∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
2
,𝑋
3
|Φ
𝑖,2

(𝑥
2
, 𝑥
3
| Φ
𝑖,2
) 𝑑𝑥
3
𝑑𝑥
2
.

(28)

Since 𝑝
𝑋
2
,𝑋
3
|Φ
𝑖,2

(𝑥
2
, 𝑥
3

| Φ
𝑖,2
) = 𝑝

𝑋
3
|𝑋
2

(𝑥
3

| 𝑥
2
)

𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
), the above equation becomes

Pr (𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,2
)

= Pr (𝑥
1
+ 𝑋
2
+ 𝑋
3
≤ 𝑡
𝑚
| Φ
𝑖,2
)

= Pr (𝑋
2
+ 𝑋
3
≤ 𝑡
𝑚
− 𝑥
1
| Φ
𝑖,2
)

= Pr (0 < 𝑋
2
≤ 𝑡
𝑚
− 𝑥
1
, 0 < 𝑋

3
≤ 𝑡
𝑚
− 𝑥
1
− 𝑋
2
| Φ
𝑖,2
)

= ∫

𝑡
𝑚
−𝑥
1

0

∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
2
,𝑋
3
|Φ
𝑖,2

(𝑥
2
, 𝑥
3
| Φ
𝑖,2
) 𝑑𝑥
3
𝑑𝑥
2

= ∫

𝑡
𝑚
−𝑥
1

0

∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
3
|𝑋
2

(𝑥
3
| 𝑥
2
)

× 𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
) 𝑑𝑥
3
𝑑𝑥
2

= ∫

𝑡
𝑚
−𝑥
1

0

(𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
)

×∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
3
|𝑋
2

(𝑥
3
| 𝑥
2
) 𝑑𝑥
3
)𝑑𝑥
2

= ∫

𝑡
𝑚
−𝑥
1

0

𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
)

× Pr
𝑋
3
|𝑋
2

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| 𝑥
2
) 𝑑𝑥
2
.

(29)

Then, by differentiating Pr(𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,2
) regarding to

𝑡
𝑚
, we have the PDF of the mission time as

𝑝
𝑇
𝑀
|Φ
𝑖,2

(𝑡
𝑚
| Φ
𝑖,2
)

= ∫

𝑡
𝑚
−𝑥
1

0

𝑝
𝑋
2
|Φ
𝑖,2

(𝑥
2
| Φ
𝑖,2
) 𝑝
𝑋
3
|𝑋
2

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| 𝑥
2
) 𝑑𝑥
2
.

(30)

3.3. Model Formulation for the Third Phase. In this case, the
mission process is in the third phase and then in a similar
way the relationship between 𝐿

𝑖,3
, 𝐿
𝑖+1,3

, 𝑍
𝑖,3
, and 𝜙

𝑖,3
can be

similarly described as

𝐿
𝑖+1,3

= {
𝐿
𝑖,3
− (𝑡
𝑖+1

− 𝑡
𝑖
) if 𝐿

𝑖+1,3
> 𝑡
𝑖+1

− 𝑡
𝑖

not defined otherwise,

𝑍
𝑖,3
= ln 𝐿

𝑖,3
,

𝜙
𝑖,3
= 𝑔
3
(𝑧
𝑖,3
) + 𝜂
𝑖,3
,

(31)

where 𝑔
3
(𝑧
𝑖,3
) is a function to be determined and 𝜂

𝑖,3
is the

measurement error which is normally distributed as 𝜂
𝑖,3

∼

𝑁(0, 𝜎
2

3
).

After obtaining theCM information𝜙
𝑖,3
at 𝑡
𝑖
, the updating

equation of the expectation of the state𝑍
𝑖,3
can be formulated

as

𝑧
𝑖|𝑖,3

= 𝑧
𝑖|𝑖−1,3

+ 𝐾
𝑖,3
[𝜙
𝑖,3
− 𝑔
3
(𝑧
𝑖|𝑖−1,3

)] ,

𝐾
𝑖,3
= [𝑃
𝑖|𝑖−1,3

𝑔


3
(𝑧
𝑖|𝑖−1,3

)] [𝑔


3
(𝑧
𝑖|𝑖−1,3

)
2

𝑃
𝑖|𝑖−1,3

+ 𝜎
2

3
]
−1

,

𝑃
𝑖|𝑖,3

= 𝑃
𝑖|𝑖−1,3

(1 − 𝐾
𝑖,3
𝑔


3
(𝑧
𝑖|𝑖−1,3

)) ,

(32)

where 𝑔
3
(𝑧
𝑖|𝑖−1,3

) = 𝑑𝑔
3
(𝑧
𝑖,3
)/𝑑𝑧
𝑖,3
|
𝑧
𝑖 ,3
=𝑧
𝑖|𝑖−1,3

.



Mathematical Problems in Engineering 7

Further, the one-step estimation for the expectation
𝑧
𝑖|𝑖−1,3

and variance 𝑃
𝑖|𝑖−1,3

can be formulated as

𝑧
𝑖|𝑖−1,3

= ln [𝑒𝑧𝑖−1|𝑖−1,3+0.5𝑃𝑖−1|𝑖−1,3 − (𝑡
𝑖
− 𝑡
𝑖−1
)]

− 0.5 ln(1 +
(𝑒
𝑃
𝑖−1|𝑖−1,3 − 1) 𝑒

2𝑧
𝑖−1|𝑖−1,3
+𝑃
𝑖−1|𝑖−1,3

[𝑒
𝑧
𝑖−1|𝑖−1,3
+0.5𝑃

𝑖−1|𝑖−1,3 − (𝑡
𝑖
− 𝑡
𝑖−1
)]
2
) ,

𝑃
𝑖|𝑖−1,3

= 𝑃
𝑖−1|𝑖−1,3

.

(33)

From the above updating equation, upon obtaining the
CM information 𝜙

𝑖,3
at 𝑡
𝑖
, the estimated 𝑝

𝐿
𝑖,3
|Φ
𝑖,3

(𝑙
𝑖,3

| Φ
𝑖,3
)

can be formulated as

𝑝 (𝐿
𝑖,3
| Φ
𝑖,3
) =

1

𝑙
𝑖,3
√2𝜋𝑃

𝑖|𝑖,3

𝑒
−(2𝑃
𝑖|𝑖,3
)
−1

(ln 𝑙
𝑖,3
−𝑧
𝑖|𝑖,3
)
2

. (34)

According to the relationship between𝑋
3
and its remain-

ing duration 𝐿
𝑖,3
, we have

𝑋
3
| Φ
𝑖,3
= 𝐿
𝑖,3
+ (𝑡
𝑖
− 𝑥
1
− 𝑥
2
) . (35)

In this case, 𝑥
1
and 𝑥

2
are known since at this time the

first and second phases of the mission process have been
accomplished. Based on this fact, we directly have

𝑝
𝑋
3
|Φ
𝑖,3

(𝑥
3
| Φ
𝑖,3
) = 𝑝
𝐿
𝑖,3
|Φ
𝑖,3

(𝑥
3
− (𝑡
𝑖
− 𝑥
1
− 𝑥
2
) | Φ
𝑖,3
) ,

(36)

where 𝑝
𝐿
𝑖,3
|Φ
𝑖,3

(𝑥
3
− (𝑡
𝑖
− 𝑥
1
− 𝑥
2
) | Φ
𝑖,3
) can be calculated by

(34).
Therefore, the distribution of the mission time 𝑇

𝑚
condi-

tional on the related CM information Φ
𝑖,3
, denoted by 𝑇

𝑀
|

Φ
𝑖,3
= (𝑋
1
+ 𝑋
2
+ 𝑋
3
)|Φ
𝑖,3
, can be calculated by

Pr (𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,3
) = Pr (𝑥

1
+ 𝑥
2
+ 𝑋
3
≤ 𝑡
𝑚
| Φ
𝑖,3
)

= Pr (𝑋
3
≤ 𝑡
𝑚
− 𝑥
1
− 𝑥
2
| Φ
𝑖,3
)

= ∫

𝑡
𝑚
−𝑥
1
−𝑥
2

0

𝑝
𝑋
3
|Φ
𝑖,3

(𝑥
3
| Φ
𝑖,3
) 𝑑𝑥
3

= Pr
𝑋
3
|Φ
𝑖,3

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| Φ
𝑖,3
) .

(37)

Then, differentiating Pr(𝑇
𝑀
≤ 𝑡
𝑚
| Φ
𝑖,3
) regarding to 𝑡

𝑚

yields

𝑝
𝑇
𝑀
|Φ
1:𝑖

(𝑡
𝑚
| Φ
𝑖,3
) = 𝑝
𝑋
3
|Φ
𝑖,3

(𝑡
𝑚
− 𝑥
1
− 𝑥
2
| Φ
𝑖,3
) . (38)

So far, we have completed the task of formulating themis-
sion time distribution based on the related CM information.

4. Model Formulation for System Degradation
Process to Estimate the Lifetime

In this paper, we use a Wiener process to model the degrada-
tion process of themission system.Without loss of generality,
we assume that the start reading of the degradation process is

𝑌(0) = 0. Then, the evolution of the monitored variable over
time can be described as

𝑌 (𝑡) = 𝜆𝑡 + 𝜎𝐵 (𝑡) . (39)

This type of Wiener process-based model is a typical
model used in the literature to characterize the evolving
path of the degradation process [27–31]. Considering the
potential for updating knowledge of the process, we model
the degradation process over time since 𝑡

𝑖
as

𝑌 (𝑡) = 𝑦
𝑖
+ 𝜆 (𝑡 − 𝑡

𝑖
) + 𝜎𝐵 (𝑡 − 𝑡

𝑖
) . (40)

To incorporate the history of the observations, we con-
sider an updating procedure for the drifting parameter 𝜆 by
making 𝜆 evolve as 𝜆

𝑖
= 𝜆
𝑖−1
+𝜂, where 𝜂 ∼ 𝑁(0, 𝑄). In order

to establish the linkage between the drift parameter and the
observation history up to date, the degradation equation can
be reconstructed and taken to be a self-organizing state-space
modelas

𝜆
𝑖
= 𝜆
𝑖−1

+ 𝜂,

𝑦
𝑖
= 𝑦
𝑖−1

+ 𝜆
𝑖−1
(𝑡
𝑖
− 𝑡
𝑖−1
) + 𝜎𝜀

𝑖
,

(41)

where 𝜂 ∼ 𝑁(0, 𝑄) and 𝜀
𝑖
∼ 𝑁(0, 𝑡

𝑖
− 𝑡
𝑖−1
). The updated esti-

mation of 𝜆
𝑖
can be obtained from Algorithm 1.

Due to Gaussian’s assumption and the principle of Baye-
sian filtering, we can obtain the PDF of 𝜆

𝑖
at 𝑡
𝑖
as

𝑓
𝜆
𝑖
|𝑌
𝑖

(𝜆
𝑖
| 𝑌
𝑖
) =

1

√2𝜋𝑃
𝑖|𝑖

exp[

[

−(𝜆
𝑖
− �̂�
𝑖
)
2

2𝑃
𝑖|𝑖

]

]

. (42)

Based on the threshold, the remaining useful life (RUL)
modeling principle is presented as follows. When degrada-
tion𝑌(𝑡)modeled by (40) reaches a preset critical level𝑤, the
plant can be declared to fail.Therefore, it is natural to view the
event of lifetime termination as the point that the degradation
process 𝑌(𝑡) exceeds the threshold level 𝑤 for the first time.
Therefore, using the concept of the first hitting time,we define
the RUL 𝑆

𝑖
at time 𝑡

𝑖
as

𝑆
𝑖
= inf {𝑠

𝑖
: 𝑌 (𝑠
𝑖
+ 𝑡
𝑖
) ≥ 𝑤 | 𝑌

𝑖
} , (43)

with the cumulative density function (cdf) 𝐹
𝑆
𝑖
|𝑌
𝑖

(𝑠
𝑖
| 𝑌
𝑖
) and

the PDF 𝑓
𝑆
𝑖
|𝑌
𝑖

(𝑠
𝑖
| 𝑌
𝑖
).

Considering the adaptive mechanism introduced by the
state-space model (41), we can predict the future degradation
at 𝑡
𝑖
, represented by the PDF 𝑓

𝑌(𝑠
𝑖
+𝑡
𝑖
)|𝑌
𝑖

(𝑦 | 𝑌
𝑖
). This

distribution is normal and can be written as 𝑌(𝑠
𝑖
+ 𝑡
𝑖
) | 𝑌
𝑖
∼

𝑁(𝑦
𝑖
+ �̂�
𝑖
𝑠
𝑖
, 𝑃
𝑖|𝑖
𝑠
2

𝑖
+ 𝜎
2

𝑠
𝑖
). Further, according to the standard

theory of Wiener process, it is direct to obtain the PDF and
CDF of the RUL at time 𝑡

𝑖
as follows:

𝑓
𝑆
𝑖
|𝜆
𝑖
,𝑌
𝑖

(𝑡 | 𝜆
𝑖
, 𝑌
𝑖
)

=
𝑤 − 𝑦

𝑖

√2𝜋𝑠
3

𝑖
𝜎2

exp(−
(𝑤 − 𝑦

𝑖
− 𝜆
𝑖
𝑠
𝑖
)
2

2𝜎2𝑠
𝑖

) , 𝑠
𝑖
> 0,
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Step 1. Initialize �̂�
0
, 𝑃
0
.

Step 2. State estimation at time 𝑡
𝑖

𝑃
𝑖|𝑖−1

= 𝑃
𝑖−1|𝑖−1

+ 𝑄

𝐾
𝑖
= (𝑡
𝑖
− 𝑡
𝑖−1
)
2

𝑃
𝑖|𝑖−1

+ 𝜎
2

(𝑡
𝑖
− 𝑡
𝑖−1
)

�̂�
𝑖
= �̂�
𝑖−1
+ 𝑃
𝑖|𝑖−1

(𝑡
𝑖
− 𝑡
𝑖−1
)𝐾
−1

𝑖
(𝑦
𝑖
− 𝑦
𝑖−1
− �̂�
𝑖−1
(𝑡
𝑖
− 𝑡
𝑖−1
))

Step 3. Updating variance 𝑃
𝑖|𝑖
= 𝑃
𝑖|𝑖−1

− 𝑃
𝑖|𝑖−1

(𝑡
𝑖
− 𝑡
𝑖−1
)
2

𝐾
−1

𝑖
𝑃
𝑖|𝑖−1

Algorithm 1: Kalman filtering algorithm.

𝐹
𝑆
𝑖
|𝜆
𝑖
,𝑌
𝑖

(𝑡 | 𝜆
𝑖
, 𝑌
𝑖
)

= 1 − Φ(
𝑤 − 𝑦

𝑖
− 𝜆
𝑖
𝑠
𝑖

𝜎√𝑠𝑖

)

+ exp(
2𝜆
𝑖
(𝑤 − 𝑦

𝑖
)

𝜎2
)Φ(

− (𝑤 − 𝑦
𝑖
) − 𝜆
𝑖
𝑠
𝑖

𝜎√𝑠𝑖

) .

(44)
As mentioned previously, the drift parameter is evolving

as a random variable in model (41) with a distribution
𝑓
𝜆
𝑖
|𝑌
𝑖

(𝜆
𝑖
| 𝑌
𝑖
). To consider the impact of the adaptive

mechanism on the estimated lifetime distribution, the PDF
and CDF of the RUL conditional on the observations to
date 𝑡

𝑖
can be, respectively, obtained by the total law of the

probability as [31]
𝑓
𝑆
𝑖
|𝑌
𝑖

(𝑠
𝑖
| 𝑌
𝑖
)

=
𝑤 − 𝑦

𝑖

√2𝜋𝑠
3

𝑖
(𝑃
𝑖|𝑖
𝑠
𝑖
+ 𝜎2)

exp(−
(𝑤 − 𝑦

𝑖
− �̂�
𝑖
𝑠
𝑖
)
2

2𝑠
𝑖
(𝑃
𝑖|𝑖
𝑠
𝑖
+ 𝜎2)

) ,

𝑠
𝑖
> 0,

𝐹
𝑆
𝑖
|𝑌
𝑖

(𝑠
𝑖
| 𝑌
𝑖
)

= 1 − Φ(
𝑤 − 𝑦

𝑖
− �̂�
𝑖
𝑠
𝑖

√𝑃
𝑖|𝑖
𝑠
2

𝑖
+ 𝜎2𝑠
𝑖

)

+ exp(
2�̂�
𝑖
(𝑤 − 𝑦

𝑖
)

𝜎2
+
2𝑃
𝑖|𝑖
(𝑤 − 𝑦

𝑖
)
2

𝜎4
)

× Φ(−

2𝑃
𝑖|𝑖
(𝑤 − 𝑦

𝑖
) 𝑠
𝑖
+ 𝜎
2

(�̂�
𝑖
𝑠
𝑖
+ 𝑤 − 𝑦

𝑖
)

𝜎2√𝑃
𝑖|𝑖
𝑠
2

𝑖
+ 𝜎2𝑠
𝑖

).

(45)

Accordingly, the PDF and CDF of the estimated lifetime
of the PMS can be formulated as

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) =

𝑤 − 𝑦
𝑖

√2𝜋(𝑡
𝑑
− 𝑡
𝑖
)
3

(𝑃
𝑖|𝑖
(𝑡
𝑑
− 𝑡
𝑖
) + 𝜎2)

× exp(−
(𝑤 − 𝑦

𝑖
− �̂�
𝑖
(𝑡
𝑑
− 𝑡
𝑖
))
2

2 (𝑡
𝑑
− 𝑡
𝑖
) (𝑃
𝑖|𝑖
(𝑡
𝑑
− 𝑡
𝑖
) + 𝜎2)

) ,

𝑡
𝑑
> 𝑡
𝑖
,

(46)

𝐹
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
)

= 1 − Φ(
𝑤 − 𝑦

𝑖
− �̂�
𝑖
(𝑡
𝑑
− 𝑡
𝑖
)

√𝑃
𝑖|𝑖
(𝑡
𝑑
− 𝑡
𝑖
)
2

+ 𝜎2 (𝑡
𝑑
− 𝑡
𝑖
)

)

+ exp(
2�̂�
𝑖
(𝑤 − 𝑦

𝑖
)

𝜎2
+
2𝑃
𝑖|𝑖
(𝑤 − 𝑦

𝑖
)
2

𝜎4
)

× Φ(−

2𝑃
𝑖|𝑖
(𝑤−𝑦

𝑖
) (𝑡
𝑑
−𝑡
𝑖
)+𝜎
2

(�̂�
𝑖
(𝑡
𝑑
−𝑡
𝑖
)+𝑤 −𝑦

𝑖
)

𝜎2√𝑃
𝑖|𝑖
(𝑡
𝑑
−𝑡
𝑖
)
2

+𝜎2 (𝑡
𝑑
−𝑡
𝑖
)

) .

(47)

From (47), we can also observe the dependency of the
estimated lifetime of the system on the observation history
up to 𝑡

𝑖
.

5. Reliability Estimation for PMS

After obtaining the estimated mission system lifetime distri-
bution 𝑓

𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) and the mission time 𝑝

𝑇
𝑀
|Φ
𝑖,𝑛

(𝑡
𝑚
| Φ
𝑖,𝑛
),

we can estimate the reliability of the mission process accord-
ing to the two definitions of the mission reliability given in
Section 2.1. Together with these analyses, the reliability of
PMS at 𝑡

𝑖
under the 𝑛th phase can be, respectively, formulated

as

Pr (𝑇
𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

= ∫
𝑡
𝑚
>0

𝑝
𝑇
𝑀
|Φ
𝑖,𝑛

(𝑡
𝑚
| Φ
𝑖,𝑛
)

× (∫
𝑡
𝑑
≥𝑡
𝑚

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) 𝑑𝑡
𝑑
)𝑑𝑡
𝑚
,

(48)

Pr (𝑇
𝑀
≤ 𝑅 | 𝑇

𝑀
≤ 𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
)

=
Pr (𝑇
𝑀
≤ 𝑅, 𝑇

𝑀
≤ 𝑇
𝑑
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

Pr (𝑇
𝑀
≤ 𝑇
𝑑
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

=

∬
𝑡
𝑑
≥𝑡
𝑚
,0<𝑡
𝑚
≤𝑅

𝑝
𝑇
𝑚
,𝑇
𝑑
|Φ
𝑖,𝑛
,𝑌
𝑖

(𝑡
𝑚
, 𝑡
𝑑
| Φ
𝑖,𝑛
, 𝑌
𝑖
) 𝑑𝑡
𝑑
𝑑𝑡
𝑚

Pr (𝑇
𝑀
≤ 𝑇
𝑑
| Φ
𝑖,𝑛
, 𝑌
𝑖
)
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=

∫
0<𝑡
𝑚
≤𝑅

𝑝
𝑇
𝑀
|Φ
𝑖

(𝑡
𝑚
| Φ
𝑖,𝑛
) (∫
𝑡
𝑑
≥𝑡
𝑚

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) 𝑑𝑡
𝑑
) 𝑑𝑡
𝑚

Pr (𝑇
𝑀
≤ 𝑇
𝑑
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

=

∫
0<𝑡
𝑚
≤𝑅

𝑝
𝑇
𝑀
|Φ
𝑖,𝑛

(𝑡
𝑚
| Φ
𝑖,𝑛
) (∫
𝑡
𝑑
≥𝑡
𝑚

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) 𝑑𝑡
𝑑
) 𝑑𝑡
𝑚

∫
𝑡
𝑚
>0

𝑝
𝑇
𝑀
|Φ
𝑖,𝑛

(𝑡
𝑚
| Φ
𝑖,𝑛
) (∫
𝑡
𝑑
≥𝑡
𝑚

𝑓
𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) 𝑑𝑡
𝑑
) 𝑑𝑡
𝑚

,

(49)
where𝑓

𝑇
𝑑
|𝑌
𝑖

(𝑡
𝑑
| 𝑌
𝑖
) and𝑝

𝑇
𝑀
|Φ
𝑖,𝑛

(𝑡
𝑚
| Φ
𝑖,𝑛
)have beenmodeled

in Sections 3 and 4.
From (48) and (49), we can observe that our approach for

mission reliability estimation establishes a linkage between
the historical data and real-time information of the individual
PMS. The associated model parameters can be estimated
based on the historical data by the maximum likelihood
approach naturally and thuswe donot specifically discuss this
estimation issue to limit our scope.

6. Numerical Studies

In this section, we provide a numerical example to illustrate
the implementation process and the performance of the
presented approach in this paper.

Suppose that there is a PMSwhich is designed to complete
the three-phase mission process. The phase durations are log
normally distributed but correlated. For an individual PMS to
conduct a particular mission process, there are some sensors
to monitor the CM information related to the phase duration
and the degradation data related to the lifetime of the PMS.
The CM information is used to update the phase duration
and the mission time, while the degradation data are used to
estimate the lifetime of the PMS. Specifically, we consider the
following relationship among the phase durations:
𝑝
𝑋
1

(𝑥
1
)

=
1

𝑥
1
√2𝜋𝜎

2

𝑥1

exp(−
(ln𝑥
1
− 𝜇
𝑥1
)
2

2𝜎
2

𝑥1

) ,

(50)

𝑝
𝑋
2
|𝑋
1

(𝑥
2
| 𝑥
1
)

=
1

𝑥
2
√2𝜋𝜎

2

𝑥2

exp(−
(ln𝑥
2
+ 𝜇
𝑥1
− 𝜇
𝑥2
− ln𝑥

1
)
2

2𝜎
2

𝑥2

) ,

𝑝
𝑋
3
|𝑋
1
,𝑋
1

(𝑥
3
| 𝑥
1
, 𝑥
2
)

=
1

𝑥
3
√2𝜋𝜎

2

𝑥3

× exp(−
(ln𝑥
3
+ 𝜇
𝑥1
+ 𝜇
𝑥2
− ln𝑥

1
− ln𝑥

2
− 𝜇
𝑥3
)
2

2𝜎
2

𝑥3

) ,

(51)

where 𝜇
𝑥𝑗
, 𝜎2
𝑥𝑗

and 𝑗 = 1, 2, 3, are the parameters of the
log-normal distributions. These distributions correspond,
respectively, to the distributions of 𝐿

0,1
, 𝐿
0,2

and 𝐿
0,3
, in the

filtering models.

In the presented approach, it is required to determine the
functional forms of the CM information and the remaining
phase duration, that is, 𝑔

𝑛
(𝑧
𝑖,𝑛
), 𝑛 = 1, 2, 3. In this numerical

study, we use the following functional forms of 𝑔
𝑛
(𝑧
𝑖,𝑛
):

𝑔
𝑛
(𝑧
𝑖,𝑛
) = 𝑎
𝑛
+ 𝑏
𝑛
exp (−𝑧

𝑖,𝑛
) , 𝑛 = 1, 2, 3. (52)

The above is just an idea to model the relationship
between 𝑧

𝑖,𝑛
and 𝜙

𝑖,𝑛
. In order to generate the degradation

data to estimate the lifetime of the PMS, we use the following
discrete equation:

𝑦
𝑖+1

= 𝑦
𝑖
+ 𝜆 (𝑡

𝑖+1
− 𝑡
𝑖
) + 𝜎𝐵 (𝑡

𝑖+1
− 𝑡
𝑖
) , (53)

where 𝐵(𝑡
𝑖+1

− 𝑡
𝑖
) ∼ 𝑁(0, 𝑡

𝑖+1
− 𝑡
𝑖
).

Now, given (51), (52), and (53) and the parameters in these
equations, we can simulate the required data for ourmodeling
and reliability estimation. Table 1 shows the parameters used
for the data simulation.

In Table 1, we also show the estimated parameters (indi-
cated in the brackets) of our approach based on the multiple
sample of the simulation data. It can be observed that the
maximum likelihood estimation of these parameters can
match the true parameters well. Figure 1 shows the particular
simulation data of the CM information related to the phase
duration (i.e., 𝜙

𝑖,𝑛
) and the degradation data (i.e., 𝑦

𝑖
) under

the above model settings and parameters specifications.
The data illustrated in Figure 1 are used to implement the

presented reliability approach. These data consist of Φ
𝑖,𝑛

and
𝑌
𝑖
. Now, we use the approach developed in this paper and the

model setting above to show the mission reliability results.
When the mission process starts, we need to calculate the
PDFs of the remaining phase durations and then update the
PDF of the mission time at each phase. In estimating the
remaining useful life of the RUL, we set the failure threshold
as 𝑤 = 25. Based on these estimated phase durations and
RUL for the PMS, we can evaluate the mission reliability
by its two different definitions. In order to shed light on
the performance of our developed reliability approach, we
consider the following two cases.Thefirst case corresponds to
a low degradation, while the second case corresponds to a fast
degradation. In the degradation modeling of this paper, the
degradation rate is represented by 𝜆. In the RUL estimation,
𝜆 is adaptively updated by the Kalman filter, and thus the
presented approach for reliability estimation can naturally
characterize the varying mechanism of the degradation rate.
In addition, the low degradation will lead to a small large
lifetime, while the fast degradation leads to a small system
lifetime. This can be controlled by the failure threshold as
shown in (47). In this paper, we adjust the failure threshold
to change the PMS lifetime. The reliability estimation results
for these two cases are discussed as follows.

(i) Case 1. The degradation quantity is subtle and thus the
lifetime of mission system is long enough.

In this case, because the degradation is subtle, the
estimated RUL of the PMS is expected to be large. This is
consistent with our intuition that, for a newly installed PMS,
its lifetime is naturally large enough and may be designed
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Table 1: The parameters used for simulation and the estimated parameters from the simulation data.

The 1st phase
𝜇
𝑥1
= 3, 𝜎2

𝑥1
= 0.04

(𝜇
𝑥1
= 2.8903, 𝜎2

𝑥1
= 0.0342)

𝑎
1
= 5, 𝑏

1
= 4, and 𝜎

1
= 0.3

(𝑎
1
= 4.8602, 𝑏

1
= 4.1032, and

𝜎
1
= 0.2564)

The 2nd phase
𝜇
𝑥2
= 2.5, 𝜎2

𝑥2
= 0.06

(𝜇
𝑥2
= 2.3625, 𝜎2

𝑥2
= 0.0684)

𝑎
2
= 2, 𝑏

2
= 3, and 𝜎

2
= 0.2

(𝑎
2
= 2.1286, 𝑏

2
= 2.9603, and

𝜎
2
= 0.1532)

The 3rd phase
𝜇
𝑥3
= 2.2, 𝜎2

𝑥3
= 0.02

(𝜇
𝑥3
= 2.0651, 𝜎2

𝑥3
= 0.0245)

𝑎
3
= 3.5, 𝑏

3
= 0.8, and 𝜎

3
= 0.3

(𝑎
3
= 3.2891, 𝑏

3
= 0.6459, and

𝜎
3
= 0.3426)

The degradation process 𝜆 = 0.2, 𝜎 = 0.4 (𝜆 = 0.2105, 𝜎 = 0.4028)
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(a) The CM information of the first phase
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(b) The CM information of the second phase
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(c) The CM information of the third phase
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Figure 1: The simulated CM information related to the phase duration of the PMS and the simulated degradation data of the PMS.

to have the ability to perform many missions. In order to
simulate this case, we set a large failure threshold, 𝑤 = 25.
The reason to do so is that a large threshold corresponds to
a long lifetime of the PMS, and this can be verified by (47).
Firstly, we calculate the mission reliability at each sampling
point according to the definition that the mission can be

successfully accomplished before the system fails. The result
is show in Figure 2 by evaluating (48).

Figure 2 shows the evolving path of themission reliability
Pr(𝑇
𝑀

≤ 𝑅 | 𝑇
𝑀

≤ 𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡

𝑖
. As shown

in Figure 2, the success probability of the phased-mission
process will increase with the mission progressing. This can
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Figure 2: The evolving mission reliability Pr(𝑇
𝑀

≤ 𝑅 | 𝑇
𝑀

≤

𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡

𝑖
that themission can be successfully accomplished

before a given time 𝑅 without the system failure in Case 1.

be well explained since with the mission process progressing
the remainingmission time is less, but the reducedRULof the
PMS is not significant in contrast with its long lifetime in this
case. Also, we can found that for the subtle degradation, the
lifetime of the PMSwill be large in stochastic sense.Therefore,
the mission reliability will be maintained in a relatively high
level. Figure 2 reflects this fact. Accordingly, the probability
that the mission can be successfully accomplished before a
given time 𝑅 under condition that the system lifetime is
longer than the total mission time at each phase can be
obtained by evaluating (49). For illustration, we set 𝑅 = 50

and the result is shown in Figure 3.
Figure 3 shows the evolving path of themission reliability

Pr(𝑇
𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡

𝑖
, which is calculated by (49). It

is not surprising that this kind of the mission reliability also
has an increasing trend, as illustrated in Figure 3. The reason
for this is similar to the above result because the lifetime of
the PMS in this case is set to be long enough compared with
the mission time. Therefore, the reduction of the RUL of the
PMS is not significant as themission progressing. In addition,
we can observe that the mission reliability in the early phase
is relatively low. This is resulted from the fact that this kind
of reliability is a ratio, as the denominator of (49) is relatively
large in the early phase. However, as the mission progressing,
the increase of the numerator is faster than the increase of the
denominator.This leads to an increasing trend of this kind of
mission reliability.

(ii) Case 2.The degradation is dramatic and thus the lifetime
of mission system is small.

In this case, because the degradation is dramatic, the
estimated RUL of the PMS is expected to be small. This
is consistent with our intuition that, for an aged PMS, its
lifetime naturally approaches the end and thus there is high
probability that the mission will fail. In order to simulate this
case, we set a small failure threshold, such as 𝑤 = 12. The
reason is that a small threshold corresponds to a short lifetime
of the PMS. Similar to Case 1, we firstly calculate the mission
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Figure 3: The evolving mission reliability Pr(𝑇
𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

over 𝑡
𝑖
that the mission can be successfully accomplished before the

system fails in Case 1.
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Figure 4: The evolving mission reliability Pr(𝑇
𝑀

≤ 𝑅 | 𝑇
𝑀

≤

𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡

𝑖
that themission can be successfully accomplished

before a given time R without the system failure in Case 2.

reliability Pr(𝑇
𝑀

≤ 𝑅 | 𝑇
𝑀

≤ 𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
). The result is

illustrated in Figure 4.
Figure 4 shows the evolving path of themission reliability

Pr(𝑇
𝑀
≤ 𝑅 | 𝑇

𝑀
≤ 𝑇
𝑑
, Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡

𝑖
, calculated by (48).

Figure 4 shows that the mission reliability will be lower than
the corresponding results in Case 1. Particularly, when the
degradation is dramatic and the lifetime of mission system is
small, the estimated mission reliability will fluctuate with the
mission progressing to some extent though it still has certain
increasing trend. These observations are largely resulted by
the short lifetime of the PMS. In this case, with the mission
progressing, the reduced RUL of the PMS is significant in
contrast with the remaining mission time which is estimated
from the CM information. Accordingly, Pr(𝑇

𝑑
≥ 𝑇
𝑀

|

Φ
𝑖,𝑛
, 𝑌
𝑖
) can be obtained by evaluating (49). Similar to Case

1, the result is shown in Figure 5 with the setting 𝑅 = 50.
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Figure 5: The evolving mission reliability Pr(𝑇
𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
)

over 𝑡
𝑖
that the mission can be successfully accomplished before the

system fails in Case 2.

Figure 5 shows the evolving path of themission reliability
Pr(𝑇
𝑑
≥ 𝑇
𝑀
| Φ
𝑖,𝑛
, 𝑌
𝑖
) over 𝑡i, which is calculated by (49).

It is interesting to note that the mission reliability for the
success in the required time will experience a decreasing
trend.This differs clearly from the previous results. Similar to
the first type of the mission reliability, when the degradation
is dramatic, the estimated mission reliability of this type
will fluctuate with the mission progressing. In this case, the
mission reliability is a conditional probability as formulated
in (49) and the denominator of this equation has an increas-
ing trend as shown in Figure 4. In contrast with the result
shown in Figure 3, the numerator of (49) is a probability
to characterize the two events with the AND relationship:
the event that the mission can be successfully accomplished
before a given time 𝑅 and the event that the system lifetime is
longer than the total mission time. However, in this case, the
lifetime of the PMS is small.Therefore, it is naturally expected
that the increase of the numerator of (49) is not faster than
that of the denominator. These observations finally result in
the decreasing trend of the mission reliability of this type.

7. Conclusion

In this paper we attempt to address the issues associated with
reliability estimation for PMS and present a novel approach
to achieve reliability estimation for PMS using the condition
monitoring information and degradation data of such system
under dynamic operating scenario. In this sense, this paper
contrasts sharply with the existing methods only considering
the static scenario without using the real-time information,
which aims to estimate the reliability for a population but not
an individual. Specifically, to establish a linkage between the
historical data and real-time information of the individual
PMS,we adopt a stochastic filteringmodel tomodel the phase
duration and obtain the updated estimation of the mission
time by Bayesian filtering at each phase. At the meanwhile,
the lifetime of PMS is estimated from the degradation data,
which aremodeled by an adaptive Brownianmotion. As such,

the mission reliability can be real time obtained through the
estimated distribution of the mission time in conjunction
with the estimated lifetime distribution. We demonstrate the
implementation process and the usefulness of the developed
approach via a numerical example.
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