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A novel distance between vague sets (VSs) is presented after the inadequacies of existing distance measures between vague sets are
analyzed by artificial vague sets. The proposed method investigates the assignment of degree of hesitation to the membership
and nonmembership degree, and the properties are also discussed. The performances of the new method are illustrated by
pattern classification problem. Finally, the proposed method is applied into multicriteria fuzzy decision making, where the linear
programming method is taken to generate optimal weights for every criterion and the best alternative is obtained by the weighted
sum of distance measures between each alternative and the idea alternative with respect to a set of criteria.The experimental results
show the effectiveness of the proposed method.

1. Introduction

A fuzzy set (FS) 𝐴, as proposed by Zadeh [1], is a class
of objects 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} along with a degree of

membership function, and the fuzzy sets theory has been
applied widely in various fields [2].Themembership function
𝜇
𝐴
(𝑥), 𝑥 ∈ 𝑈, assigns to each object a degree of membership

ranging between 0 and 1; that is, 𝜇
𝐴
: 𝑈 → [0, 1]. Obviously,

∀𝑥
𝑖
∈ 𝑈, 𝜇

𝐴
(𝑥
𝑖
) is a single value between 0 and 1. This single

value combines the evidence for 𝑥 ∈ 𝑈 and the evidence
against 𝑥 ∈ 𝑈, without indicating how much there is of
each. The single number tells us nothing about its accuracy.
Therefore, as a generalization of fuzzy sets, Atanassov [3]
introduced the concept of the intuitionistic fuzzy sets (IFSs)
in 1983 and Gau and Buehrer [4] introduced the notion of
vague sets (VSs) in 1993. Bustince and Burillo [5] showed that
IFSs and VSs are equivalent. The VSs (or IFSs) consider the
degree of membership, nonmembership, and hesitation of 𝑥
to 𝐴, which make the VSs express the true state of uncertain
information better than the fuzzy sets (FSs) [6]. The VSs
have been successfully applied into edge detection [7], image

segmentation [8, 9], fuzzy decision making [10–13], fault-tree
analysis [14], pattern recognition [15, 16], and so on.

As important contents in fuzzy mathematics, similarity
measure and distance measure between VSs, which are
involved in fuzzy decisionmaking, pattern recognition, fuzzy
reasoning, machine learning, and so forth, have attracted
many researchers. At present, there are many distances
between VSs, which can be divided into four categories.
(1) Distances between VSs based on Hamming distance
and Euclidean distance, for example, Atanassov [17] defined
the Hamming distances and Euclidean distances between
VSs in 1999. In 2000, Szmidt and Kacprzyk [18] considered
the degree of hesitation into Atanassov’s VSs distances and
redefined the Hamming distances and Euclidean distances of
VSs, Liu [19] defined the distances formula of VSs in 2005,
and so forth. (2) Distances between VSs based on Hausdorff
distance, for example, Hung and Yang [20], Grzegorzewski
[21], Chen [22], and Yang and Chiclana [23] proposed
the Hausdorff distances of VSs, respectively. (3) Distances
between VSs based on fuzzy implications, for example,
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Hatzimichailidis et al. [24] presented the distances in 2012.
(4) The other distances satisfying the axiomatic definition of
distance, for example, Wang and Xin [25] constructed some
distances andweighted distances of VSs in 2005, and so forth.
In the above-mentioned methods, some only consider the
impacts of the degree of membership and nonmembership
on the distances of VSs and some consider the impacts of the
degree of membership, nonmembership, and hesitation.

The distances between VSs not only meet the axiomatic
definition of distance, but also satisfy the definition of
distances between VSs presented by Wang and Xin [25] (see
Section 2), since there exists a certain relationship between
the degree of membership, nonmembership, and hesitation
for vague sets. Therefore, in the paper, the defects of the
existing distances between VSs are analyzed and discussed in
detail firstly, and a numerical example is used to demonstrate
these defects. Thereafter, a new distance measure between
VSs is proposed, and some properties of the new method are
also discussed and proved. In addition, the effectiveness of
the proposed method is illustrated by a pattern classification
problem. Finally, we apply the new method into the multi-
criteria fuzzy decision and select the optimal weight of each
criterion through the optimization method so as to obtain
the best solution based on the weighted distance between
candidate solution and ideal solution in each criterion. The
final decision-making result shows the effectiveness and the
feasibility of the proposed method.

The remainder of this paper is organized as follows. The
basic concepts on vague sets are shown in Section 2. The
analysis process of the existing distances between vague sets
is presented in Section 3. Section 4 proposes a new distance
between vague sets, and the performances of the method
are evaluated by pattern classification and multicriteria fuzzy
decision making in Section 5. The paper is concluded in
Section 6.

2. Vague Set and Its Operations

Definition 1 (see [4]). A vague set 𝐴 in 𝑈 is characterized by
a truth-membership function 𝑡

𝐴
(𝑥) and a false-membership

function 𝑓
𝐴
(𝑥); that is,

𝑡
𝐴
: 𝑈 󳨀→ [0, 1] , 𝑓

𝐴
: 𝑈 󳨀→ [0, 1] , (1)

with condition 0 ≤ 𝑡
𝐴
(𝑥) + 𝑓

𝐴
(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈, where 𝑡

𝐴
(𝑥)

is a lower bound on the degree of membership of 𝑥 derived
from the evidence for 𝑥 and 𝑓

𝐴
(𝑥) is a lower bound on the

negation of 𝑥 derived from the evidence against 𝑥. 𝑡
𝐴
(𝑥) and

𝑓
𝐴
(𝑥) both associate a real number in the interval [0, 1] with

each point in 𝑈.

This approach bounds the degree of membership of x to
a subinterval [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] of [0, 1]. In other words, the

exact degree of membership 𝜇
𝐴
(𝑥) of xmay be unknown but

is bounded by 𝑡
𝐴
(𝑥) ≤ 𝜇

𝐴
(𝑥) ≤ 1 − 𝑓

𝐴
(𝑥), where 0 ≤ 𝑡

𝐴
(𝑥) +

𝑓
𝐴
(𝑥) ≤ 1.
For each vague set 𝐴 in 𝑈, the uncertainty of our

knowledge about 𝑥 for 𝐴 is characterized by 𝜋
𝐴
(𝑥) = 1 −

𝑡
𝐴
(𝑥) − 𝑓

𝐴
(𝑥). If 𝜋

𝐴
(𝑥) is small, our knowledge about 𝑥 is

relatively precise; if 𝜋
𝐴
(𝑥) is large, we know correspondingly

little. If 𝜋
𝐴
(𝑥) = 0, our knowledge about 𝑥 is exact, and

the vague sets degenerate into the fuzzy sets. If 𝑓
𝐴
(𝑥) and

𝑡
𝐴
(𝑥) = 1 or𝑓

𝐴
(𝑥) = 1 and 𝑡

𝐴
(𝑥) = 0, then the vague sets will

revert back to the ordinary sets. For convenience, we denote
all the vague sets in 𝑈 as VSs(𝑈).

For example, let 𝐴 ∈ VSs(𝑈); if 𝑡
𝐴
(𝑥) = 0.5 and 𝑓

𝐴
(𝑥) =

0.2, then vague set A can be interpreted as “the vote for a
resolution is 5 in favor, 2 against, and 3 abstentions (𝜋

𝐴
(𝑥) =

0.3).”
Let 𝐴 ∈ VSs(𝑈); if the universe of discourse𝑈 is discrete,

then

𝐴 =

𝑛

∑

𝑖=1

[𝑡
𝐴
(𝑥
𝑖
) , 1 − 𝑓

𝐴
(𝑥
𝑖
)]

𝑥
𝑖

, 𝑥
𝑖
∈ 𝑈. (2)

If the universe of discourse 𝑈 is continuous, then

𝐴 = ∫
𝑈

[𝑡
𝐴
(𝑥) , 1 − 𝑓

𝐴
(𝑥)]

𝑥
𝑑𝑥, 𝑥 ∈ 𝑈. (3)

Let𝑥 = [𝑡
𝑥
, 1−𝑓
𝑥
] and𝑦 = [𝑡

𝑦
, 1−𝑓
𝑦
] be two vague values,

where 𝑡
𝑥
, 𝑓
𝑥
, 𝑡
𝑦
, 𝑓
𝑦
∈ [0, 1] and 𝑡

𝑥
+ 𝑓
𝑥
≤ 1, 𝑡
𝑦
+ 𝑓
𝑦
≤ 1; then

the operations of two vague values are as follows:

𝑥 ∧ 𝑦 = [min (𝑡
𝑥
, 𝑡
𝑦
) , min (1 − 𝑓

𝑥
, 1 − 𝑓

𝑦
)] ;

𝑥 ∨ 𝑦 = [max (𝑡
𝑥
, 𝑡
𝑦
) , max (1 − 𝑓

𝑥
, 1 − 𝑓

𝑦
)] ;

𝑥 = 𝑦 ⇐⇒ 𝑡
𝑥
= 𝑡
𝑦
, 𝑓
𝑥
= 𝑓
𝑦
;

𝑥 ≤ 𝑦 ⇐⇒ 𝑡
𝑥
≤ 𝑡
𝑦
, 𝑓
𝑥
≥ 𝑓
𝑦
;

𝑥 = [𝑓
𝑥
, 1 − 𝑡

𝑥
] .

(4)

Let 𝐴, 𝐵 ∈ VSs(𝑈), where 𝐴 = ∑𝑛
𝑖=1
[𝑡
𝐴
(𝑥
𝑖
), 1 − 𝑓

𝐴
(𝑥
𝑖
)]/𝑥
𝑖

and 𝐵 = ∑
𝑛

𝑖=1
[𝑡
𝐵
(𝑥
𝑖
), 1 − 𝑓

𝐵
(𝑥
𝑖
)]/𝑥
𝑖
; the operations and

relations of 𝐴 and 𝐵 are as follows:

𝐴 ⊆ 𝐵 ⇐⇒ ∀𝑥
𝑖
∈ 𝑈,

𝑡
𝐴
(𝑥
𝑖
) ≤ 𝑡
𝐵
(𝑥
𝑖
) , 𝑓

𝐴
(𝑥
𝑖
) ≥ 𝑓
𝐵
(𝑥
𝑖
) ;

𝐴 = 𝐵 ⇐⇒ ∀𝑥
𝑖
∈ 𝑈,

𝑡
𝐴
(𝑥
𝑖
) = 𝑡
𝐵
(𝑥
𝑖
) , 𝑓

𝐴
(𝑥
𝑖
) = 𝑓
𝐵
(𝑥
𝑖
) ;

𝐴 ∩ 𝐵 = ∑
[𝑡
𝐴
(𝑥
𝑖
) , 1 − 𝑓

𝐴
(𝑥
𝑖
)] ∧ [𝑡

𝐵
(𝑥
𝑖
) , 1 − 𝑓

𝐵
(𝑥
𝑖
)]

𝑥
𝑖

;

𝐴 ∪ 𝐵 = ∑
[𝑡
𝐴
(𝑥
𝑖
) , 1 − 𝑓

𝐴
(𝑥
𝑖
)] ∨ [𝑡

𝐵
(𝑥
𝑖
) , 1 − 𝑓

𝐵
(𝑥
𝑖
)]

𝑥
𝑖

;

𝐴 =

𝑛

∑

𝑖=1

[𝑓
𝐴
(𝑥
𝑖
) , 1 − 𝑡

𝐴
(𝑥
𝑖
)]

𝑥
𝑖

.

(5)
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3. Distances between Vague Sets

3.1. Definition of Distances between Vague Sets. Distance
measure is a function that characterizes the difference
between VSs and can be considered as a dual concept of
similarity measure. For VSs, the axiomatic definitions of a
distance are as follows.

Definition 2. A distance d in a nonempty set 𝑈 is a real value
function 𝑑 : 𝑈 × 𝑈 → [0, +∞), which satisfies the following
conditions, ∀𝑥, 𝑦, 𝑧 ∈ 𝑈:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(3) 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧).

The distance measure must satisfy the three conditions
presented in Definition 2. But in vague sets, 𝑡

𝐴
(𝑥) expresses

a support degree of 𝑥 to 𝐴 and 𝑓
𝐴
(𝑥) expresses a degree

of opposition of 𝑥 to 𝐴, while 𝜋
𝐴
(𝑥) expresses a degree of

neutrality of 𝑥 to𝐴, which is a degree of decision that cannot
be made currently. So the distances between VSs should also
meet the definition presented by Wang and Xin [25].

Definition 3 (see [25]). Let 𝑑 be a mapping: VSs(𝑈) ×
VSs(𝑈) → [0, 1]. ∀𝐴, 𝐵, 𝐶 ∈ VSs(𝑈), if 𝑑 satisfies the
following properties:

(1) 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1;
(2) 𝑑(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵;
(3) 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴);
(4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑑(𝐴, 𝐶) ≥ 𝑑(𝐴, 𝐵) and 𝑑(𝐴, 𝐶) ≥
𝑑(𝐵, 𝐶).

Then 𝑑(𝐴, 𝐵) is a distance measure between vague sets𝐴 and
𝐵.

From Definition 3, the inclusion relations between VSs
can reflect the distance relations between VSs, so the fourth
condition must be satisfied. The existing distances between
VSs will be analyzed according to Definitions 2 and 3 in
Section 3.2.

3.2. Analysis of the Existing Distances between Vague Sets. In
order to simplify the description, the following notations are
used, ∀𝐴, 𝐵 ∈ VSs(𝑈):

Δ
𝑡
(𝑖) = 𝑡

𝐴
(𝑥
𝑖
) − 𝑡
𝐵
(𝑥
𝑖
) ,

Δ
𝑓
(𝑖) = 𝑓

𝐴
(𝑥
𝑖
) − 𝑓
𝐵
(𝑥
𝑖
) ,

Δ
𝜋
(𝑖) = 𝜋

𝐴
(𝑥
𝑖
) − 𝜋
𝐵
(𝑥
𝑖
) .

(6)

3.2.1. Distances between Fuzzy Sets. Distances between vague
sets are expanded by Kacprzyk according to the distances
between fuzzy sets [26]. Therefore, the distances between
fuzzy sets are firstly introduced as follows for two fuzzy sets
𝐴, 𝐵 in 𝑈.

(1) Hamming distance 𝑑
𝐻

and normalized Hamming
distance 𝑑

𝑛𝐻

𝑑
𝐻
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
Δ
𝜇
(𝑖)
󵄨󵄨󵄨󵄨󵄨
, 𝑑

𝑛𝐻
(𝐴, 𝐵) =

1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
Δ
𝜇
(𝑖)
󵄨󵄨󵄨󵄨󵄨
.

(7)

(2) Euclidean distance 𝑑
𝐸

and normalized Euclidean
distance 𝑑

𝑛𝐸

𝑑
𝐸
(𝐴, 𝐵) = √

𝑛

∑

𝑖=1

(Δ
𝜇
(𝑖))
2

,

𝑑
𝑛𝐸
(𝐴, 𝐵) = √

1

𝑛

𝑛

∑

𝑖=1

(Δ
𝜇
(𝑖))
2

,

(8)

where Δ
𝜇
(𝑖) = 𝜇

𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
).

Formulas (7) and (8) just consider the membership
function 𝜇

𝐴
(𝑥
𝑖
). However, there exists the linear relationship

between the membership function 𝜇
𝐴
(𝑥
𝑖
) and the non-

membership function 𝑓
𝐴
(𝑥
𝑖
) for a fuzzy set 𝐴; that is,

𝑓
𝐴
(𝑥
𝑖
) = 1 − 𝜇

𝐴
(𝑥
𝑖
), where 𝜇

𝐴
(𝑥
𝑖
) = 𝑡
𝐴
(𝑥
𝑖
). Therefore, if the

nonmembership function 𝑓
𝐴
(𝑥
𝑖
) is also introduced into the

distances between fuzzy sets, then formulas (7) and (8) can
be represented as follows, respectively.

(3) Hamming distance 𝑑󸀠
𝐻

and normalized Hamming
distance 𝑑󸀠

𝑛𝐻

𝑑
󸀠

𝐻
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
] = 2𝑑

𝐻
(𝐴, 𝐵) ,

𝑑
󸀠

𝑛𝐻
(𝐴, 𝐵) =

1

𝑛

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
] = 2𝑑

𝑛𝐻
(𝐴, 𝐵) .

(9)

(4) Euclidean distance 𝑑󸀠
𝐸

and normalized Euclidean
distance 𝑑󸀠

𝑛𝐸

𝑑
󸀠

𝐸
(𝐴, 𝐵) = √

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

] = √2𝑑
𝐸
(𝐴, 𝐵) ,

𝑑
󸀠

𝑛𝐸
(𝐴, 𝐵) = √

1

𝑛

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

] = √2𝑑
𝑛𝐸
(𝐴, 𝐵) .

(10)

Based on expressions (9) and (10), the distances between
fuzzy sets are enlarged if fuzzy sets are expressed as the
form of vague sets, but there is no substantial influence on
the results. Therefore, Atanassov obtained the Hamming dis-
tances and Euclidean distances through extending formulas
(7) and (8) into vague sets.

3.2.2. Distance between Vague Sets Based on Hamming
Distance and Euclidean Distance

(1) Atanassov’s Distances between Vague Sets. Based on the
Hamming distances and Euclidean distances between FSs,
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the distances between vague sets derived by Atanassov are as
follows:

𝑑
Ata
𝐻
(𝐴, 𝐵) =

1

2

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
] ,

𝑑
Ata
𝑛𝐻
(𝐴, 𝐵) =

1

2𝑛

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
] ,

𝑑
Ata
𝐸
(𝐴, 𝐵) = √

1

2

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

],

𝑑
Ata
𝑛𝐸
(𝐴, 𝐵) = √

1

2𝑛

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

].

(11)

However, in vague sets 𝐴 and 𝐵, Δ
𝜋
(𝑖), Δ
𝑡
(𝑖), and Δ

𝑓
(𝑖)

have the following relations:

󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
Δ
𝑡
(𝑖) − Δ

𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
,

(Δ
𝜋
(𝑖))
2

= (Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

+ 2Δ
𝑡
(𝑖) ⋅ Δ

𝑓
(𝑖) .

(12)

From (12), the distance |Δ
𝜋
(𝑖)| between the degree of hesita-

tion 𝜋
𝐴
(𝑥
𝑖
) and the degree of hesitation 𝜋

𝐵
(𝑥
𝑖
) is not strictly

linear relations with the distances |Δ
𝑡
(𝑖)| and |Δ

𝑓
(𝑖)| when

we use (11). Thus, the degree of hesitation 𝜋
𝐴
(𝑥
𝑖
) and the

degree of hesitation𝜋
𝐵
(𝑥
𝑖
) should not be omitted in distances

between VSs. As a result, Szmidt and Kacprzyk [18] improved
the Atanassov’s distances between VSs.

(2) Szmidt and Kacprzyk’s Distances between Vague Sets:

𝑑
Sz
𝐻
(𝐴, 𝐵) =

1

2

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)

󵄨󵄨󵄨󵄨] ,

𝑑
Sz
𝑛𝐻
(𝐴, 𝐵) =

1

2𝑛

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)

󵄨󵄨󵄨󵄨] ,

𝑑
Sz
𝐸
(𝐴, 𝐵) = √

1

2

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

+ (Δ
𝜋
(𝑖))
2

],

𝑑
Sz
𝑛𝐸
(𝐴, 𝐵) = √

1

2𝑛

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
2

+ (Δ
𝑓
(𝑖))
2

+ (Δ
𝜋
(𝑖))
2

].

(13)

In fact, formulas (13) are, respectively, the Hamming
distances and the Euclidean distances between the vectors
(𝑡
𝐴
(𝑥
𝑖
), 𝑓
𝐴
(𝑥
𝑖
), 𝜋
𝐴
(𝑥
𝑖
)) and (𝑡

𝐵
(𝑥
𝑖
), 𝑓
𝐵
(𝑥
𝑖
), 𝜋
𝐵
(𝑥
𝑖
)).Therefore,

they satisfy the conditions of Definition 2. However, for-
mulas (13) could not strictly satisfy the fourth condition
in Definition 3, since 𝑡

𝐴
(𝑥
𝑖
), 𝑓
𝐴
(𝑥
𝑖
) and 𝜋

𝐴
(𝑥
𝑖
) satisfy the

condition 𝑡
𝐴
(𝑥
𝑖
) + 𝑓
𝐴
(𝑥
𝑖
) + 𝜋
𝐴
(𝑥
𝑖
) = 1 (see Example 4). To

this end, we conduct a detailed analysis as follows.

Let vague values 𝐴 = [𝑡
𝐴
, 1 − 𝑓

𝐴
], 𝐵 = [𝑡

𝐵
, 1 − 𝑓

𝐵
], and

𝐶 = [𝑡
𝐶
, 1 − 𝑓

𝐶
]. If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑡

𝐴
≤ 𝑡
𝐵
≤ 𝑡
𝐶
and

𝑓
𝐴
≥ 𝑓
𝐵
≤ 𝑓
𝐶
, we get

Δ
𝐴𝐶

𝑡
≤ Δ
𝐴𝐵

𝑡
≤ 0, Δ

𝐴𝐶

𝑓
≥ Δ
𝐴𝐵

𝑓
≥ 0,

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
,

(14)

where Δ𝐴𝐵
𝑡
= 𝑡
𝐴
− 𝑡
𝐵
, Δ𝐴𝐵
𝑓
= 𝑓
𝐴
− 𝑓
𝐵
. But for Δ𝐴𝐵

𝜋
= 𝜋
𝐴
− 𝜋
𝐵

and Δ𝐴𝐶
𝜋
= 𝜋
𝐴
− 𝜋
𝐶
, since

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑡
+ Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝜋

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑡
+ Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
(15)

So, from formulas (14) and (15), we cannot clear assert that
|Δ
𝐴𝐵

𝜋
| ≤ |Δ

𝐴𝐶

𝜋
| or |Δ𝐴𝐵

𝜋
| ≥ |Δ

𝐴𝐶

𝜋
|. Thus, 𝑑Sz

𝐻
(𝐴, 𝐵) ≤ 𝑑

Sz
𝐻
(𝐴, 𝐶)

may not be true; that is, the distance 𝑑Sz
𝐻
(𝐴, 𝐵) may be

improper. Similarly, 𝑑Sz
𝑛𝐻
(𝐴, 𝐵), 𝑑Sz

𝐸
(𝐴, 𝐵), and 𝑑Sz

𝑛𝐸
(𝐴, 𝐵) are

also improper; see Example 4.
The results of the above analysis show that there must be

the relationship between |Δ𝐴𝐵
𝜋
| and |Δ𝐴𝐶

𝜋
| not determined if

we introduce Δ
𝜋
(𝑖) = 𝜋

𝐴
(𝑥
𝑖
) − 𝜋
𝐵
(𝑥
𝑖
) into distances between

VSs directly. This is because 𝜋
𝐴
(𝑥
𝑖
) and 𝜋

𝐵
(𝑥
𝑖
) have no clear

relationships when 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

(3) Liu’s Distances between Vague Sets. Liu proposed new
distances between VSs based on the geometric interpretation
of vague sets [13].

If 𝑈 is continuous, the distance between 𝐴 and 𝐵 is

𝑑
Liu
(𝐴, 𝐵)

=
𝑝
√

1

2 (𝑏−𝑎)
∫

𝑏

𝑎

[(Δ
𝑡
(𝑖))
𝑝

+(Δ
𝑓
(𝑖))
𝑝

+(Δ
𝜋
(𝑖))
𝑝

] 𝑑𝑥.

(16)

If 𝑈 is discrete, the distance between 𝐴 and 𝐵 is

𝑑
Liu
𝑛𝐸
(𝐴, 𝐵) =

𝑝
√
1

2𝑛

𝑛

∑

𝑖=1

[(Δ
𝑡
(𝑖))
𝑝

+ (Δ
𝑓
(𝑖))
𝑝

+ (Δ
𝜋
(𝑖))
𝑝

].

(17)

In (16) and (17), 1 < 𝑝 < +∞.
If 𝑝 = 2, Liu’s method is Szmidt and Kacprzyk’s

normalized Euclidean distance. Thus, Liu’s method may not
satisfy the fourth condition in Definition 3.

3.2.3. Distances between Vague Sets Based on
Hausdorff Measure

(1) Hung-Grzegorzewski-Chen’s Distance between Vague Sets.
Based on Hausdorff measure, Hung and Yang [20] and
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Grzegorzewski [21] defined the Hausdorff distances between
vague sets, which are revised by Chen [22] as following:

𝑑
Hung
𝐻

(𝐴, 𝐵) =

𝑛

∑

𝑖=1

max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
} ,

𝑑
Hung
𝑛𝐻

(𝐴, 𝐵) =
1

𝑛

𝑛

∑

𝑖=1

max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
} ,

𝑑
Hung
𝐸

(𝐴, 𝐵) = √

𝑛

∑

𝑖=1

max {(Δ
𝑡
(𝑖))
2

, (Δ
𝑓
(𝑖))
2

},

𝑑
Hung
𝑛𝐸

(𝐴, 𝐵) = √
1

𝑛

𝑛

∑

𝑖=1

max {(Δ
𝑡
(𝑖))
2

, (Δ
𝑓
(𝑖))
2

}.

(18)

Although formulas (18) satisfy the conditions of Defini-
tions 2 and 3, they all neglect the degree of hesitation 𝜋

𝐴
(𝑥
𝑖
)

and the degree of hesitation 𝜋
𝐵
(𝑥
𝑖
). Yang and Chiclana [23]

analyzed that it will obtain the inconsistent results when two
of three objects 𝑡(𝑥

𝑖
), 𝑓(𝑥

𝑖
), and 𝜋(𝑥

𝑖
) are only considered.

For this reason, they proposed several distances between
vague sets.

(2) Yang and Chiclana’s Distances between Vague Sets:

𝑑
Yang
𝐻

(𝐴, 𝐵) =

𝑛

∑

𝑖=1

max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)

󵄨󵄨󵄨󵄨} , (19)

𝑑
Yang
𝑛𝐻

(𝐴, 𝐵) =
1

𝑛

𝑛

∑

𝑖=1

max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)

󵄨󵄨󵄨󵄨} , (20)

𝑑
Yang
𝐸

(𝐴, 𝐵) = √

𝑛

∑

𝑖=1

max {(Δ
𝑡
(𝑖))
2

, (Δ
𝑓
(𝑖))
2

, (Δ
𝜋
(𝑖))
2

},

(21)

𝑑
Yang
𝑛𝐸

(𝐴, 𝐵) = √
1

𝑛

𝑛

∑

𝑖=1

max {(Δ
𝑡
(𝑖))
2

, (Δ
𝑓
(𝑖))
2

, (Δ
𝜋
(𝑖))
2

}.

(22)

In 2013, Luo and Xiao [27] introduced the weights 𝜔
𝑖
into

formula (19) and obtained

𝑑
Luo
𝐻
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

𝜔
𝑖
⋅max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖)

󵄨󵄨󵄨󵄨} , (23)

where ∑𝑛
𝑖=1
𝜔
𝑖
= 1, 0 ≤ 𝜔

𝑖
≤ 1. Particularly, if 𝜔

𝑖
=

(1/𝑛) (𝑖 = 1, 2, . . . , 𝑛), then formula (23) will be formula (20).
Luo and Xiao proved in detail that formula (23) satisfies all
the conditions ofDefinition 3. But formulas (21) and (22)may
not satisfy the fourth condition of Definition 3.

C

B

A

𝜇

𝜋

�

Figure 1: Geometrical interpretation of vague sets.

3.2.4. Other Distances. According to Definition 3, Wang and
Xin [25] defined the distances between vague sets; that is,

𝑑
Wang

(𝐴, 𝐵)

=
1

𝑛

𝑛

∑

𝑖=1

[

󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨

4
+

max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
}

2
] ,

𝑑
Wang
𝜔 (𝐴, 𝐵)

=

𝑛

∑

𝑖=1

𝜔
𝑖
([(
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
) /4

+max {󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
} /2])

× (

𝑛

∑

𝑖=1

𝜔
𝑖
)

−1

,

𝑑
Wang
𝑝 (𝐴, 𝐵) =

𝑝
√
1

𝑛

𝑛

∑

𝑖=1

(

󵄨󵄨󵄨󵄨Δ 𝑡(𝑖)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨

2
)

𝑝

.

(24)

If 𝑝 = 1, 𝑑Wang
𝑝 (𝐴, 𝐵) is 𝑑Ata

𝑛𝐻
(𝐴, 𝐵); if 𝑝 = 2, 𝑑Wang

𝑝 (𝐴, 𝐵)

is 𝑑Ata
𝑛𝐸
(𝐴, 𝐵). Thus, Wang and Xin’s method also has the same

deficiencies as Atanassov’s distances between vague sets.
The deficiencies of the above-mentioned methods will be

illustrated by Example 4.

Example 4. Let 𝐴 = [1, 1], 𝐵 = [0, 0], and 𝐶 = [0, 1] be
the three vague values. Since 𝐵 ⊂ 𝐶 ⊂ 𝐴, the distance
between 𝐴 and 𝐵 is difference from the distance between 𝐴
and 𝐶. The geometrical interpretation of vague sets𝐴, 𝐵, and
𝐶 is presented in Figure 1.The results of the above-mentioned
distances between vague sets𝐴,𝐵, and𝐶 are shown in Table 1.

From Table 1, the methods 𝑑
Ata
𝐻

, 𝑑Ata
𝐸

, 𝑑Wang, and
𝑑
Wang
𝑝 (𝑝 = 2) can get 𝑑(𝐴, 𝐵) > 𝑑(𝐴, 𝐶) = 𝑑(𝐵, 𝐶), but other

methods do not. However, the degree of hesitation 𝜋(𝑥
𝑖
) is

not considered in the methods 𝑑Ata
𝐻

, 𝑑Ata
𝐸

, 𝑑Wang, and 𝑑Wang
𝑝 .
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Table 1: The results of existing distances between vague sets 𝐴, 𝐵, and 𝐶.

Distance between VSs 𝐴 = [1, 1], 𝐵 = [0, 0] 𝐴 = [1, 1], 𝐶 = [0, 1] 𝐵 = [0, 0], 𝐶 = [0, 1]
𝑑(𝐴, 𝐵) 𝑑(𝐴, 𝐶) 𝑑(𝐵, 𝐶)

𝑑
Ata
𝐻

1.0 0.5 0.5
𝑑
Ata
𝐸

1.0 √1/2 √1/2

𝑑
Sz
𝐻

1.0 1.0 1.0
𝑑
Sz
𝐸

1.0 1.0 1.0
𝑑
Liu
𝑛𝐸
(𝑝 = 2) 1.0 1.0 1.0

𝑑
Hung
𝐻

1.0 1.0 1.0
𝑑
Hung
𝐸

1.0 1.0 1.0
𝑑
Yang
𝐻

1.0 1.0 1.0
𝑑
Yang
𝐸

1.0 1.0 1.0
𝑑
Luo
𝐻

1.0 1.0 1.0
𝑑
Wang 1.0 0.75 0.75
𝑑
Wang
𝑝 (𝑝 = 2) 1.0 √1/2 √1/2

Based on the analysis in Table 1, we think that the degree
of membership, nonmembership, and hesitation should be
introduced into the distance measures between vague sets,
and the distances between vague sets must satisfy Definitions
2 and 3. For this reason, we propose a new distance which will
be a detailed introduction in Section 4.

4. A New Distance between Vague Sets
and Its Analysis

Let 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be objects set of 𝑛 experts who vote

for or against a given decision. The degree of each expert
𝑥
𝑖
voting in favor is 𝑡

𝐴
(𝑥
𝑖
), voting against is 𝑓

𝐴
(𝑥
𝑖
), and the

hesitation is 𝜋
𝐴
(𝑥
𝑖
). For example, suppose that the expert 𝑥

𝑖

at the beginning of negotiations voting in favor is 𝑡
𝐴
(𝑥
𝑖
) = 0.6

and against is 𝑓
𝐴
(𝑥
𝑖
) = 0.2, which means 𝜋

𝐴
(𝑥
𝑖
) = 0.2. If

we persuade that he should vote for, then the best result is
𝑡
𝐴+final(𝑥𝑖) = 𝑡𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖) = 0.8 with 𝑓𝐴+final(𝑥𝑖) = 0.2.
On the contrary, if he votes against, then the best result that
the opponents can achieve is 𝑓

𝐴+final(𝑥𝑖) = 𝑓𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖) =

0.4 with 𝑡
𝐴+final(𝑥𝑖) = 0.6. It may happen that 𝑡

𝐴+final(𝑥𝑖)

could be any number from [0.6, 0.8] and 𝑓
𝐴+final(𝑥𝑖) may be

any number from [0.2, 0.4]. Therefore, we should consider
the assignment of 𝜋

𝐴
(𝑥
𝑖
) to 𝑡
𝐴
(𝑥
𝑖
) and 𝑓

𝐴
(𝑥
𝑖
) separately if

𝜋
𝐴
(𝑥
𝑖
) is introduced into the distances between VSs; that is,

we investigate the influence of hesitation degree 𝜋
𝐴
(𝑥
𝑖
) to the

distances between VSs indirectly.
Let 𝐴 = [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] be a vague value; the assign-

ment of 𝜋
𝐴
(𝑥) to 𝑡

𝐴
(𝑥) and 𝑓

𝐴
(𝑥) is defined as 𝜔𝜋𝑡(𝜋

𝐴
(𝑥) +

2𝑡
𝐴
(𝑥)) and𝜔𝜋𝑓(𝜋

𝐴
(𝑥)+2𝑓

𝐴
(𝑥)), respectively, where𝜔𝜋𝑡 and

𝜔
𝜋𝑓 represent the weights.Thus, for each vague value𝐴, there

will be four parts: 𝑡
𝐴
(𝑥), 𝑓

𝐴
(𝑥), 𝜔𝜋𝑡(𝜋

𝐴
(𝑥) + 2𝑡

𝐴
(𝑥)), and

𝜔
𝜋𝑓
(𝜋
𝐴
(𝑥) + 2𝑓

𝐴
(𝑥)). A new distance between vague values,

denoted as 𝑑VVs, can be defined as follows.

Definition 5. Let 𝐴 = [𝑡
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] and 𝐵 = [𝑡

𝐵
(𝑥), 1 −

𝑓
𝐵
(𝑥)] be two vague values; then the distance between 𝐴 and

𝐵 is defined as

𝑑VVs (𝐴, 𝐵)

=

(
󵄨󵄨󵄨󵄨Δ 𝑡
󵄨󵄨󵄨󵄨+
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓

󵄨󵄨󵄨󵄨󵄨
+ 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨Δ𝜋+2Δ 𝑡

󵄨󵄨󵄨󵄨 + 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝜋
+2Δ
𝑓

󵄨󵄨󵄨󵄨󵄨
)

4
,

(25)

where Δ
𝜋
+ 2Δ
𝑡
and Δ

𝜋
+ 2Δ
𝑓
represent the assignments of

Δ
𝜋
to Δ
𝑡
and Δ

𝑓
, respectively. 𝜔𝜋𝑡 ≥ 0 and 𝜔𝜋𝑓 ≥ 0 represent

the assigned weights of Δ
𝜋
to Δ
𝑡
and Δ

𝑓
, respectively, and

satisfy 𝜔𝜋𝑡 + 𝜔𝜋𝑓 = 1.

For Example 4, we can get 𝑑VVs(𝐴, 𝐵) = 1 and
𝑑VVs(𝐴, 𝐶) = 𝑑VVs(𝐶, 𝐵) = 0.5, where 𝜔

𝜋𝑡
= 𝜔
𝜋𝑓
= 0.5, same

applies hereinafter, and we can prove that 𝑑VVs is a distance
measure that satisfied Definitions 2 and 3.

Theorem 6. Let 𝐴 = [𝑡
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] and 𝐵 = [𝑡

𝐵
(𝑥), 1 −

𝑓
𝐵
(𝑥)] be two vague values; then 𝑑VVs(𝐴, 𝐵) is a distance

measure between 𝐴 and 𝐵 and satisfies Definitions 2 and 3.

Proof. (1) From formula (25), 𝑑VVs(𝐴, 𝐵) ≥ 0. In addition,
|Δ
𝑡
| ≤ 1, |Δ

𝑓
| ≤ 1 and |Δ

𝜋
+2Δ
𝑡
| ≤ |Δ

𝑡
|+ |Δ
𝑓
| ≤ 2. Similarly,

|Δ
𝜋
+ 2Δ
𝑓
| ≤ 2. Thus, 𝑑VVs(𝐴, 𝐵) ≤ 1. That is, 𝑑VVs(𝐴, 𝐵)

satisfies condition (1) in Definition 3.
(2) If 𝐴 = 𝐵, then Δ

𝑡
= Δ
𝑓
= Δ
𝜋
= 0; thereby,

𝑑VVs(𝐴, 𝐵) = 0.
Conversely, if 𝑑VVs(𝐴, 𝐵) = 0, then Δ

𝑡
= Δ
𝑓
= 0;

accordingly, Δ
𝜋
= 0; that is, 𝐴 = 𝐵.

Thus, 𝑑VVs(𝐴, 𝐵) satisfies condition (1) in Definition 2
and condition (2) in Definition 3.

(3) From formula (25), 𝑑VVs(𝐴, 𝐵) = 𝑑VVs(𝐵, 𝐴). So,
𝑑VVs(𝐴, 𝐵) satisfies condition (2) in Definition 2 and condi-
tion (3) in Definition 3.
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(4) If 𝐶 = [𝑡
𝐶
(𝑥), 1 − 𝑓

𝐶
(𝑥)], we have

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑡
+ Δ
𝐵𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Δ
𝐵𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓
+ Δ
𝐵𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Δ
𝐵𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
,

𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝜋
+ 2Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨

= 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ Δ
𝐵𝐶

𝜋
+ 2 (Δ

𝐴𝐵

𝑡
+ Δ
𝐵𝐶

𝑡
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ 2Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨
+ 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐵𝐶

𝜋
+ 2Δ
𝐵𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
,

𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝜋
+ 2Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨

= 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ Δ
𝐵𝐶

𝜋
+ 2 (Δ

𝐴𝐵

𝑓
+ Δ
𝐵𝐶

𝑓
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ 2Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
+ 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐵𝐶

𝜋
+ 2Δ
𝐵𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
.

(26)

Thus, 𝑑VVs(𝐴, 𝐵)+𝑑VVs(𝐵, 𝐶) ≥ 𝑑VVs(𝐴, 𝐶), which shows that
condition (3) in Definition 2 is satisfied.
(5) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 0 ≤ 𝑡

𝐴
≤ 𝑡
𝐵
≤ 𝑡
𝐶
and 𝑓

𝐴
≥ 𝑓
𝐵
≥

𝑓
𝐶
≥ 0, we have

Δ
𝐴𝐶

𝑡
≤ Δ
𝐴𝐵

𝑡
≤ 0, Δ

𝐴𝐶

𝑓
≥ Δ
𝐴𝐵

𝑓
≥ 0;

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
;

𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ 2Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨
= 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓
− Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑡
− Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨

= 𝜔
𝜋𝑡
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝜋
+ 2Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨
;

𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝜋
+ 2Δ
𝐴𝐵

𝑓

󵄨󵄨󵄨󵄨󵄨
= 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐵

𝑓
− Δ
𝐴𝐵

𝑡

󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝑓
− Δ
𝐴𝐶

𝑡

󵄨󵄨󵄨󵄨󵄨

= 𝜔
𝜋𝑓
⋅
󵄨󵄨󵄨󵄨󵄨
Δ
𝐴𝐶

𝜋
+ 2Δ
𝐴𝐶

𝑓

󵄨󵄨󵄨󵄨󵄨
.

(27)

Thus, 𝑑VVs(𝐴, 𝐵) ≤ 𝑑VVs(𝐴, 𝐶).
Similarly, 𝑑VVs(𝐵, 𝐶) ≤ 𝑑VVs(𝐴, 𝐶). This result shows that

condition (4) in Definition 3 is satisfied.

Therefore, the above proof shows that 𝑑VVs(𝐴, 𝐵) is a
distance measure between 𝐴 and 𝐵 and satisfies Definitions
2 and 3.

Definition 7. Let𝐴, 𝐵 be two VSs in𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}; then

the distance measure between vague sets𝐴 and 𝐵, denoted as
𝑑VSs, is defined as

𝑑VSs (𝐴, 𝐵) =
1

4𝑛

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
Δ
𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
+ 𝜔
𝜋𝑡
(𝑖)

⋅
󵄨󵄨󵄨󵄨Δ𝜋 (𝑖) + 2Δ 𝑡 (𝑖)

󵄨󵄨󵄨󵄨

+ 𝜔
𝜋𝑓
(𝑖) ⋅

󵄨󵄨󵄨󵄨󵄨
Δ
𝜋
(𝑖) + 2Δ

𝑓
(𝑖)
󵄨󵄨󵄨󵄨󵄨
) ,

(28)

where 𝜔𝜋𝑡(𝑖) + 𝜔𝜋𝑓(𝑖) = 1 (𝜔𝜋𝑡(𝑖), 𝜔𝜋𝑓(𝑖) ≥ 0, 𝑖 = 1, 2, . . . , 𝑛).
𝜔
𝜋𝑡
(𝑖) and 𝜔𝜋𝑓(𝑖) represent the assigned weights of Δ

𝜋
(𝑖) to

Δ
𝑡
(𝑖) and Δ

𝑓
(𝑖), respectively.

Theorem 8. 𝑑VSs(𝐴, 𝐵) is a distance measure between 𝐴 and
𝐵 in 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and satisfies Definitions 2 and 3.

Proof. Similar to the proof of Theorem 6 (omitted).

5. Comparative Analysis of the Experiment
and Its Application in Multicriteria Fuzzy
Decision Making

To study the ability of the proposed metric to count the
distance between two VSs, two experiments have been con-
ducted: (1) pattern classification and (2) multicriteria fuzzy
decision.

5.1. A Numerical Example for Pattern Classification. Assume
that the question which relates to classification is given using
VSs. Liang and Shi [28] use the principle of the maximum
degree of similarity between VSs to solve the problem
of pattern classification. Similarly, we use the principle of
minimumdistance between VSs to solve the problem.We use
the classification data about buildingmaterials given byWang
and Xin [25]. Given four classes of building material, each is
represented by the vague sets𝐶

1
,𝐶
2
,𝐶
3
, and𝐶

4
in the feature

space 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

12
}; see Table 2. Now, given another

kind of unknown building material 𝑆, we justify which class
the 𝑆 belongs to through computing the distance between 𝑆
and each 𝐶

𝑖
(𝑖 = 1, 2, 3, 4). The 𝑆 belongs to the class 𝐶

𝑖
when

the distance between 𝑆 and each 𝐶
𝑖
is minimal among the

distances between 𝑆 and each 𝐶
𝑖
(𝑖 = 1, 2, 3, 4).

The classification performance is illustrated by the degree
of confidence (DOC) proposed byHatzimichailidis et al. [24].
This factor measures the confidence of each distance metric
in recognizing a specific sample that belongs to the class (𝑗)
and has the following form:

DOC(𝑗) =
𝑛

∑

𝑖=1, 𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑 (𝐶
𝑗
, 𝑆) − 𝑑 (𝐶

𝑖
, 𝑆)
󵄨󵄨󵄨󵄨󵄨
. (29)

Obviously, the greater DOC(𝑗) is, the more confident the
result of the specific distance metric is.

Table 3 summarizes the distance measures’ results along
with the degree of confidence of each one among the above
distances between VSs that we have introduced. In Table 3,
the minimum distance and the best results with the highest
degree of confidence have been denoted in bold. All the
distances can classify the test sample correctly. However,
the existing distance measures fail to introduce the degree
of hesitation into the distance measure between VSs which
causes the DOC to be lower, while the proposed method has
higher DOC. Thus, the results of classification indicate that
our method is effective.

5.2. Presentation of Multicriteria Fuzzy Decision Based on the
Distance Measures between VSs. Let A = {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
}
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Table 2: 4 Classes/12-feature problem and test sample.

Classes Features
𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

𝑥
11

𝑥
12

𝐶
1

𝑡
𝐶1
(𝑥) 0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432

𝑓
𝐶1
(𝑥) 0.524 0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534 0.126 0.432

𝐶
2

𝑡
𝐶2
(𝑥) 0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760

𝑓
𝐶2
(𝑥) 0.365 0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762 0.923 0.231

𝐶
3

𝑡
𝐶3
(𝑥) 0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045

𝑓
𝐶3
(𝑥) 0.387 0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000 0.483 0.912

𝐶
4

𝑡
𝐶4
(𝑥) 1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028

𝑓
𝐶4
(𝑥) 0.000 0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000 0.485 0.912

𝑆
𝑡
𝑆
(𝑥) 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012

𝑓
𝑆
(𝑥) 0.003 0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000 0.423 0.897

Table 3: Distances results.

Distances Results
𝑑(𝐶
1
, 𝑆) 𝑑(𝐶

2
, 𝑆) 𝑑(𝐶

3
, 𝑆) 𝑑(𝐶

4
, 𝑆) DOC(4)

𝑑
Ata
𝑛𝐻
(𝐴, 𝐵) 0.4311 0.4362 0.1982 0.0270 0.9845

𝑑
Ata
𝑛𝐸
(𝐴, 𝐵) 0.4910 0.4865 0.2920 0.0423 1.1426

𝑑
Sz
𝑛𝐻
(𝐴, 𝐵) 0.4764 0.4857 0.2246 0.0427 1.0586

𝑑
Sz
𝑛𝐸
(𝐴, 𝐵) 0.4978 0.4935 0.2953 0.0521 1.1303

𝑑
Liu
𝑛𝐸
(𝐴, 𝐵)(𝑝 = 2) 0.4978 0.4935 0.2953 0.0521 1.1303

𝑑
Liu
𝑛𝐸
(𝐴, 𝐵)(𝑝 = 3) 0.5446 0.5229 0.3531 0.0648 1.2262

𝑑
Hung
𝑛𝐻

(𝐴, 𝐵) 0.4764 0.4837 0.2233 0.0406 1.0616
𝑑
Hung
𝑛𝐸

(𝐴, 𝐵) 0.5364 0.5259 0.3122 0.0563 1.2056
𝑑
Yang
𝑛𝐻
(𝐴, 𝐵) 0.4501 0.4659 0.2050 0.0219 1.0553

𝑑
Yang
𝑛𝐸
(𝐴, 𝐵) 0.6419 0.6375 0.4374 0.1794 1.1786

𝑑
Luo
𝐻
(𝐴, 𝐵)

(𝜔
1
= ⋅ ⋅ ⋅ = 𝜔

4
= 0.25)

0.4501 0.4659 0.2050 0.0219 1.0553

𝑑
Wang

(𝐴, 𝐵) 0.4537 0.4599 0.2107 0.0338 1.0229
𝑑
Wang
1

(𝐴, 𝐵) 0.4311 0.4362 0.1982 0.0270 0.9845
𝑑
Wang
2

(𝐴, 𝐵) 0.4876 0.4831 0.2904 0.0373 1.1492
𝑑VSs(𝐴, 𝐵) 0.6566 0.6596 0.4445 0.1612 1.2769

be the set of alternatives and let 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
be the corre-

sponding weights of the criteria C = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
}, where

𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
∈ [0, 1] and ∑𝑛

𝑖=1
𝜔
𝑖
= 1. The characteristic of

the alternative 𝐴
𝑖
is represented by a vague set:

𝐴
𝑖
= {(𝐶

1
, [𝑡
𝑖1
, 1 − 𝑓

𝑖1
]) , (𝐶

2
, [𝑡
𝑖2
, 1 − 𝑓

𝑖2
]) , . . . ,

(𝐶
𝑛
, [𝑡
𝑖𝑛
, 1 − 𝑓

𝑖𝑛
])} ,

(30)

where 0 ≤ 𝑡
𝑖𝑗
+ 𝑓
𝑖𝑗
≤ 1, 1 ≤ 𝑖 ≤ 𝑚, and 1 ≤ 𝑗 ≤ 𝑛. 𝑡

𝑖𝑗
indicates

the degree of the alternative𝐴
𝑖
which satisfies the criterion𝐶

𝑗

and 𝑓
𝑖𝑗
indicates the degree of the alternative 𝐴

𝑖
which does

not satisfy the criterion 𝐶
𝑗
given by the decision maker.

The same as the TOPSISmethod proposed byHwang and
Yoon [29], the best alternative is obtained by the minimum

value𝑊
𝐶
(𝐴
𝑖
) (𝑖 = 1, 2, . . . , 𝑚), where𝑊

𝐶
(𝐴
𝑖
) represents the

weighted sum of the distance between 𝐴
𝑖𝑗
and 𝐼
𝑖
; namely,

𝑊
𝐶
(𝐴
𝑖
) = 𝑑VSs (𝐴 𝑖1, 𝐼1) × 𝜔1 + 𝑑VSs (𝐴 𝑖2, 𝐼2)

× 𝜔
2
+ ⋅ ⋅ ⋅ + 𝑑VSs (𝐴 𝑖𝑛, 𝐼𝑛) × 𝜔𝑛,

(31)

where the vague set 𝐴
𝑖𝑗
= [𝑡
𝑖𝑗
, 1 − 𝑓

𝑖𝑗
] represents the

characteristic of the alternative 𝐴
𝑖
about the criterion 𝐶

𝑗
and

𝐼
𝑗
represents an idea alternative about the criterion 𝐶

𝑗
(𝑖 =

1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛) and is determined by the following
expression:

𝐼
𝑗
= [𝑡
1𝑗
, 1 − 𝑓

1𝑗
] ∨ (∧) [𝑡

2𝑗
, 1 − 𝑓

2𝑗
]

∨ (∧) ⋅ ⋅ ⋅ ∨ (∧) [𝑡
𝑚𝑗
, 1 − 𝑓

𝑚𝑗
] (𝑗 = 1, 2, . . . , 𝑛) ,

(32)

where the operators “∨” and “∧” depend on the criterion 𝐶
𝑗
.
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With regard to the choice of weights 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
, many

researchers give a certain number between 0 and 1 [13, 30–
32]. In the paper, we use the optimalmethod to determine the
weights 𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
based on [11, 33]. Namely, the optimal

weights 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
satisfy

min =
𝑚

∑

𝑖=1

(𝑑VSs (𝐴 𝑖1, 𝐼1) × 𝜔1 + 𝑑VSs (𝐴 𝑖2, 𝐼2)

× 𝜔
2
+ ⋅ ⋅ ⋅ + 𝑑VSs (𝐴 𝑖𝑛, 𝐼𝑛) × 𝜔𝑛) ;

s.t. 𝜔
𝑙

1
≤ 𝜔
1
≤ 𝜔
𝑟

1
;

𝜔
𝑙

2
≤ 𝜔
2
≤ 𝜔
𝑟

2
;

...

𝜔
𝑙

𝑛
≤ 𝜔
𝑛
≤ 𝜔
𝑟

𝑛
;

𝑛

∑

𝑖=1

𝜔
𝑖
= 1,

(33)

where 𝜔𝑙
𝑗
= 𝜌
𝑗
, 𝜔𝑟
𝑗
= 1 − 𝜏

𝑗
, 𝜌
𝑗
and 𝜏

𝑗
indicate the degree

of membership and nonmembership with respect to the
criterion 𝐶

𝑗
to the fuzzy concept “importance,” respectively,

and 0 ≤ 𝜌
𝑗
, 𝜏
𝑗
≤ 1 as well as 0 ≤ 𝜌

𝑗
+ 𝜏
𝑗
≤ 1; that is, the

weight 𝜔
𝑗
is also expressed by a vague set [𝜌

𝑗
, 1 − 𝜏

𝑗
], and

𝜉
𝑗
= 1 − 𝜌

𝑗
− 𝜏
𝑗
indicates the degree of hesitation. In this

way, the weight 𝜔
𝑗
of the criterion 𝐶

𝑗
is expressed by a closed

interval [𝜔𝑙
𝑗
, 𝜔
𝑟

𝑗
] = [𝜌

𝑗
, 𝜌
𝑗
+ 𝜉
𝑗
]. In addition, suppose that

𝜔
𝑙

1
+ 𝜔
𝑙

2
+ ⋅ ⋅ ⋅ + 𝜔

𝑙

𝑛
≤ 1 and 𝜔𝑟

1
+ 𝜔
𝑟

2
+ ⋅ ⋅ ⋅ + 𝜔

𝑟

𝑛
≥ 1 so that

the expressions 𝜔𝑙
𝑗
≤ 𝜔
𝑗
≤ 𝜔
𝑟

𝑗
and ∑𝑛

𝑖=1
𝜔
𝑖
= 1 are valid.

5.3. A Numerical Example for Multicriteria Fuzzy Decision.
We use the example given by Li [33]: an air-condition
system selection problem. Suppose that there exist three air-
condition systems 𝐴

1
, 𝐴
2
, and 𝐴

3
. Denote the alternative set

by A = {𝐴
1
, 𝐴
2
, 𝐴
3
}. Suppose that there are three criteria 𝐶

1

(economical), 𝐶
2
(function), and 𝐶

3
(being operative) taken

into consideration in the selection problem. Denote the set of
all criteria by C = {𝐶

1
, 𝐶
2
, 𝐶
3
}, and 𝜔

1
, 𝜔
2
, 𝜔
3
are the weights

corresponding to 𝐶
1
, 𝐶
2
, 𝐶
3
. Using statistical methods, the

degrees 𝑡
𝑖𝑗
of membership and the degrees 𝑓

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3)

of nonmembership for the alternative 𝐴
𝑖
with respect to the

criterion𝐶
𝑗
to the fuzzy concept “excellence” can be obtained,

respectively. Namely,

([𝑡
𝑖𝑗
, 1 − 𝑓

𝑖𝑗
]) =

𝐶
1

𝐶
2

𝐶
3

𝐴
1

𝐴
2

𝐴
3

(

[0.75, 0.90] [0.80, 0.85] [0.40, 0.55]

[0.60, 0.75] [0.68, 0.80] [0.75, 0.95]

[0.80, 0.80] [0.45, 0.50] [0.60, 0.70]

) .

(34)

Similarly, the degrees 𝜌
𝑗
of membership and the degrees

𝜏
𝑗
(𝑗 = 1, 2, 3) of nonmembership for the three criteria

𝐶
1
, 𝐶
2
, 𝐶
3
to the fuzzy concept “importance” can be obtained,

respectively; that is,

([𝜌
𝑗
, 1 − 𝜏

𝑗
]) =

𝐶
1

𝐶
2

𝐶
3

([0.25, 0.75] [0.35, 0.60] [0.30, 0.35])
.

(35)

From (32), where the operator “∨” is used, we get 𝐼
1
=

[0.80, 0.9], 𝐼
2
= [0.75, 0.95], and 𝐼

3
= [0.80, 0.80].

Based on (33) and the distance 𝑑VSs, we have

min = 0.4250𝜔
1
+ 0.2850𝜔

2
+ 0.4750𝜔

3
;

s.t. 0.25 ≤ 𝜔
1
≤ 0.75;

0.35 ≤ 𝜔
2
≤ 0.60;

0.30 ≤ 𝜔
3
≤ 0.35;

𝜔
1
+ 𝜔
2
+ 𝜔
3
= 1.

(36)

The optimal solution is min = 0.2513, when 𝜔
1
= 0.25,

𝜔
2
= 0.45, and 𝜔

3
= 0.30.

According to (31), we obtain

𝑊
𝐶
(𝐴
1
) = 0.0850,

𝑊
𝐶
(𝐴
2
) = 0.1533,

𝑊
𝐶
(𝐴
3
) = 0.1388.

(37)

Therefore, the minimum value is𝑊
𝐶
(𝐴
1
) = 0.0850. Namely,

the best alternative is 𝐴
1
. The optimal ranking order of the

alternatives is given by 𝐴
1
≻ 𝐴
3
≻ 𝐴
2
, which is consistent

with the results of Xu and Wei [11] and Li [33]. However, the
method is more concise than Li’s method.

6. Conclusions

In this paper, we give a novel distance between vague sets,
which considers the assignment of hesitancy degree 𝜋(𝑥)
to the membership 𝑡(𝑥) and nonmembership degree 𝑓(𝑥),
after analyzing the existing method, and the properties are
also discussed. The performances of the proposed method
are illustrated by pattern classification. Finally, our method
is applied into multicriteria fuzzy decision making, where
we take the linear programming method to generate optimal
weights for every criteria and the best alternative is obtained
by theweighted sumof distancemeasures between each alter-
native and the idea alternative with respect to a set of criteria.
The experimental results demonstrate the effectiveness of the
proposed method.
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