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Identification of a one-stage axial compressor system is addressed. In particular, we investigate the underlying dynamics of tip air
injection and throttle activation to the overall compressor dynamics and the dynamics around the tip of the compressor blades. A
proposed subspace system identification algorithm is used to extract three mathematical models: relating the tip air injection to
the overall dynamics of the compressor and to the flow dynamics at the tip of the compressor blade and relating the movement of
the throttle to the overall compressor dynamics. As the system identification relays on experimental data, concerns about the noise
level and unmodeled system dynamics are addressed by experimenting with two model structures. The identification algorithm
entails a heuristic optimization that allows for inspection of the results with respect to unmodeled system dynamics. The results of
the proposed system identification algorithm show that the assumed model structure for the system identification algorithm takes
on an important role in defining the coupling characteristics. A newmeasure for the flow state in the blade passage is proposed and
used in characterizing the dynamics at the tip of the compressor blade, which allows for the inspection of the limits for the utilized
actuation.

1. Introduction

Operation of axial compressor systems, as found in a number
of aerospace applications, faces difficulties due to instabilities
at the peak of its performance curves. To mitigate these
instabilities, a number of different control mechanisms have
been introduced. Among them are air injection into the tip
of the blade passage [1–3] and the use of grooved casings [4–
6]. Modeling of the overall compressor dynamics has been a
challenging undertaking, resulting in thewell-knownMoore-
Greitzer model. However, there does not exist a model relat-
ing the influence of air injection to the overall system dynam-
ics. One of the aims of this work is to present a system iden-
tification based approach to characterize the influence of the
air injection—commonly used to control the compressor—to
the overall compressor dynamics.

As the system identification relays on experimental data,
concerns about the noise level need to be addressed as well
as unmodeled system dynamics. The unmodeled system

dynamics can become an important issue when the exper-
imental data do not include all system modes during the
system identification experiment or the assumed model
structure does not allow for accommodating one or more
particular dynamic characteristics. We propose to utilize two
different model structures to investigate the unmodeled sys-
tem dynamics and the effects of the proposed optimization.
These structures are the autoregressive moving average with
exogenous input (ARMAX) model and the autoregressive
with exogenous input (ARX)model. An innovation sequence
is extracted by using an estimated parameter sequence. The
ARMAXmodel and ARXmodel parameters are then utilized
to construct a Hankel matrix, representing the sampled
impulse response of the system relating tip air injection to
pressure rise coefficient. A singular value decomposition of
the Hankel matrix is performed for an eigensystem realiza-
tion (ERA, [7, 8]) resulting in a state-space description of
the coupling dynamics. However, prior to performing the
state-space realization, a heuristic optimization algorithm is
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introduced to optimize the singular values with respect to
the measured output data. This allows for minimization of
the noise influence to the extracted state-space model as well
as the effect the assumed model structure has on fitting to
the recorded characteristics from the system identification
experiment. The proposed system identification is used for
data collected on an isolated rotor axial compressor system
whose blade geometry allows for spike stall inception.The tip
air injection is applied in a random fashion in order to allow
for sufficient system mode excitation. The resulting pressure
rise and associated flow coefficient are computed using a set
of pressure sensors. The optimization of the Hankel matrix is
accomplished by using a Tabu Search (TS) algorithm [9].The
TS searches the vicinity around each singular value defined
by a percentage of the largest singular value.The eigensystem
realization is done using a balanced realization, an input-
normal form, and an output normal form realization in order
to assess the impact of the optimized singular values. Another
aim of this work is to characterize the dynamics within the
blade passage at the tip of the rotor blade due to air injection
at the leading edge of the rotor blade. Finally, the proposed
hybrid system identification algorithm using TS is used to
model the compressor dynamics excited bymovements of the
throttle and the resulting pressure rise changes.

In the following, the details of the system identification
scheme as well as the proposed realization and optimization
are introduced.

2. System Identification Algorithm

Consider a linear, time-invariant, discrete time system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝑤 (𝑘) (1)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) + V (𝑘) , (2)

where𝐴,𝐵,𝐶, and𝐷 are the systemmatrices and {𝑦} ∈ R𝑛𝑦×𝐿,{𝑢} ∈ R𝑛𝑢×𝐿, are the output and input data sequences recorded
during a system experiment with some sample frequency𝑓𝑠, resulting in 𝐿 discrete data points for each of the two
sequences. 𝑛𝑦 is the number of outputs, and 𝑛𝑢 is the number
of inputs; {𝑤} ∈ R𝑛×𝐿 is the process noise and {V} ∈ R𝑛𝑦×𝐿 is
the measurement noise, while {𝑥} ∈ R𝑛×𝐿 is the state vector.

In order to estimate the state variable 𝑥, a Kalman filter𝐾 is used, provided the states are observable [10]. Hence, the
system given by (1) and (2) can be reformulated. Defining the
Kalman filter gain 𝐾 as

𝐾 = 𝑃𝐹𝐶𝑇 [𝑅𝐹 + 𝐶𝑃𝐹𝐶𝑇]−1 ∈ R𝑛×𝑛𝑦 , (3)

where 𝑃𝐹 ∈ R𝑛×𝑛 is the solution of the steady-state algebraic
Riccati equation. Hence,

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐾𝜀 (𝑘) , (4)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) + 𝜀 (𝑘) , (5)

where

𝜀 (𝑘) = 𝑦 (𝑘) − 𝐶𝑥 (𝑘) − 𝐷𝑢 (𝑘) . (6)

The system in (1) is in the process form, while the system
in (4) is in the innovation form. Using (6) in (4) results and
defining 𝐴 = [𝐴 − 𝐾𝐶] and 𝐵 = [𝐵 − 𝐾𝐷], we arrive at the
predictor form of the given system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐾𝑦 (𝑘) , (7)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) + 𝜀 (𝑘) . (8)

The predictor form of (8) can be used to derive an AutoRe-
gressive with eXogenous input (ARX) model:

𝑦 (𝑘) = 𝐶𝐴𝑝1𝑥 (𝑘 − 𝑝1) + 𝐶𝐴𝑝1−1𝐵𝑢 (𝑘 − 𝑝1)
+ 𝐶𝐴𝑝1−2𝐵𝑢 (𝑘 − 𝑝1 − 1) + ⋅ ⋅ ⋅ + 𝐶𝐵𝑢 (𝑘 − 1)
+ 𝐷𝑢 (𝑘) + 𝐶𝐴𝑝1−1𝐾𝑦 (𝑘 − 𝑝1)
+ 𝐶𝐴𝑝1−2𝐾𝑦 (𝑘 − 𝑝1 − 1) + ⋅ ⋅ ⋅
+ 𝐶𝐴2𝐾𝑦 (𝑘 − 3) + 𝐶𝐴𝐾𝑦 (𝑘 − 2)
+ 𝐶𝐾𝑦 (𝑘 − 1) + 𝜀 (𝑘) .

(9)

Note,𝐴 = [𝐴−𝐾𝐶] is an asymptotically stable squarematrix;
hence if 𝑝1 is sufficiently large, we have

𝐴𝑝1 ≈ 0. (10)

Equation (9) becomes

𝑦 (𝑘) = 𝐶𝐴𝑝1−1𝐵𝑢 (𝑘 − 𝑝1) + 𝐶𝐴𝑝1−2𝐵𝑢 (𝑘 − 𝑝1 − 1)
+ ⋅ ⋅ ⋅ + 𝐶𝐵𝑢 (𝑘 − 1) + 𝐷𝑢 (𝑘)
+ 𝐶𝐴𝑝1−1𝐾𝑦 (𝑘 − 𝑝1)
+ 𝐶𝐴𝑝1−2𝐾𝑦 (𝑘 − 𝑝1 − 1) + ⋅ ⋅ ⋅
+ 𝐶𝐴2𝐾𝑦 (𝑘 − 3) + 𝐶𝐴𝐾𝑦 (𝑘 − 2)
+ 𝐶𝐾𝑦 (𝑘 − 1) + 𝜀 (𝑘) .

(11)

Note that 𝐶𝐴𝑖−1𝐵 are the system Markov parameters and
𝐶𝐴𝑖−1𝐾 are the Kalman filter Markov parameters. Also, the
existence of 𝐾 is guaranteed if the system is detectable and(𝐴, 𝑄1/2) is stabilizable [7].

Equation (11) is of the form

𝑦 (𝑘) = 𝑝1∑
𝑖=1

𝑎𝑖𝑦 (𝑘 − 𝑖) +
𝑝1∑
𝑖=1

𝑏𝑖𝑢 (𝑘 − 𝑖) + 𝜀 (𝑘) , (12)

where 𝑎𝑖 = 𝐶𝐴𝑖−1𝐾 and 𝑏𝑖 = 𝐶𝐴𝑖−1𝐵. Assuming the system is
observable and controllable, the following output vector can
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be created (for simplicity, we assume D = 0 or the first input
= 0):

𝑦 (0) = 𝐶𝑥 (0) ,
𝑦 (1) = 𝐶𝑥 (1) = 𝐶𝐴𝑥 (0) ,

𝑦 (2) = 𝐶𝑥 (2) = 𝐶𝐴𝑥 (1) = 𝐶𝐴2𝑥 (0) ,
...

𝑦 (𝑛 − 1) = 𝐶𝐴𝑛−1𝑥 (0) .

(13)

Hence

𝑃𝑜 =
{{{{{{{{{{{{{{{{{{{{{

𝐶
𝐶𝐴
𝐶𝐴2
...

𝐶𝐴𝑛−1

}}}}}}}}}}}}}}}}}}}}}

(14)

is the observability matrix.The system is observable if 𝑃𝑜 is of
rank(𝑃𝑜) = 𝑛. To test for controllability, one can create a state
vector:

𝑥 (1) = 𝐴𝑥 (0) + 𝐵𝑢 (0) ,
𝑥 (2) = 𝐴 [𝐴𝑥 (0) + 𝐵𝑢 (0)] + 𝐵𝑢 (1) = 𝐴2𝑥 (0)
+ 𝐴𝐵𝑢 (0) + 𝐵𝑢 (1) ,

...
𝑥 (𝑛) = 𝐴𝑛𝑥 (0) + 𝐴𝑛−1𝐵𝑢 (0) + ⋅ ⋅ ⋅ + 𝐵𝑢 (𝑛 − 1) ,
𝑥 (𝑛) − 𝐴𝑛𝑥 (0)

= [𝐵 𝐴𝐵 𝐴2𝐵 ⋅ ⋅ ⋅ 𝐴𝑛−1𝐵]
{{{{{{{{{{{{{{{{{{{

𝑢 (𝑛 − 1)
𝑢 (𝑛 − 2)
𝑢 (𝑛 − 3)
...

𝑢 (0)

}}}}}}}}}}}}}}}}}}}

.

(15)

Here

𝑃𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋅ ⋅ ⋅ 𝐴𝑛−1𝐵] (16)

is a square matrix. The discrete time system is controllable if
and only if rank(𝑃𝑐) = 𝑛. Suppose the system of (4) and (5) is
controllable and observable with rank n; then

𝐻 = 𝑃𝑜𝑃𝑐,

𝐻 =
{{{{{{{{{{{{{{{{{{{{{

𝐶
𝐶𝐴
𝐶𝐴2
...

𝐶𝐴𝑛−1

}}}}}}}}}}}}}}}}}}}}}

[𝐵 𝐴𝐵 𝐴2𝐵 ⋅ ⋅ ⋅ 𝐴𝑛−1𝐵] ,

𝐻 =
[[[[[[[[[[[
[

𝐶𝐵 𝐶𝐴𝐵 𝐶𝐴2𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐−1𝐵
𝐶𝐴𝐵 𝐶𝐴2𝐵 𝐶𝐴3𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐𝐵
𝐶𝐴2𝐵 𝐶𝐴3𝐵 𝐶𝐴4𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐+1𝐵
... ... ... d

...
𝐶𝐴𝑜−1𝐵 𝐶𝐴𝑜𝐵 𝐶𝐴𝑜+1𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑜+𝑝−2𝐵

]]]]]]]]]]]
]

= R
(𝑜×𝑛𝑦)×(𝑐∗𝑛𝑜).

(17)

One notices that theHankel matrix𝐻 is composed of the sys-
temMarkov parameters. Using theARXmodel parameters 𝑏𝑖,𝐻 can be given as

𝐻 =
[[[[[[[[[
[

𝑏1 𝑏2 𝑏3 ⋅ ⋅ ⋅ 𝑏𝑐𝑏2 𝑏3 𝑏4 ⋅ ⋅ ⋅ 𝑏𝑐+1𝑏3 𝑏4 𝑏5 ⋅ ⋅ ⋅ 𝑏𝑐+2... ... ... d
...

𝑏𝑜 𝑏𝑜+1 𝑏𝑜+2 ⋅ ⋅ ⋅ 𝑏𝑜+𝑐

]]]]]]]]]
]

. (18)

Defining the system Markov parameters as

𝑌𝑜 = 𝐷 = 𝑏0,
𝑌1 = 𝐶𝐵 = 𝑏1,
𝑌2 = 𝐶𝐴𝐵 = 𝑏2,

...
(19)

then𝐻 can be written as

𝐻(0) =
[[[[[[[[[[
[

𝑌1 𝑌2 𝑌3 ⋅ ⋅ ⋅ 𝑌𝑐
𝑌2 𝑌3 𝑌4 ⋅ ⋅ ⋅ 𝑌𝑐+1
𝑌3 𝑌4 𝑌5 ⋅ ⋅ ⋅ 𝑌𝑐+2... ... ... d

...
𝑌𝑜 𝑌𝑜+1 𝑌𝑜+2 ⋅ ⋅ ⋅ 𝑌𝑜+𝑐

]]]]]]]]]]
]

. (20)

To realize a state-space system of the form [𝐴, 𝐵, 𝐶,𝐷] a
minimum realization is utilized (see [7, 10]). The minimum
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realization allows for investigating the primary or dominant
modes of the system to be identified.

Perform a SVD on𝐻(0) : 𝐻(0) = 𝑅Σ𝑆𝑇, where
Σ = [Σ𝑛 00 0] with Σ𝑛 = diag [𝜎1 𝜎2 ⋅ ⋅ ⋅ 𝜎𝑛] (21)

and the singular values are ordered as

𝜎1 ≥ 𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑛 > 0. (22)

Truncate 𝑅 and 𝑆 to have 𝑛 columns, which results into 𝑅𝑛
and 𝑆𝑛. Hence the following equality exists:

𝐻(0) = [𝑅𝑛Σ1/2] [Σ1/2𝑆𝑇𝑛 ] ≅ 𝑃𝑜𝑃𝑐. (23)

Hence, the Hankel singular values are the square roots of the
eigenvalues of 𝑃𝑜𝑃𝑐:

𝜎𝑖 = √𝜆𝑖 (𝑃𝑜𝑃𝑐). (24)

Now there are different ways to interpret the realization.They
are organized by what combination and association is being
taken:

(i) input-normal form:

𝑃𝑜 = 𝑅𝑛Σ𝑛,
𝑃𝑐 = 𝑆𝑇𝑛 , (25)

(ii) balanced form:

𝑃𝑜 = 𝑅𝑛Σ1/2𝑛 ,
𝑃𝑐 = Σ1/2𝑛 𝑆𝑇𝑛

(26)

(iii) output normal form:

𝑃𝑜 = 𝑅𝑛,
𝑃𝑐 = Σ𝑛𝑆𝑇𝑛 . (27)

Choosing the balanced form, we have

𝑃𝑇𝑜 𝑃𝑜 = Σ1/2𝑛 𝑅𝑇𝑛𝑅𝑛Σ1/2𝑛 = Σ𝑛,
𝑃𝑐𝑃𝑇𝑐 = Σ1/2𝑛 𝑆𝑇𝑛 𝑆𝑛Σ1/2𝑛 = Σ𝑛. (28)

Having realized 𝑃𝑐 and 𝑃𝑜, we can utilize their original
definition

𝑃𝑜 =
{{{{{{{{{{{{{{{{{{{{{

𝐶
𝐶𝐴
𝐶𝐴2
...

𝐶𝐴𝑛−1

}}}}}}}}}}}}}}}}}}}}}

,

𝑃𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋅ ⋅ ⋅ 𝐴𝑛−1𝐵] .

(29)

Hence, 𝐵 is first 𝑛𝑢 columns of 𝑃𝑐 or of Σ1/2𝑛 𝑆𝑇𝑛 ; 𝐶 is first 𝑛𝑜
rows of 𝑃𝑜 or of 𝑅𝑛Σ1/2𝑛 ,𝐷 = 𝑌(0). To compute 𝐴, one forms

𝐻(1) =
[[[[[[[[[[
[

𝑌2 𝑌3 𝑌4 ⋅ ⋅ ⋅ 𝑌𝑐+1
𝑌3 𝑌4 𝑌5 ⋅ ⋅ ⋅ 𝑌𝑐+2
𝑌4 𝑌5 𝑌6 ⋅ ⋅ ⋅ 𝑌𝑐+3... ... ... d

...
𝑌𝑜+1 𝑌𝑜+2 𝑌𝑜+3 ⋅ ⋅ ⋅ 𝑌𝑜+𝑐

]]]]]]]]]]
]

. (30)

Expressing𝐻(1) in terms of [𝐴, 𝐵, 𝐶,𝐷]:

𝐻(1) =
[[[[[[[[[[[
[

𝐶𝐴𝐵 𝐶𝐴2𝐵 𝐶𝐴3𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐𝐵
𝐶𝐴2𝐵 𝐶𝐴3𝐵 𝐶𝐴4𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐+1𝐵
𝐶𝐴3𝐵 𝐶𝐴4𝐵 𝐶𝐴5𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑐+2𝐵
... ... ... d

...
𝐶𝐴𝑜𝐵 𝐶𝐴𝑜+1𝐵 𝐶𝐴𝑜+2𝐵 ⋅ ⋅ ⋅ 𝐶𝐴𝑜+𝑝−1𝐵

]]]]]]]]]]]
]

= 𝑃𝑜𝐴𝑃𝑐.

(31)

Using SVD on the last equation yields

𝐻(1) = 𝑃𝑜𝐴𝑃𝑐 = 𝑅𝑛Σ1/2𝑛 𝐴Σ1/2𝑛 𝑆𝑇𝑛 . (32)

From this, one can compute 𝐴:
𝐴 = Σ−1/2𝑛 𝑅𝑇𝑛𝐻(1) 𝑆𝑛Σ−1/2𝑛 . (33)

3. Estimation of ARMAX Model

Equation (12) is an ARX model. To incorporate a moving
average term into (12), a third convolution term is added,

𝑦 (𝑘) = 𝑝1∑
𝑖=1

𝑎𝑖𝑦 (𝑘 − 𝑖) +
𝑝1∑
𝑖=1

𝑏̃𝑖𝑢 (𝑘 − 𝑖) +
𝑝1∑
𝑖=1

𝑐𝑖𝜀 (𝑘 − 𝑖)
+ 𝜀 (𝑘) ,

(34)

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are themodel parametermatrices.The idea
of using anARMAXmodel is to accommodate the innovation
and noise influence. The parameters of the ARX model can
be estimated using standard least-squares techniques. For the
ARMAX model, the following approach is adapted.

Define

Φ̃ (𝑘, ℎ𝑛1)
= [𝑦𝑇𝑘 𝑦𝑇𝑘+1 ⋅ ⋅ ⋅ 𝑦𝑇𝑘−ℎ𝑛1+1 𝑢𝑇𝑘 ⋅ ⋅ ⋅ 𝑢𝑇𝑘−ℎ𝑛1+1]𝑇 ,

(35)

for 0 ≤ 𝑘 ≤ 𝑛1, where the subscript is used for denoting
the time index.The innovation sequence can be estimated by
using

𝜀 (𝑘, 𝑛1) = 𝑦 (𝑘) − 𝛼̂𝑇 (𝑘, 𝑛1) Φ̃ (𝑘 − 1, ℎ𝑛1) , (36)
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where

𝛼̂ (𝑘 + 1, 𝑛1) = 𝛼̂ (𝑘, 𝑛1) + 𝛽 (𝑘, 𝑛1) Φ̃𝑇 (𝑘, ℎ𝑛1)
⋅ 𝑃̃ (𝑘, 𝑛1) × [𝑦 (𝑘 + 1) − Φ̃𝑇 (𝑘, ℎ𝑛1) 𝛼̂ (𝑘, 𝑛1)] ,

𝑃̃ (𝑘 + 1, 𝑛1) = 𝑃̃ (𝑘, 𝑛1) − 𝛽 (𝑘, 𝑛1) 𝑃̃ (𝑘, 𝑛1) Φ̃ (𝑘, ℎ𝑛1)
⋅ Φ̃𝑇 (𝑘, ℎ𝑛1) 𝑃̃ (𝑘, 𝑛1) ,

𝛽 (𝑘, 𝑛1) = {1 + Φ̃𝑇 (𝑘, ℎ𝑛1) 𝑃̃ (𝑘, 𝑛1) Φ̃ (𝑘, ℎ𝑛1)}−1 .

(37)

Using 𝛼̂(0, 𝑛1) = 0 and 𝑃̃(0, 𝑛1) = 𝜂𝐼 with 𝜂 > 0, and defining
Θ̃ = [𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑝1 𝑏1 ⋅ ⋅ ⋅ 𝑏𝑝1 𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑝1]𝑇 ,
𝑋𝑛1 = [𝜙0 𝜙1 ⋅ ⋅ ⋅ 𝜙𝑛1−1]𝑇 ,
Γ𝑛1 = [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑛1]𝑇 ,
𝜙𝑖
= [𝑦𝑇𝑖 𝑦𝑇𝑖−1 ⋅ ⋅ ⋅ 𝑦𝑇𝑖−𝑝1+1 𝑢𝑇𝑖 ⋅ ⋅ ⋅ 𝑢𝑇𝑖−𝑝1+1 𝜀1 ⋅ ⋅ ⋅ 𝜀𝑇𝑖−𝑝1+1]𝑇 ,

(38)

where the subscript is used for the time index, the estimated
ARMAX parameters are given by

̂̃Θ = [𝑋𝑇 (𝑛1)𝑋 (𝑛1)]−1𝑋𝑇 (𝑛1) Γ (𝑛1) . (39)

To obtain a realization of the form of (39), the estimated
model parameters of the ARX or ARMAXmodel are used to
compute the system Markov parameters (see [11]) and con-
struct a blockHankelmatrix of the form given by (20) or (30).
The realization then can be established by any of the three
options given by (25), (26), or (27).

4. Tabu Search Optimization

The Hankel matrix in (20) is composed of the sampled
impulse response of the system. In addition to the system’s
response, there is noise, unmodeled system dynamics, and
responses from auxiliary systems that are coupled with the
system to be identified. As there is no method to separate
the given impulse response from coupled noise, unmod-
eled dynamics, and auxiliary system responses, we propose
to imbed an optimization into the eigensystem realization
(ERA) algorithm given by [8].The optimization is done using
an Enhanced Tabu Search (ETS) algorithm.The ETS employs
a two-stage process, where during the first stage a list of
promising areas in the search field is established. During the
second stage, the promising areas are further searched by a
regular TS algorithm. Details on the employed ETS and TS
are found in [9]. The ERA is updated such that after selecting
the number of states of the system—based on the magnitude
of the singular values inΣ—the entries of the selected singular
values are searched within a close vicinity of their nominal
value established by the SVD.The search areas are defined as

Table 1: Test compressor design parameters.

Quantity
Design speed (rpm) 2400
Rotor blade number 60
Outer diameter (mm) 500
Mass flow rate (kg/s) 2.9
Rotor tip chord (mm) 36.3
Rotor tip stagger angle (deg.) 39.2
Hub-tip ratio 0.75

a percentage of the largest singular value. The cost function
for the ETS and TS is given by

𝐽1 = 𝜆12
𝑁∑
𝑖=1

{𝑦 (𝑖) − 𝑦 (𝑖)}2 , (40)

where 𝑦 is the estimated output from the resulting realized
system. An easy extension to the given cost function is to
incorporate a priori information of the system. For example,
if the fundamental natural frequency of the system to be
identified is known, (40) can be extended to

𝐽2 = 𝜆12 (
𝑁∑
𝑖=1

{𝑦 (𝑖) − 𝑦 (𝑖)}2) + 𝜆22 (𝜔𝑛 − 𝜔̂𝑛)2 , (41)

where𝜆𝑖 areweighting factors and 𝜔̂ is the resulting estimated
natural frequency.

5. Experimental Setup

In this work, we utilize a one-stage compressor system with a
blade geometry that allows for spike inception.The proposed
identification scheme is used to identify the dynamics at
different flow conditions, including near stall conditions.
The dynamics of the compressor is given by the changes
within the blade passage area as well as the changes in the
pressure rise coefficient computed by the input and output
pressures. Hence, we extract three separate models, one for
the dynamics within the blade passage due to air injection,
one for the input/output relationship of the compressor due to
throttle movements, and one that characterizes the dynamics
due to air injection pressure as the input of the system and
the pressure rise coefficient as the output of the system.
The compressor employed for this research is a low-speed
rotor with characteristic parameters as given in Table 1. The
compressor exhibits stall at 40–50% of its rotating frequency.
The operating range of this compressor is given by a flow
coefficient between 0.58 and 0.49, where the latter bound
represents the vicinity of the stall point.The experimentswere
carried out using a smooth casing; that is, there are no grooves
within the tip clearance casings.The average tip clearance for
the setup is 1mm. A number of pressure sensors are used, as
shown in Figure 1.

Sensors 1 and 8 are utilized to compute the flow coefficient
and pressure rise. A separate sensor is mounted at the
injection port to measure the injection pressure.The pressure
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Sensor Sensor 8

Flow

Air injection
Sensors 2–7

Figure 1: Sensor location for experimental setup. The dashed
breakout view is rotated 90∘ and depicts the six sensors for capturing
the dynamics of the blade passage.

sensors measure at a sampling rate of 20,000Hz. There are
eight air injectors, equally distributed over the circumference,
injecting air at an angle of 15 degrees with a steady pressure.
Sensors 2 to 7 are dedicated to the dynamics within the blade
passage.

For the actuation, there are two inputs. One input is
given by the movement of the throttle valve, which is used to
set the operating point. The other input is accomplished via
high-pressure air injection using the eight injectors equally
distributed around the circumference of the compressor
annulus.The setup of themeasurement and injectors is shown
in Figure 2(a) while the throttle valve cone movement setup
is shown in Figure 2(b).

6. Results and Discussion

6.1. Identification Results for Overall Dynamics due to Injec-
tion. We first present the results for inferring the compressor
dynamics modeling the dynamics related to the air injection
and overall output of the compressor as measured by flow
coefficient and pressure rise coefficient. Considering Figure 3,
the system identification results for a flow coefficient of
0.55 are shown by the extracted Bode plots of the various
realized systems. The original ARX and ARMAX model,
using a balanced realization and no optimization of their
singular values, indicates that both have captured very similar
characteristics.

The first fundamental frequency is at around 557Hz.
Once optimization is used as well as different realization
forms (input (IN), output (ON), or balanced (BN) normal),
the Bode plots of the two models (ARX and ARMAX)
start to diverge from each other. For the ARX based model
set, the frequency responses converge to a very defined
Bode plot, with a fundamental frequency of 477Hz. For the
ARMAX based model set, the resulting frequency responses
are reduced in their emphasis to the fundamental frequency.
The ARX based model set also shows a much improved
magnitude for the first fundamental frequency. Regardless
of the realization (balanced, input, or output normal), all of
the optimized ARX based models seem to agree with the

first fundamental frequency and its amplitude.The phase plot
does not show much change from unoptimized to optimized
system identification results, for both model structures and
all realizations.

At a flow coefficient of 0.55, the compressor operates suf-
ficiently far away from the stall inception.The optimization of
the singular values for the system identification algorithm is
based on minimizing the error between the simulated model
output and the measured overall system output, as given
by (40). To gain some understanding of what these system
identification results mean, we shall consider the difference
of the two model structures, that is, ARX and ARMAX. The
ARX model can be given in system block formulation as
shown in Figure 4.

The corresponding system equation is given by

𝑦 (𝑘) = 𝐵 (𝑞)𝐴 (𝑞)𝑢 (𝑘) + 1𝐴 (𝑞)V (𝑘) , (42)

where 𝑞 is the backshift operator and𝐴 and𝐵 are polynomials
of the numerator and denominator. The ARMAX model is
given in Figure 5.

The corresponding system equation is given by

𝑦 (𝑘) = 𝐵 (𝑞)𝐴 (𝑞)𝑢 (𝑘) +
𝐶 (𝑞)
𝐴 (𝑞)V (𝑘) , (43)

where 𝐶 is the corresponding polynomial responsible for
modulating the noise sequence V(𝑘). Comparing (42) with
(43), we notice that the ARMAXmodel has a built-in capacity
to model the unobservable noise term V(𝑘). However, in
this case, we not only have an unobservable noise term, but
also the overall system dynamics, apart from the injection
induced dynamics. When using the TS optimization, the
incorporated cost function entails the overall output, that is,
the system dynamics output, unobservable dynamics, and
the dynamics resulting from the noise sequence. As the
system identification algorithm has no means to separate the
different dynamics and the noise influence, it models all of
it with the help of the Moving Average (MA) portion of the
model structure. This is corresponding to the 𝐶 polynomial
in (43). As the input/output energy of the collected data is the
same for all experiments, the modeling of the MA portion
drains some of this energy away from the coupling dynamics
and results into lower magnitude plots in the Bode diagram
for the ARMAX models. The measured data is filtered prior
to the application of the proposed optimization, using a
notch filter to reduce the influence of the blade passing
frequency (BPF). The sampling time of the data collection
is set to 20 kHz, making the resulting Bode plot span over
a large bandwidth. However, the overall dynamics of the
compressor is found to be at much lower frequencies. This
is given by the stall frequency of this compressor to be 17Hz.
Hence, the discussed frequencies in the Bode plot likely do
not represent the coupling dynamics. From measurements
at various locations through the compressor ducting, it was
noticed that the 477Hz frequency exists everywhere (sensors
1 and 8 in Figure 1). The true meaning of this frequency
is not understood at this time. However, observations from
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(a) (b)

Figure 2: Picture of (a) side view of the one-stage axial compressor system and (b) view of the throttle using a cone movement system for
controlling the flow coefficient and pressure rise.
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Figure 3: Bode plot for ARX (black) andARMAX (blue) realization;
flow coefficient = 0.55.

u(k) y(k)

v(k)

+ +

B(q)
1

A(q)

Figure 4: ARX model in block diagram form.
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Figure 5: ARMAX model in block diagram form.
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Figure 6: Bode plot forARX (black) andARMAX (blue) realization;
flow coefficient = 0.51.

experiments indicate that the amplitude of this frequency
decreases as the throttling increases. This observation fits the
characteristics of the two Bode plots given by Figures 3 and
6.

Without any current theory explaining the observation of
the mode at 477Hz, our focus will be directed towards the
low frequency behavior of the system. Doing so, we assume
that the coupling dynamics are found closer to the slow
dynamics frequency region.Utilizing air injection as a control
input breaks up the flow structure at the blade level. The
overall dynamics is given by the flow coefficient and pressure
rise coefficient.These two measures seem to reside in the low
frequency area of the data. Hence, a second filter is proposed
to be used to prepare the collected data. In particular, a low
pass filter with a cutoff frequency of 150Hz is utilized. The
filter employs 20 filter weights and a Kaiser window. In addi-
tion, the data is downsampled from 20 kHz to 400Hz. The
filtering and downsampling are used to ensure that the system
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Figure 7: Bode plot for ARX (black) andARMAX (blue) realization;
flow coefficient = 0.58. Data is filtered and resampled prior to system
identification.

identification and its optimization focus on frequencies below
150Hz. The proposed optimal identification algorithm is
employed to extract dynamic relationships between the input
(injection) and the output (flow coefficient). For system
identification, the data is also prepared by subtracting the dc
offset; that is, the data has a zero mean. For the results, this
implies that the output of the models expresses the change in
flow coefficient, rather than the flow coefficient itself.

In the following, Bode plots of the various identifiedmod-
els are given, using the proposed filtering and resampling.
Figure 7 depicts the models for a flow coefficient of 0.58 (far
away from stall). From Figure 7, one can recognize two peak
frequencies for the ARMAX model based systems. The first
fundamental frequency is at 79.6Hz; the second is at 114.6Hz.
For the ARXmodel based systems, the first fundamental fre-
quency is at 81Hz; the second is at 125.7Hz. Figure 8 depicts
the results for a flow coefficient of 0.55. The identification
resulted in some unstable models for the ARMAX based
systems; hence the results for these (blue lines) are disre-
garded for this flow coefficient. For the ARX based systems,
the first fundamental frequency is found at 77.9Hz, and the
second at 122.5Hz. Finally, Figure 9 depicts the outcome
of the identification experiments for a flow coefficient of
0.51 (close to stall). For the ARMAX based models, the first
fundamental frequency is found at 79.6Hz and the second at
113Hz. It is interesting to note that, for theARXbasedmodels,
three fundamental frequencies are found. In particular, for
the ARX based models, the first fundamental frequency is
found at 44.6Hz, the second frequency at 81Hz, and the third
at 114Hz.These values seem to be close to the rotor frequency
and its harmonics. However, the rotor frequency and BPF are
filtered out using notch filters. At a flow coefficient of 0.51,
the simulated output from the identifiedmodel and the actual
output (change of flow coefficient) are plotted in Figure 10.
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Figure 8: Bode plot forARX (black) andARMAX (blue) realization;
flow coefficient = 0.55. Data is filtered and resampled prior to system
identification.
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Figure 9: Bode plot forARX (black) andARMAX (blue) realization;
flow coefficient = 0.51. Data is filtered and resampled prior to system
identification.

A test to see if the extractedmodels can predict the output
should provide indication if these frequencies are based on
residuals of the rotor frequency or if they actually model the
coupling dynamics between the injection and the pressure
rise coefficient. Comparing Figures 10 and 11, the effect of the
optimization is shown by the smoother output of the simu-
lated model due to optimizing the singular values, and hence
reducing the noise influence.

A similar observation can be made for the ARMAX
models shown in Figures 12 and 13. Here, the ARMAXmodel
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Figure 10: Simulated and measured output using optimized ARX
(balanced realization) model at flow coefficient 0.51.
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Figure 11: Simulated andmeasured output using no optimized ARX
(balanced realization) model at flow coefficient 0.51.

using no optimization for the realization shows marginal sta-
bility properties (Figure 13).The performance of the ARMAX
model is much improved and yields a stable system, shown in
Figure 12. When overlaying the injection pressure measure-
ments, as shown in Figure 14, the correlation between the
injection pressure and the ARX model outputs is evident.
The ARMAXmodel does capture this behavior too; however
the output is inverted. Comparing the simulated output
(Figure 10) with the injection pressure (Figure 14) one could
conclude that the model picks up the input as a direct trans-
mission term, representing the coupling in a static fashion.
Noticing the scale of the simulated and measured response,
the extracted dynamics is about half of the measured output
in terms of magnitude. The optimization of the singular
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Figure 12: Simulated and measured output using optimized
ARMAX (balanced realization) model at flow coef. 0.51.

values seems to improve the performance of the extracted
models (i.e., more smooth and clean signals):

𝐴

=
[[[[[[[[[[[
[

0.2298 −0.7303 0.0530 0.0037 −0.0662 0.0807
0.7445 0.1449 −0.1724 −0.0107 0.0978 −0.0975
−0.0301 −0.1426 0.3629 0.6134 0.2566 −0.3255
0.0151 0.1066 −0.3969 0.6055 −0.2325 0.2749
−0.0484 −0.1086 −0.3493 −0.0472 −0.7094 −0.5789
−0.0567 −0.1118 −0.4465 −0.0500 0.5872 0.3185

]]]]]]]]]]]
]

,

𝐵 = [0.1557 −0.0893 −0.1342 0.1043 −0.0726 −0.0549]𝑇 ,
𝐶 = [−0.1407 −0.1113 −0.1719 −0.0065 0.0698 −0.0553] ,
𝐷 = [0.0504] .

(44)

The system given by the optimized ARXmodel (balanced
realization) can be given in state-space form (see (1) and (2))
as shown above. Looking at the 𝐷 term, the direct transmis-
sion term, themagnitude is comparable to the elements in the
other state-spacematrices. Hence the system is not static; that
is, the output is a combination of the dynamic part (the 𝐴, 𝐵,
and 𝐶matrices) and the direct transmission matrix𝐷.

The ARX/ARMAXmodel order is set to 𝑝1 = 12. As these
singular values are optimized using a TS algorithm, the mag-
nitude of the cost function—as defined by (40)—is plotted
versus the number of iterations. This is shown in Figure 15.

For the simulations, a total of 45Markov parameters were
used to construct the block Hankel matrix given in (20) and
(30). The computation of the ARMAX model used 𝑛1 = 2,
and the TS algorithm is run for 200 iterations. A Tabu list and
promising list of length 10 is used, that is, allowing 10 regions
to be included in the intensification portion of the ETS
algorithm, while keeping the last 10 steps of the search as
forbidden moves.



10 International Journal of Rotating Machinery

0 200 400 600 800 1000 1200

0

0.05

0.1

Time index k

Time index k

Output of nonoptimized ss-ARMAX and balanced realization

0 200 400 600 800 1000 1200

0

0.05

0.1
Measured output

−0.05

−0.1

−0.05

−0.1

M
ag

ni
tu

de
M

ag
ni

tu
de

Figure 13: Simulated and measured output using (no optimized)
ARMAX (balanced realization) model at flow coefficient 0.51.
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Figure 14: Injection pressure plot for flow coefficient 0.51, validation
data.

6.2. Identification Results for Throttle Movement and Overall
Dynamics. The proposed optimization embedded in the
identification algorithm and the different cost functions are
first tested using simulations. A simple second-order system
with a natural frequency of 17Hz is utilized. The simulations
are carried out using different process and measurement
noise levels. For each case, 20 simulations are used to
statistically characterize and compare the performance of the
proposed identification routines.The ETS algorithm uses 200
iterations for each simulation; the model order of the ARX
and ARMAX models is 𝑝1 = 15. For the construction of
the Hankel matrix (30), 75 Markov parameters are used. The
search area around the singular values is set to be ±10% of the
nominal value of the largest singular value. The computation
of the residual sequence for the ARMAX model uses two
steps; that is, ℎ𝑛1 = 2. Table 2 lists the results of the simulation
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Figure 15: Cost during TS optimization.

using noise values of 1% and 5% standard deviation. For each
approach, the nominal value (nom.), the optimized value
using (40) (opt.), and (41) (opt. 𝜔) are provided as the mean
value and the standard deviation. For both cost functions, the
weighting coefficient is set as 𝜆𝑖 = 2.

The error squared and correlation coefficients are com-
puted based on 1000 validation data points. In Table 2, the
two best performing algorithms’ results are highlighted. It is
evident from Table 2 that the error of the ARMAX model is
greatly reduced using the proposed optimization. The results
of the ARMAX model and ARX using prior knowledge of
the natural frequency indicate having more consistent results
based on their lower standard deviation values compared to
the standard ARX model. Note also that the error and corre-
lation incorporate the noise as part of the signal. Hence, using
the methods which do not incorporate the knowledge of the
natural frequencymay be prone tomodel the noise by overfit-
ting. Using a higher noise level, Table 3 presents the simula-
tion results with 10% and 15% noise level.

From the inspection of these results, we conclude that the
ARX andARMAXbasedmodel identificationwith optimiza-
tion either with or without prior knowledge of the natural
frequency works sufficiently well for use of identifying the
overall system dynamics of the compressor system. Consid-
ering the overall dynamics of the compressor system between
the input (throttle movements) and the corresponding pres-
sure rise coefficient, the proposed system identification algo-
rithmwith prior information of the natural frequency is used.
The identified model fits well for the three different flow
coefficients of 0.51, 0.55, and 0.58, indicating that the overall
dynamics does not change noticeably during change of oper-
ating point. It is expected that this may change, as the operat-
ing point gets closer to stall. For the identification, the same
parameters are used as given in the simulation section. The
resulting natural frequency of the extracted model is 17.1 Hz
using the ARMAX base model with optimum 𝜔 and 16.8Hz
for the ARX base model with optimum 𝜔, that is, using (41).
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Table 2: Simulation results with 1% and 5% noise std.

Error squared Correl. coef.[—] Natural freq.[Hz] Natural freq.
error [%]

ARX-nom. 1% 1.5154 0.9338 16.9958 0.0247
Mean 5% 1.5159 0.9311 17.0211 0.1241
ARX-nom. 1% 0.0456 0.0078 0.0126 0.0388
Stand. dev. 5% 0.0428 0.0057 0.0993 0.3552
ARX-opt. 1% 1.4606 0.9337 16.5024 2.9272
Mean 5% 1.4408 0.9383 16.5826 2.4553
ARX-opt. 1% 0.0633 0.0073 0.4595 2.7031
Sta. Dev. 5% 0.0544 0.0058 0.4590 2.3990
ARX-opt 𝜔 1% 1.4837 0.9321 16.9763 0.1394
Mean 5% 1.4828 0.9317 16.9946 0.0317
ARX-opt 𝜔 1% 0.0369 0.0086 0.0909 0.3359
Stand. dev. 5% 0.0494 0.0051 0.0561 0.1756
ARMAX- 1% 23.4750 0.9200 17.1773 1.0429
nom. Mean 5% 36.4212 0.7272 15.1183 11.069
ARMAX- 1% 24.6217 0.0721 4.4278 12.1042
nom. Std. 5% 66.8224 0.3197 9.6057 26.5340
ARMAX- 1% 1.4761 0.9359 16.4052 3.4997
opt. Mean 5% 1.4676 0.9364 16.5794 2.4741
ARMAX- 1% 0.0710 0.0070 0.4461 2.6227
opt. Std. 5% 0.0580 0.0054 0.3955 2.1698
ARMAX-𝜔 1% 1.5249 0.9343 16.9840 0.0941
opt. Mean 5% 1.4866 0.9317 17.0024 0.0141
ARMAX-𝜔 1% 0.0607 0.0054 0.0445 0.1716
opt. Std. 5% 0.0619 0.0045 0.0952 0.3731

The identified model in discrete time is given in the Appen-
dix. Comparing the results of the nonoptimummethods with
the resulting identified model, the natural frequencies are
well off the known frequency of 17Hz. For example, the
ARX based system identification yields a natural frequency of
2,191Hz. The incorporation of the a priori information also
helped the correlation of the estimated output to improve
considerably compared to the nonoptimum identification
method treated in this work.

6.3. Identification Results for Injection and Blade Tip Flow
Dynamics. For the identification of the dynamics within the
blade passage, sensors 2 to 7 are used to capture the resulting
dynamics at the blade tip area. As the sensors measure the
pressures at all times, the data does not correspond to a single
blade passage (the compressor runs at 2400 rpm). Ahall effect
sensor is used to phase lock the data and computes the pres-
sure distribution within the blade passage. A sample pressure
distribution is given in Figure 16 for a flow coefficient of 0.58.
The computation of the pressure distribution as shown in
Figure 16 requires averaging signals over hundreds of rota-
tions.

For the system identification of the dynamics within the
blade passage, the phase locking approach will not provide

Rotor pitch (/chord)

Ca
x 0.5

0.8

0 200 400−200−400−600−800−1000

−0.1

Figure 16: Pressure distribution within the blade passage for a
section of the compressor.The units for the pressure are in [Pa], Cad
is the axial tip chord, and the rotor pitch is a normalized parameter
relative to blade chord.

sufficient information, as only approximately 2% of the data
can be associated with one rotation of the blade passage. We
assume that the measured data of one blade passage corre-
sponds to the state of a set of blade passages at that time.
This is not to say that all blade passages have the same flow
distribution at a given time.We rather state that the condition
of the flow is similar. By using this assumption, we propose to
use an information based entropymeasure for the state of the
dynamics within the blade passage. Recent work utilizes the
correlation coefficient between the pressure data of the blade
passage and the pressure data corresponding to the same
blade passage one revolution prior.The correlation coefficient
is used to characterize the state of flow in a blade passage.The
lower the correlation coefficient, the more unsteady the flow.
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Table 3: Simulation results with 10% and 15% noise standard deviation.

Error sqr. Correlat. coef.[—] Natural freq.[Hz] Nat. freq.
error [%]

ARX-nom. 10% 1.4850 0.9351 17.0370 0.2176
Mean 15% 1.5144 0.9306 17.1098 0.6459

ARX-nom. 10% 0.0780 0.0050 0.0937 0.3668

Stand. dev. 15% 0.1067 0.0066 0.2080 1.0023

ARX-opt. 10% 1.4723 0.9329 16.3853 3.6159

Mean 15% 1.4866 0.9390 16.3792 3.6518

ARX-opt. 10% 0.0568 0.0042 0.2628 1.5461

Sta. Dev. 15% 0.0782 0.0044 0.5484 3.1678

ARX-opt. 𝜔 10% 1.5583 0.9313 16.9356 0.3788

Mean 15% 1.5069 0.9342 16.9560 0.2588

ARX-opt. 𝜔 10% 0.0545 0.0063 0.0673 0.3596

Stand. dev. 15% 0.0814 0.0067 0.0687 0.2473

ARMAX- 10% 26.223 0.8083 11.9832 29.510

nom. Mean 15% 93.074 0.5015 24.5364 44.332

ARMAX- 10% 34.234 0.1483 8.9178 30.975

nom. Std. 15% 108.29 0.5021 26.108 137.97

ARMAX- 10% 1.4847 0.9365 16.6365 2.1382

opt. Mean 15% 1.4377 0.9364 16.4029 3.5123

ARMAX- 10% 0.0573 0.0070 0.4485 2.1277

opt. Std. 15% 0.0910 0.0071 0.3980 2.3409

ARMAX 𝜔 10% 1.5181 0.9297 17.0026 0.0153
opt Mean 15% 1.5093 0.9320 16.9523 0.2806

ARMAX 𝜔 10% 0.0884 0.0067 0.0898 0.3178

opt. Std. 15% 0.0555 0.0043 0.0671 0.2085

By using an entropy measure, there is no need to utilize data
from over one rotation of the compressor. This entropy can
be computed directly with the data present and hence has
the same sampling frequency as the input. Therefore, we can
associate the state of fluid flow with one characteristic num-
ber. The Shannon entropy is commonly used in information
theory andmeasures the amount of information contained in
amessage. Here, one uses the entropy of a signal and classifies
its predictability by a low entropy value and its randomness
or amount of disorder by a large entropy value. The entropy
is computed as

𝜁𝑦 = −
𝑘𝑏∑
𝑖=1

{𝑝𝑖 × log2 (𝑝𝑖)} , (45)

where 𝑘𝑏 = 1 + log(𝜙𝑦) is the number of bins for the con-
struction of the histogram, 𝜙𝑦 is the set of data to be used for
the computation, and 𝑝𝑖 is the bin probability. An extension
to the Shannon entropy is the spectral entropy, which can be

used to characterize the distribution of energy in a signal.The
spectral entropy can be computed as

𝜁𝜔 = −
𝑓=𝑓𝑠/2∑
𝑓=−𝑓𝑠/2

PSD𝑛 (𝑓) log2 {PSD𝑛 (𝑓)} , (46)

where PSD is the Power Spectral Density, 𝑓 is the frequency,
and PSD𝑛(𝑓) = PSD(𝑓)/∑𝑓=𝑓𝑠/2

𝑓=−𝑓𝑠/2
PSD(𝑓) is the normalized

PSD.
By assuming equivalent flow condition at a given time for

a set of blade passages, we artificially increase the spectral
entropy value, due to the variation of flow energy among
different blade passages at a given time. The entropy can be
assessed at each sensor location and hence provides a snap-
shot of the flow characteristics.This is shown schematically in
Figures 17 and 18 which depict the computed spectral entropy
of the leading sensor (Sensor 2) using (46). For the first part
of the time history, no injection is used, while, for the second
part, injection is used in some random fashion (on/off). In
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Entropy

Figure 17: Entropy as description for current state of flow within a
blade passage.
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Figure 18: Spectral entropy for leading sensor.The first part of time
series is without injection; second part is with injection.

information theory, often the zero frequency component of
the spectral entropy is disregarded in order to measure a
signal’s true disorder. Figure 18 depicts the spectral entropy
with (red) and without (blue) the zero frequency component.
For the purpose of system identification, from this figure, we
can safely assume that the inclusion of the zero frequency
component has no effect on the inferred system dynamics.
It should be noted that the disadvantage of using an entropy
measure as the measured quantity—for characterizing the
flow—is that it increases the computational cost compared to
the correlation coefficient approach and hence is only useful
for offline work.

Figure 19 shows the spatial distribution of the spectral
entropy within a blade passage using the seven sensors as
given in Figure 2. The entropy values are given for two cases,
without air injection and with air injection, for three different
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Figure 19: Spectral entropy spatial distribution within a blade pas-
sage with and without injection.

Table 4: Identification results for dynamics in blade passage.

𝜙 = 0.51[Hz] 𝜙 = 0.55[Hz] 𝜙 = 0.58[Hz]
ARX 52.4 90.4 101.6
ARX-optimum 54.3 90.4 116.5
ARMAX-optimum 54.4 90.4 116.7

flow coefficients. From Figure 19, it appears that the injection
affects primarily the entry of the blade passage where the
spectral entropy level is raised, primarily for a flow coefficient
close to stall (flow coefficient = 0.51). There is little effect due
to injection into the end of the blade passage for all other flow
coefficients.

Utilizing the optimized identification approaches for the
ERA with ARX and ARMAX base models, the identification
results for the dynamics of the flow at the entry of the blade
passage are reduced to the fundamental natural frequency
and given in Table 4.

The identification utilized 45 Markov parameters to con-
struct the Hankel matrix given in (30) resulting in state-space
systems with three states, for each flow coefficient. The opti-
mization parameters are the same as those given for the sim-
ulation work stated earlier. Considering the resulting natural
frequencies of the extracted state-space models, it is evident
that these frequencies greatly reduce in magnitude as they
approach the stall limits. The stall frequency is between 40%
and 50% of the rotating frequency (∼40Hz). As future work,
the convergence to this stall frequency will be investigated.
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7. Conclusions

In this work, we propose a system identification algorithm
utilizing a TS based realization. The TS optimization along
with the system identification algorithm is used to investi-
gate two different model structures and their characteristics
applied to an axial compressor system. In particular, three
dynamical models are extracted which characterize input-
output behavior at different levels of the compressor system.
One of these models describes the relationship between air
injection at the blade tip and the resulting overall compressor
dynamics represented by the computed change in flow coeffi-
cient. Considering the presented results: injection at the tip of
the leading edge of the compressor blade has an influence on
the overall dynamics of the compressor.These types of coupl-
ing dynamics may be of interest in developing more efficient
control schemes for compressor control. Such controllers can
contribute to extending the stall margin improvement (SMI)
and run axial compressors at higher efficiencies. Another
model extracted using the proposed identification algorithm
captures the dynamics between the throttle movement and
the overall dynamics as measured by the change in the
computed flow coefficient—using measured data points. The
proposed identification scheme embeds prior knowledge of
the compressor and therefore guides the identification to
more accurate results. Finally, the proposed identification
algorithm is used to infer a model relating the air injec-
tion—treated as an input—at the blade time to the resulting
flow dynamics near the tip of the compressor blade. At this
stage, such models relating the air injection to flow charac-
terizations near the tip may help in gaining a better under-
standing of the effect from the air injection, its reach into the
blade passage, and its potential stall dynamics at this location.
The proposed identification scheme with an embedded TS
optimization algorithm as presented in this work seems to be
able to aid in developing any of the threemodels stated above.

Appendix

Discrete time state-space model characterizing the dynamics
between throttle movements and pressure rise coefficient
changes is

𝐴 = [[
[
1.0204 0.0710 0.0371
−0.0710 0.8479 −0.1963
0.0371 0.1963 0.8667

]]
]
,

𝐵 = [[
[
0.0839
0.1028
−0.2311

]]
]
,

𝐶 = [−0.0839 0.1028 0.2311] ,
𝐷 = [−0.1259] .

(A.1)
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