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We establish a new comparison principle for impulsive differential systems with time delay. Then, using this comparison principle,
we obtain some sufficient conditions for several stabilities of impulsive delay differential equations. Finally, we present an example
to show the effectiveness of our results.

1. Introduction

The impulsive functional differential systems provide very
important mathematical models for many real phenomena
and processes in the field of natural sciences and technology
[1–3]. In the last few decades, the stability theory of impulsive
differential equations had a rapid development; for instance,
see [1–16]. In thoseworks,most researchers utilized Lyapunov
functions or Lyapunov functionals coupled with a certain
Razumikhin technique. It is well known that comparison
principles play an important role in the theory for differential
systems, which always reduce the studies from a given
complicated differential system to some relatively simpler
differential system. Up to now, there exist many results on
this subject; see [2, 3, 5–16]. For example, Lakshmikantham
et al. [3] presented a comparison principle for impulsive
differential systems and applied it to the stability. Significant
progress has been made in the theory of impulsive functional
differential equations in recent years (see [17, 18]). It is
well known that the monotone iterative technique offers an
approach for obtaining approximate solutions of nonlinear
differential equations. Some recent advances in the field of
approximate solutions of nonlinear differential equations can
be found in [19–21]. Afterwards, some researchers gave sev-
eral new comparison principles in the qualitative analysis for
the solutions of impulsive systems; see [5, 9, 10]. In particular,
there has been a significant development in the studies of

comparison principles for delay systems; see [6–8]. At the
same time, the comparison principles for differential systems
with impulses and delays simultaneously have attractedmany
researchers, and many interesting results on this subject are
obtained; see [9–11].

In view of the importance of comparison principles in
the qualitative analysis for differential equations, in this paper
we establish a new comparison principle for impulsive delay
differential systems. As an application, we use it to deal with
the stability of impulsive functional differential equations.

The rest of this paper is organized as follows. In Section 2,
we introduce some useful notations and definitions. In
Section 3, a new comparison principle and its applications to
stability are given. Finally, we give an example to illustrate our
results in Section 4.

2. Preliminaries

Let𝑅denote the set of real numbers,𝑅
+
the set of nonnegative

real numbers, 𝑍
+
the set of positive integers, and 𝑅𝑛 the 𝑛-

dimensional real Euclidean space equippedwith the norm |⋅|.
Consider the following impulsive functional differential

equations:

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

−

𝑘
) + 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑘 ∈ 𝑍

+
,

𝑥
𝑡0
= 𝜑 (𝑠) , −𝜏 ≤ 𝑠 ≤ 0,

(1)
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where 𝑥 ∈ 𝑅𝑛 and 𝑥 denotes the right-hand derivative of 𝑥.
The impulse times {𝑡

𝑘
} satisfy 0 ≤ 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ and

lim
𝑘→+∞

𝑡
𝑘
= +∞. Also, assume 𝑓 ∈ 𝐶([𝑡

𝑘−1, 𝑡𝑘) × Ω, 𝑅
𝑛
);

meanwhile 𝜑 ∈ Ω, where Ω is an open set in 𝑃𝐶([−𝜏, 0], 𝑅𝑛),
where 𝑃𝐶([−𝜏, 0], 𝑅𝑛) = {𝜓 : [−𝜏, 0] → 𝑅

𝑛
| 𝜓 is continuous

except at a finite number of points 𝑡, at which𝜓(𝑡+) and𝜓(𝑡−)
exist and 𝜓(𝑡+) = 𝜓(𝑡)}. For 𝜓 ∈ Ω, the norm of 𝜓 is defined
by ‖𝜓‖ = sup

−𝜏≤𝜃≤0|𝜓(𝜃)|. For each 𝑡 ≥ 𝑡0, 𝑥𝑡 ∈ Ω is defined
by 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−𝜏, 0]. For each 𝑘 ∈ 𝑍

+
, 𝐼
𝑘
(𝑡, 𝑥) ∈

𝐶([𝑡0,∞) × 𝑅
𝑛
, 𝑅
𝑛
). For any 𝜌 > 0, there exists a 𝜌1 > 0 (0 <

𝜌1 < 𝜌) such that 𝑥 ∈ 𝑆(𝜌1) implies that 𝑥 + 𝐼
𝑘
(𝑡
𝑘
, 𝑥) ∈ 𝑆(𝜌),

where 𝑆(𝜌) = {𝑥 : |𝑥| < 𝜌, 𝑥 ∈ 𝑅𝑛}.
Define 𝑃𝐶𝐵(𝑡) = {𝑥

𝑡
∈ Ω : 𝑥

𝑡
is bounded}. For any 𝑡0 >

0, let 𝑃𝐶𝐵
𝛿
(𝑡0) = {𝜓 ∈ 𝑃𝐶𝐵(𝑡0) : ‖𝜓‖ < 𝛿}.

In this paper, we suppose that there exists a unique
solution of system (1) through each (𝑡0, 𝜑). Furthermore, we
assume that 𝑓(𝑡, 0) = 0, and 𝐼

𝑘
(𝑡, 0) = 0, 𝑘 ∈ 𝑍

+
, so that

𝑥(𝑡) = 0 is a solution of system (1), which is called the trivial
solution.

We now give some useful notations and definitions that
will be used in the sequel.

Definition 1. A function 𝑉 : [𝑡0 − 𝜏,∞) × Ω → 𝑅
+
belongs

to classV0, if

(i) 𝑉 is continuous on each set [𝑡
𝑘−1, 𝑡𝑘) × Ω and

lim
(𝑡,𝑦)→ (𝑡

−

𝑘

,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists,

(ii) 𝑉(𝑡, 𝑥) is locally Lipschitzian in 𝑥 and 𝑉(𝑡, 0) ≡ 0.

Definition 2. Let 𝑉 ∈ V0, for any (𝑡, 𝜓) ∈ [𝑡𝑘−1, 𝑡𝑘) × Ω; the
upper right-hand Dini derivative of 𝑉(𝑡, 𝑥) along a solution
of system (1) is defined by

𝐷
+

𝑉 (𝑡, 𝜓 (0)) = lim sup
ℎ→ 0+

1
ℎ

⋅ {𝑉 (𝑡 + ℎ, 𝜓 (0) + ℎ𝑓 (𝑡, 𝜓)) −𝑉 (𝑡, 𝜓 (0))} .
(2)

Definition 3. Assume 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝜑) is the solution of
system (1) through (𝑡0, 𝜑). Then the trivial solution of (1) is
said to be

(𝐻1) stable, if, for any 𝑡0 ∈ 𝑅+ and 𝜀 > 0, there exists some
𝛿 = 𝛿(𝜀, 𝑡0) > 0 such that 𝜑 ∈ 𝑃𝐶𝐵

𝛿
(𝑡0) implies

|𝑥(𝑡, 𝑡0, 𝜑)| < 𝜀, 𝑡 ≥ 𝑡0;

(𝐻2) attractive, if, for any 𝑡0 ∈ 𝑅+ and 𝜀 > 0, there exist
some 𝛿 = 𝛿(𝜀, 𝑡0) > 0, 𝑇 = 𝑇(𝑡0, 𝜀) > 0 such that
𝜑 ∈ 𝑃𝐶𝐵

𝛿
(𝑡0) implies |𝑥(𝑡, 𝑡0, 𝜑)| < 𝜀, 𝑡 ≥ 𝑡0 + 𝑇;

(𝐻3) asymptotically stable if (𝐻1) and (𝐻2) simultaneously
hold;

(𝐻4) exponentially stable; assume 𝜆 > 0 is a constant, if,
for any 𝑡0 ∈ 𝑅

+
and 𝜀 > 0, there exists some 𝛿 =

𝛿(𝜀) > 0 such that 𝜑 ∈ 𝑃𝐶𝐵
𝛿
(𝑡0) implies |𝑥(𝑡, 𝑡0, 𝜑)| <

𝜀 ⋅ 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡0.

In the proof of our main results we will use the following
lemma.

Lemma 4 (see [6]). Let 𝑔0, 𝑔 ∈ 𝐶[𝑅+ × 𝑅+, 𝑅] satisfy

𝑔0 (𝑡, 𝑢) ≤ 𝑔 (𝑡, 𝑢) , (𝑡, 𝑢) ∈ 𝑅
+
× 𝑅
+
. (3)

Then, the right maximal solution 𝛾(𝑡, 𝑡0, 𝑢0) of

𝑢


(𝑡) = 𝑔 (𝑡, 𝑢) ,

𝑢 (𝑡0) = 𝑢0 ≥ 0
(4)

and the left maximal solution 𝜂(𝑡, 𝑇, 𝜐0) of

𝑢


(𝑡) = 𝑔0 (𝑡, 𝑢) ,

𝑢 (𝑇) = 𝜐0 ≥ 0
(5)

satisfy the relation

𝛾 (𝑡, 𝑡0, 𝑢0) ≤ 𝜂 (𝑡, 𝑇, 𝜐0) , 𝑡 ∈ [𝑡0, 𝑇] , (6)

whenever 𝛾(𝑇, 𝑡0, 𝑢0) ≤ 𝜐0.

3. Comparison Results and Applications

In this section, we will establish a general comparison
principle for the impulsive delay differential system (1), by
comparing itwith a scalar impulsive differential system.Then,
applying the comparison principle, we obtain some stability
criteria. First of all, we present the following comparison
principle.

Lemma5. Assume that𝑔0, 𝑔 ∈ 𝐶[𝑅+×𝑅+, 𝑅] satisfy𝑔0(𝑡, 𝑢) ≤
𝑔(𝑡, 𝑢); (𝑡, 𝑢) ∈ 𝑅

+
× 𝑅
+
, 𝛾(𝑡, 𝑡0, 𝑢0) is the right maximal

solution of

𝑢


(𝑡) = 𝑔 (𝑡, 𝑢) , 𝑡 ̸= 𝑡
𝑘
,

𝑢 (𝑡
𝑘
) = 𝜓
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . ,

𝑢 (𝑡0) = 𝑢0 ≥ 0,

(7)

where 0 ≤ 𝑡0 ≤ 𝑡1 ≤ ⋅ ⋅ ⋅ , lim𝑘→∞𝑡𝑘 = ∞, 𝜓
𝑘
(𝑠) ≥ 𝑠, 𝜓

𝑘
:

𝑅
+
→ 𝑅 is nondecreasing, and 𝜂(𝑡, 𝑇, 𝜐0) is the left maximal

solution of

𝑢


(𝑡) = 𝑔0 (𝑡, 𝑢) ,

𝑢 (𝑇) = 𝜐0 ≥ 0.
(8)

Then

𝛾 (𝑡, 𝑡0, 𝑢0) ≤ 𝜂 (𝑡, 𝑇, 𝜐0) , 𝑡 ∈ [𝑡0, 𝑇] , (9)

whenever 𝛾(𝑇, 𝑡0, 𝑢0) ≤ 𝜐0.

Proof. Since lim
𝑘→∞

𝑡
𝑘
= ∞, there exists some 𝑘 ≥ 1 such

that 𝑇 ∈ [𝑡
𝑘
, 𝑡
𝑘+1). Since 𝛾(𝑇, 𝑡0, 𝑢0) ≤ 𝜐0, by Lemma 4, it

follows that

𝛾 (𝑡, 𝑡0, 𝑢0) ≤ 𝜂 (𝑡, 𝑇, 𝜐0) ,

𝑡 ∈ [𝑡
𝑘
, 𝑇] (for some 𝑘 ≥ 1) .

(10)
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When 𝑡 = 𝑡
𝑘
,

𝛾 (𝑡
−

𝑘
, 𝑡0, 𝑢0) ≤ 𝜓𝑘 (𝛾 (𝑡

−

𝑘
, 𝑡0, 𝑢0)) = 𝛾 (𝑡𝑘, 𝑡0, 𝑢0)

≤ 𝜂 (𝑡
𝑘
, 𝑇, 𝜐0) .

(11)

Therefore, using Lemma 4 again, we obtain

𝛾 (𝑡, 𝑡0, 𝑢0) ≤ 𝜂 (𝑡, 𝑇, 𝜐0) , 𝑡 ∈ [𝑡
𝑘−1, 𝑡𝑘] . (12)

By induction, we can get

𝛾 (𝑡, 𝑡0, 𝑢0) ≤ 𝜂 (𝑡, 𝑇, 𝜐0) , 𝑡0 ≤ 𝑡 ≤ 𝑇. (13)

The proof is complete.

Theorem 6. Assume that the conditions in Lemma 5 are
satisfied; 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝜑) is the solution of system (1) with
𝑥
𝑡0
= 𝜑. And the following conditions hold:

(i) 𝑉 ∈ V0, if 𝑉(𝑡 + 𝑠, 𝑥(𝑡 + 𝑠)) ≤ 𝜂(𝑡 + 𝑠, 𝑡, 𝑉(𝑡, 𝑥(𝑡))),
−𝜏 ≤ 𝑠 ≤ 0; then

𝐷
+

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 ̸= 𝑡
𝑘
; (14)

(ii) 𝑉(𝑡
𝑘
, 𝑥(𝑡
𝑘
) + 𝐼
𝑘
(𝑥(𝑡
𝑘
))) ≤ 𝜓

𝑘
(𝑉(𝑡
−

𝑘
, 𝑥(𝑡
−

𝑘
))), where

𝜓
𝑘
(𝑠) ≥ 𝑠 and 𝜓

𝑘
(𝑠) is nondecreasing.

Then sup
−𝜏≤𝑠≤0𝑉(𝑡0 + 𝑠, 𝜑(𝑠)) ≤ 𝑢0 implies

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛾 (𝑡, 𝑡0, 𝑢0) , 𝑡 ≥ 𝑡0. (15)

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝜑) be a solution of system (1) existing
for 𝑡 ≥ 𝑡0 such that sup

−𝜏≤𝑠≤0𝑉(𝑡0 + 𝑠, 𝜑(𝑠)) ≤ 𝑢0.
For simplicity, let𝑚(𝑡) = 𝑉(𝑡, 𝑥(𝑡)); then sup

−𝜏≤𝑠≤0𝑚(𝑡0 +
𝑠) = 𝑚

𝑡0
≤ 𝑢0.

First, we will prove

𝑚(𝑠) < 𝑢1 (𝑠, 𝜀) , 𝑠 ∈ (𝑡0, 𝑡1] , (16)

where 𝜀 > 0 is small enough, 𝑢1(𝑠, 𝜀) is the solution of

𝑢


(𝑡) = 𝑔 (𝑡, 𝑢) + 𝜀,

𝑢 (𝑡0) = 𝑢0 + 𝜀,
(17)

and lim
𝜀→ 0𝑢1(𝑠, 𝜀) = 𝛾(𝑠, 𝑡0, 𝑢0). Note that since 𝑔(𝑡, 𝑢) is

continuous, a solution 𝑢1 exists.
If (16) is not true, then there exists some 𝑡 ∈ (𝑡0, 𝑡1) such

that

𝑚(𝑡) = 𝑢1 (𝑡, 𝜀) ,

𝑚 (𝑡) < 𝑢1 (𝑡, 𝜀) ,

𝑡 ∈ (𝑡0, 𝑡) .

(18)

Therefore,

𝐷
+

𝑚(𝑡) = lim
ℎ→ 0+

1
ℎ
(𝑚 (𝑡 + ℎ) −𝑚 (𝑡))

= lim
ℎ→ 0−

1
ℎ
(𝑚 (𝑡) −𝑚 (𝑡 + ℎ))

≥ lim
ℎ→ 0−

1
ℎ
(𝑢1 (𝑡, 𝜀) − 𝑢1 (𝑡 + ℎ, 𝜀))

= lim
ℎ→ 0+

1
ℎ
(𝑢1 (𝑡 + ℎ, 𝜀) − 𝑢1 (𝑡, 𝜀))

= 𝐷
+

𝑢1 (𝑡, 𝜀) ;

(19)

here, since 𝑡 is an interior point of the interval (𝑡0, 𝑡1) in which
the functions are continuous, it implies that the left limits
equal the right limits. Thus, it follows that

𝐷
+

𝑚(𝑡) ≥ 𝐷
+

𝑢1 (𝑡, 𝜀) = 𝑔 (𝑡, 𝑢1 (𝑡, 𝜀)) + 𝜀. (20)

Now consider the left maximal solution 𝜂(𝑠, 𝑡, 𝑚(𝑡)), 𝑡0 ≤ 𝑠 ≤
𝑡, of

𝑢


(𝑡) = 𝑔0 (𝑡, 𝑢) ,

𝑢 (𝑡) = 𝑚 (𝑡) .

(21)

By Lemma 4, we obtain

𝛾 (𝑠, 𝑡0, 𝑢0) ≤ 𝜂 (𝑠, 𝑡, 𝑚 (𝑡)) , 𝑡0 ≤ 𝑠 ≤ 𝑡. (22)

Since 𝛾(𝑡, 𝑡0, 𝑢0) = lim
𝜀→ 0𝑢1(𝑡, 𝜀) = 𝑚(𝑡) = 𝜂(𝑡, 𝑡, 𝑚(𝑡)), and

𝑚(𝑡) ≤ 𝑢1(𝑡, 𝜀), 𝑡 ∈ [𝑡0, 𝑡], it follows that

𝑚(𝑠) ≤ 𝛾 (𝑠, 𝑡0, 𝑢0) ≤ 𝜂 (𝑠, 𝑡, 𝑚 (𝑡)) , 𝑡0 ≤ 𝑠 ≤ 𝑡. (23)

Since𝑚
𝑡0
≤ 𝑢0, we have𝑚(𝑡+𝑠) ≤ 𝜂(𝑡+𝑠, 𝑡, 𝑚(𝑡)), −𝜏 ≤ 𝑠 ≤ 0.

Consequently, condition (i) yields

𝐷
+

𝑚(𝑡) ≤ 𝑔 (𝑡, 𝑚 (𝑡)) = 𝑔 (𝑡, 𝑢1 (𝑡, 𝜀)) , (24)

which contradicts with (20). Hence, (16) is proved.
When 𝑡 = 𝑡1,𝑚(𝑡1) ≤ 𝜓1(𝑚(𝑡

−

1 )) ≤ 𝜓1(𝛾(𝑡
−

1 )) = 𝛾
+

1 .
Next, we will prove

𝑚(𝑡) < 𝑢2 (𝑡, 𝜀) , 𝑡 ∈ (𝑡0, 𝑡2] , (25)

where 𝜀 > 0 is small enough, 𝑢2(𝑡, 𝜀) is the solution of

𝑢


(𝑡) = 𝑔 (𝑡, 𝑢) + 𝜀,

𝑢 (𝑡1) = 𝛾
+

1 + 𝜀,

𝑢 (𝑡0) = 𝑢0 + 𝜀,

(26)

and lim
𝜀→ 0𝑢2(𝑡, 𝜀) = 𝛾(𝑡, 𝑡0, 𝑢0).

By the above proof, it easily follows that

𝑚(𝑡) < 𝑢2 (𝑡, 𝜀) , 𝑡 ∈ (𝑡0, 𝑡1] . (27)
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If (25) is false, then there exists a 𝑡 ∈ (𝑡1, 𝑡2) such that

𝑚(𝑡


) = 𝑢2 (𝑡


, 𝜀) ,

𝑚 (𝑡) < 𝑢2 (𝑡, 𝜀) ,

𝑡 ∈ (𝑡0, 𝑡


) .

(28)

This implies that

𝐷
+

𝑚(𝑡


) ≥ 𝐷
+

𝑢2 (𝑡


, 𝜀) = 𝑔 (𝑡


, 𝑢2 (𝑡


, 𝜀)) + 𝜀. (29)

Now consider the left maximal solution 𝜂(𝑠, 𝑡, 𝑚(𝑡)), 𝑡0 ≤
𝑠 ≤ 𝑡
, of

𝑢


(𝑡) = 𝑔0 (𝑡, 𝑢) ,

𝑢 (𝑡


) = 𝑚 (𝑡


) .

(30)

By Lemma 5, we obtain

𝛾 (𝑠, 𝑡0, 𝑢0) ≤ 𝜂 (𝑠, 𝑡


, 𝑚 (𝑡


)) , 𝑡0 ≤ 𝑠 ≤ 𝑡


. (31)

Since 𝛾(𝑡, 𝑡0, 𝑢0) = lim
𝜀→ 0𝑢2(𝑡


, 𝜀) = 𝑚(𝑡


) = 𝜂(𝑡


, 𝑡

, 𝑚(𝑡

)),

it follows that 𝑚(𝑡) ≤ 𝑢2(𝑡, 𝜀), 𝑡 ∈ [𝑡0, 𝑡

], and 𝑚(𝑠) ≤

𝛾(𝑠, 𝑡0, 𝑢0) ≤ 𝜂(𝑠, 𝑡

, 𝑚(𝑡

)), 𝑡0 ≤ 𝑠 ≤ 𝑡

.
This implies that𝑚(𝑡+𝑠) ≤ 𝜂(𝑡+𝑠, 𝑡, 𝑚(𝑡)), −𝜏 ≤ 𝑠 ≤ 0.
Consequently, condition (i) yields

𝐷
+

𝑚(𝑡


) ≤ 𝑔 (𝑡


, 𝑚 (𝑡


)) = 𝑔 (𝑡


, 𝑢2 (𝑡


, 𝜀)) , (32)

which contradicts with (29). Hence, (25) is proved.
By induction, we can obtain

𝑚(𝑡) < 𝑢
𝑘
(𝑡, 𝜀) , 𝑡 ∈ [𝑡0, 𝑡𝑘] , (33)

where 𝜀 > 0 is small enough, 𝑢
𝑘
(𝑡, 𝜀) is the solution of

𝑢


(𝑡) = 𝑔 (𝑡, 𝑢) + 𝜀,

𝑢 (𝑡
𝑚
) = 𝛾
+

𝑚
+ 𝜀, 𝑚 = 1, 2, . . . , 𝑘 − 1,

𝑢 (𝑡0) = 𝑢0 + 𝜀,

(34)

and 𝛾+
𝑚
= 𝜓
𝑚
(𝑢(𝑡
−

𝑚
)), lim

𝜀→ 0𝑢𝑘(𝑡, 𝜀) = 𝛾(𝑡, 𝑡0, 𝑢0).
This means that 𝑚(𝑡) ≤ 𝛾(𝑡, 𝑡0, 𝑢0), 𝑡 ≥ 𝑡0, which com-

pletes the proof.

Remark 7. If 𝑔0(𝑡, 𝑢) = 0,Theorem 6 is similar to Lemma 2 in
[14]. However, it should be noted that inequality𝑉(𝑡0, 𝜑(0)) ≤
𝑢0 is not enough for the validity of the claim of Lemma 2. In
Theorem 6, we complement and correct the known results in
[14].

Next, we give some special cases ofTheorem 6, which can
be concrete and used easily.

Corollary 8. Assume that 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝜑) is the solution of
(1) with 𝑥

𝑡0
= 𝜑. Let 𝑔0(𝑡, 𝑢) = 0, 𝜓

𝑘
(𝑠) = (1 + 𝛽

𝑘
)𝑠, 𝛽
𝑘
≥ 0,

𝑘 = 1, 2, . . . in Lemma 5, and

(i) 𝑉 ∈ V0, if 𝑉(𝑡 + 𝑠, 𝑥(𝑡 + 𝑠)) ≤ 𝑉(𝑡, 𝑥(𝑡)), −𝜏 ≤ 𝑠 ≤ 0;
then

𝐷
+

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 ̸= 𝑡
𝑘
; (35)

(ii) 𝑉(𝑡, 𝑥 + 𝐼
𝑘
(𝑥)) ≤ (1 + 𝛽

𝑘
)𝑉(𝑡, 𝑥(𝑡)), 𝑡 = 𝑡

𝑘
.

Then sup
−𝜏≤𝑠≤0𝑉(𝑡0 + 𝑠, 𝜑(𝑠)) ≤ 𝑢0 implies

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛾 (𝑡, 𝑡0, 𝑢0) , 𝑡 ≥ 𝑡0. (36)

Remark 9. In particular, let 𝑔(𝑡, 𝑢) = 0 in Corollary 8; the
estimate of 𝑉(𝑡, 𝑥(𝑡)) can be obtained; that is, 𝑉(𝑡, 𝑥(𝑡)) ≤
𝑢0∏𝑡0<𝑡𝑘<𝑡(1+𝛽𝑘). If 𝑔(𝑡, 𝑢) = 𝜆


(𝑡)𝑢, 𝜆(𝑡) ≥ 0 in Corollary 8,

then 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑢0∏𝑡0<𝑡𝑘<𝑡(1 + 𝛽𝑘)𝑒
𝜆(𝑡)−𝜆(𝑡0).

Remark 10. If 𝑔(𝑡, 𝑢) = 0, 𝛽
𝑘
= 0, 𝑘 = 1, 2, . . . in Corollary 8,

then comparison system (7) becomes an ordinary differential
equation and the corresponding style of Corollary 8 reduces
to the result of Liu and Xu [8].

Corollary 11. Assume that 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝜑) is the solution of
(1) with 𝑥

𝑡0
= 𝜑. Let 𝑔0(𝑡, 𝑢) = −𝜆𝑢, 𝜆 > 0, in Lemma 5, and

(i) 𝑉 ∈V0, if 𝑉(𝑡 + 𝑠, 𝑥(𝑡 + 𝑠)) ≤ 𝑒−𝜆𝑠𝑉(𝑡, 𝑥(𝑡)), −𝜏 ≤ 𝑠 ≤
0; then

𝐷
+

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 ̸= 𝑡
𝑘
; (37)

(ii) 𝑉(𝑡
𝑘
, 𝑥(𝑡
𝑘
) + 𝐼
𝑘
(𝑥(𝑡
𝑘
))) ≤ 𝜓

𝑘
(𝑉(𝑡
−

𝑘
, 𝑥(𝑡
−

𝑘
))), where

𝜓
𝑘
(𝑠) ≥ 𝑠 and 𝜓

𝑘
(𝑠) is nondecreasing.

Then sup
−𝜏≤𝑠≤0𝑉(𝑡0 + 𝑠, 𝜑(𝑠)) ≤ 𝑢0 implies

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛾 (𝑡, 𝑡0, 𝑢0) , 𝑡 ≥ 𝑡0. (38)

Remark 12. From Corollary 11, we can observe that 𝑔(𝑡, 𝑢)
is not always positive. That is, 𝑔 < 0 is allowed. To the
best of our knowledge, no similar work has been carried out
on comparison method for impulsive functional differential
systems. Hence, our result greatly enriches the theory of
comparison principle and can be used for a wider class of
impulsive systems.

Next, we will apply the comparison result to establish
some stability criteria of system (1). In what follows, let 𝐾
be the class of continuous strictly increasing functions 𝑎(𝑥)
defined on 𝑅 with 𝑎(0) = 0.

Theorem 13. Assume that the conditions in Theorem 6 are
satisfied. Moreover, if there exists function 𝑎 ∈ 𝐾 such that

𝑎 (|𝑥|) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) , (𝑡, 𝑥) ∈ 𝑅
+
× 𝑆 (𝜌) , (39)

then the stability properties of the trivial solution of comparison
system (7) imply the corresponding stability properties of the
trivial solution of impulsive functional differential system (1).
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Proof. We establish asymptotical stability. First, we prove that
the trivial solution of system (1) is stable. Since the trivial
solution of system (7) is stable, for any given 𝑡0 ∈ 𝑅+, 𝜀 > 0,
there exists 𝛿1 = 𝛿1(𝑡0, 𝜀) such that

𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑎 (𝜀) for 0 < 𝑢0 < 𝛿1, 𝑡 ≥ 𝑡0. (40)

Since 𝑉(𝑡, 0) = 0, then there exists 𝛿2 = 𝛿2(𝑡0, 𝛿1) > 0 such
that

𝑉 (𝑡0 + 𝑠, 𝜑 (𝑠)) ≤ 𝑢0 < 𝛿1

for 𝜑
 < 𝛿2, − 𝜏 ≤ 𝑠 ≤ 0.

(41)

Let 𝛿 = min{𝛿1, 𝛿2}, and, fromTheorem 6, we have

𝑎 (|𝑥|) ≤ 𝑉 (𝑡, 𝑡0, 𝜑) ≤ 𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑎 (𝜀)

for 𝜑
 < 𝛿.

(42)

Hence, |𝑥| < 𝜀; that is, the trivial solution of (1) is stable.
Now, we prove that the trivial solution of system (1) is

attractive.
For any given 𝜑 ∈ Ω, 𝑡0 ∈ 𝑅+, and 𝜀 > 0, there exists 𝑢0

satisfing 𝑉(𝑡0 + 𝑠, 𝜑(𝑠)) ≤ 𝑢0, −𝜏 ≤ 𝑠 ≤ 0. Since 𝑢(𝑡, 𝑡0, 𝑢0) is
asymptotically stable, hence, there exists 𝑇 = 𝑇(𝜀, 𝑡0, 𝑢0) such
that

𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑎 (𝜀) for 𝑡 ≥ 𝑡0 + 𝑇. (43)

FromTheorem 6, we obtain

𝑎 (|𝑥|) ≤ 𝑉 (𝑡, 𝑡0, 𝜑0) ≤ 𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑎 (𝜀)

for 𝑡 ≥ 𝑡0 + 𝑇.
(44)

Hence, |𝑥| < 𝜀 for 𝑡 ≥ 𝑡0 + 𝑇; that is, the trivial solution of
(1) is attractive. Therefore, the trivial solution of system (1) is
asymptotically stable.

Theorem 14. Assume that the conditions in Theorem 6 are
satisfied. Moreover, if there exist constants 𝑝 > 0, 𝑐 > 0 such
that the following condition holds

𝑐 |𝑥|
𝑝

≤ 𝑉 (𝑡, 𝑥 (𝑡)) , (𝑡, 𝑥) ∈ 𝑅
+
× 𝑆 (𝜌) , (45)

then the exponential stability of the trivial solution of compar-
ison system (7) implies the exponential stability of the trivial
solution of impulsive functional differential system (1).

Proof. Since the trivial solution of (7) is exponentially stable,
hence, assuming 𝜆 > 0 is a constant, for any given 𝑡0 ∈ 𝑅+,
𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) > 0 such that 𝑢0 < 𝛿 implies

𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑐 ⋅ 𝜀
𝑝

⋅ 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡0. (46)

FromTheorem 6, we have

𝑐 |𝑥|
𝑝

≤ 𝑉 (𝑡, 𝑡0, 𝜑) ≤ 𝑢 (𝑡, 𝑡0, 𝑢0) < 𝑐 ⋅ 𝜀
𝑝

⋅ 𝑒
−𝜆(𝑡−𝑡0)

for 𝜑
 < 𝛿.

(47)

Hence, |𝑥| < 𝜀 ⋅ 𝑒
−(𝜆/𝑝)(𝑡−𝑡0), 𝑡 ≥ 𝑡0. Therefore, the trivial

solution of system (1) is exponentially stable. This completes
the proof.

4. An Example

In this section, we will give an example to illustrate the
effectiveness of our results.

Example 1. Consider the following impulsive delay differen-
tial equations:

𝑥


(𝑡) = − 𝑎 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

𝑥 (𝑡
𝑘
) = (1+ 1

𝑘2
)𝑥 (𝑡
−

𝑘
) , 𝑘 ∈ Z

+
,

𝑥
𝑡0
= 𝜑 (𝑠) , 𝑡0 − 𝜏 ≤ 𝑠 ≤ 𝑡0,

(48)

where 𝑎(𝑡) ≥ 𝑎 > 0, 0 < |𝑏(𝑡)| ≤ 𝑏, and 0 ≤ 𝜏(𝑡) ≤ 𝜏, for all
𝑡 ≥ 𝑡0.

Property 1. The trivial solution of system (48) is exponentially
stable if 𝑎 > 𝑏𝑒𝑎𝜏.

Proof. Choose 𝑉(𝑡) = |𝑥(𝑡)|. Then when 𝑉(𝑡 + 𝑠, 𝑥(𝑡 + 𝑠)) ≤
𝑒
−𝑎𝑠
𝑉(𝑡, 𝑥(𝑡)), −𝜏 ≤ 𝑠 ≤ 0; that is, |𝑥(𝑡 − 𝜏(𝑡))| ≤ 𝑒−𝑎𝑠|𝑥(𝑡)|,

and we have
𝐷
+

𝑉 (𝑡) = 𝑥


(𝑡) ⋅ sgn𝑥 (𝑡)

= − 𝑎 (𝑡) ⋅ 𝑥 (𝑡) ⋅ sgn𝑥 (𝑡) + 𝑏 (𝑡) ⋅ sgn𝑥 (𝑡)

⋅ 𝑥 (𝑡 − 𝜏 (𝑡)) ≤ − 𝑎 |𝑥 (𝑡)| + 𝑏 |𝑥 (𝑡 − 𝜏 (𝑡))|

≤ − 𝑎𝑉 (𝑡) + 𝑏𝑒
𝑎𝜏

𝑉 (𝑡) ≤ (−𝑎 + 𝑏𝑒
𝑎𝜏

) 𝑉 (𝑡) .

(49)

Furthermore,

𝑉 (𝑡
𝑘
) =

𝑥 (𝑡𝑘)
 = (1+

1
𝑘2
)
𝑥 (𝑡
−

𝑘
)


= (1+ 1
𝑘2
)𝑉 (𝑡

−

𝑘
) .

(50)

Then we can give the following comparison system:

𝑢


(𝑡) = (−𝑎 + 𝑏𝑒
𝑎𝜏

) 𝑢, 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

𝑢 (𝑡
𝑘
) = (1+ 1

𝑘2
) 𝑢 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑍

+
,

𝑢
𝑡0
= 𝑢0 ≥ 0, 𝑡0 − 𝜏 ≤ 𝑠 ≤ 𝑡0.

(51)

We can easily observe the solution of (51); that is, 𝑢(𝑡) =
𝑢0∏𝑡0≤𝑡𝑘<𝑡(1 + 1/𝑘2)𝑒(−𝑎+𝑏𝑒

𝑎𝜏

)(𝑡−𝑡0).
If −𝑎 + 𝑏𝑒𝑎𝜏 < 0, then the solution of (51) is exponentially

stable. Hence, by Theorem 14, the solution of (48) is also
exponentially stable. This completes the proof.

Remark 15. In [3, p129], the author gave the sufficient con-
dition for the uniform stability of the functional differential
equation of (48) without impulses; that is, |𝑏(𝑡)| ≤ 𝑎(𝑡).
It is easy to check that 𝑎 > 𝑏𝑒

𝑎𝜏 implies |𝑏(𝑡)| ≤ 𝑎(𝑡).
Therefore, Property 1 shows that under proper impulse effect,
the exponential stability can be derived, which illustrates
that the impulses do contribute the equations stability and
attractive properties.
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