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Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform
theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use
of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed
method. At last, effects of the fraction order and the time delay on synchronization are further researched.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], there has
been a significant interest in developing powerful techniques
for chaos synchronization in the past 20 years. Some different
regimes of chaos synchronization have been studied. They
contain partial synchronization [2], complete synchroniza-
tion [3, 4], phase synchronization [5, 6], generalized syn-
chronization [7, 8], projective synchronization [9], and lag
synchronization [10]. Of course, Robust synchronization is
an important aspect of chaos synchronization. Based on the
Lyapunov stability theory andLMI technique, a new sufficient
criterion is established for chaos robust synchronization [11].
By use of the sliding mode control technique, a robust
control scheme is established even when the parameter
uncertainty and external perturbation are present [12]. A
robust antisynchronization scheme is proposed according
to multiple-kernel least squares support vector machine
modeling for two uncertain chaotic systems [13]. Many
potential applications of chaos synchronization, especially in
secure communications of analog and digital signals and for
developing safe and reliable cryptographic systems, chemical
oscillators, and electronic systems, have been researched.

It is that delayed differential equations have been largely
investigated in [14, 15] and references cited therein. Time
delays and time-varying delays are recently introduced to
chaotic systems; for example, see [16–19]. However, most of

these publications are for integer-order or typical differential
equations. Although fractional calculus is a 300-year-old
mathematical topic, for many years it was not used in physics
and engineering. During the last 10 years or so, fractional
calculus starts to become focus of attention of physicists and
engineers [20, 21]. There are many known systems to display
fractional-order dynamics, such as dielectric polarization,
electromagnetic waves, and quantum evolution of complex
systems. Thus it has been a new trend, that is, the fractional
power of the control system dynamics [22–35].

According to the Poincare-Bendixon theorem [22], an
integer order chaotic nonlinear systemmust have aminimum
order of 3 for chaos to appear. However, it is not the case
in the fractional order nonlinear systems. Some examples
in the respect are Wu et al. [23] (unified system), Lu and
Chen [24] (Chen system), and Lu [25] (Ikeda system). By
using Lambert function, the analytical stability bound is
obtained for delayed second-order systems with repeatable
poles and the bound is obtained delayed linear time-invariant
fractional-order dynamic systems [26, 27]. Based on the
Laplace transform theory, synchronization scheme to chaotic
fractional-order Chen systems is derived in [28]; Deng
et al. [29] introduced a characteristic equation for the n-
dimensional linear fractional differential system with multi-
ple time delays. In line with the stability theorem of linear
fractional systems, a necessary condition is given to check
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the chaos synchronization of fractional systems with incom-
mensurate order [30]. In [31], Shao et al. proposed a method
to achieve projective synchronization of the fractional order
chaotic Rossler system. In [32], an analytical justification was
proposed for phase synchronization of fractional differential
equations. A stability test procedure was proposed for linear
nonhomogeneous fractional order systems with a pure time
delay [33]. Taghvafard and Erjaee [34] studied the phase and
antiphase synchronization between two identical and non-
identical fractional order chaotic systems using techniques
from active control theory. The effect of delay on the chaotic
behaviour has been investigated for the first time in the
literature [35].

However, there are few results about chaos synchroniza-
tion of the fractional order time-delay chaotic systems. In
our work, we give an improved version of Adams-Bashforth-
Moultonmethod. By use of active control technique, the con-
ditions for achieving synchronization of different fractional
order time-delay chaotic systems are analyzed based on the
Laplace transform theory. Then effects of the fraction order
and the time delay on synchronization are further analyzed.

The organization of this paper is as follows. In Section 2,
some definitions and systems are given and then an improved
version of Adams-Bashforth-Moulton method is introduced.
In the following three sections, we synchronize the following
fractional systems using active control method: (i) Liu with
Liu, (ii) Lü with Chen, and (iii) Lorenz with Chen. The
effectiveness of our work is verified through numerical
simulations. In Section 6, effects of the fraction order and the
time delay on synchronization are further researched. Finally
concluding remark is given.

2. Definitions and Systems

2.1. Fractional Calculus. There are several definitions of a
fractional-order differential system. In the following, we
introduce the most common one of them:

𝐷
𝑎

∗
𝑥 (𝑡) =

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝐽
𝑚−𝛼

𝑥
(𝑚)

(𝑡) , (1)

where 𝑚 = [𝛼]; that is, 𝑚 is the first integer which is not less
than 𝛼 (0 < 𝛼 < 1), 𝑥(𝑚) is the 𝑚-order derivative in the
usual sense, and 𝐽

𝛽

(𝛽 > 0) is the 𝛽-order Reimann-Liouville
integral operator with expression:

𝐽
𝛽

𝑦 (𝑡) =
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

𝑦 (𝜏) 𝑑
𝜏
. (2)

Here Γ stands for Gamma function, and the operator 𝐷𝛼
∗
is

generally called “𝛼-order Caputo differential operator” [33].

2.2. System Description. The fractional order Lorenz system
has recently been studied inmany references [36, 37].Herewe
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Figure 1: The fractional-order time-delay Lorenz chaotic attractors
with 𝜎 = 10, 𝜇 = 8/3, 𝑟 = 28, 𝛼 = 0.95, and 𝜏 = 0.4.

give a fractional order time-delay Lorenz system.The system
is described by

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝜎 (𝑦 − 𝑥) ,

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= 𝑟𝑥 − 𝑦 − 𝑥𝑧,

𝑑
𝛼

𝑧

𝑑𝑡𝛼
= 𝑥𝑦 − 𝜇𝑧 (𝑡 − 𝜏) ,

(3)

where 𝜎 = 10 is the Prandtl number, 𝑟 = 28 is the Rayleigh
number over the critical Rayleigh number, 𝜇 = 8/3 gives the
size of the region approximated by the system, and 𝜏 > 0 is
time delay. System (3) displays a chaotic attractor, as shown
in Figure 1.

In 1999, Chen and Ueta [38] introduced a new chaotic
system, which is similar but not topologically equivalent to
the Lorenz system. Without changing the model structure of
the system, we consider the fractional order time-delay Chen
system in the following form:

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝑎 (𝑦 − 𝑥) ,

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= (𝑐 − 𝑎) 𝑥 − 𝑥𝑧 + 𝑐𝑦,

𝑑
𝛼

𝑧

𝑑𝑡𝛼
= 𝑥𝑦 − 𝑏𝑧 (𝑡 − 𝜏) ,

(4)

where 𝑎, 𝑏, and 𝑐 are real parameters. When 𝑎 = 35, 𝑏 = 3,
and 𝑐 = 28, system (4) displays a chaotic attractor through
the suitable selection of time delay, as shown in Figure 2. The
fractional order time-delay Lü system is given by

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝑎
1
(𝑦 − 𝑥) ,

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= 𝑐
1
𝑥 − 𝑥𝑧,

𝑑
𝛼

𝑧

𝑑𝑡𝛼
= 𝑥𝑦 − 𝑏

1
𝑧 (𝑡 − 𝜏) ,

(5)

where 𝑎
1
= 35, 𝑏

1
= 3, and 𝑐

1
= 28. As shown in Figure 3,

system (5) displays a chaotic attractor through the suitable
selection of time delay.
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Figure 2: The fractional-order time-delay Chen chaotic attractors
with 𝑎 = 35, 𝑏 = 3, 𝑐 = 28, 𝛼 = 0.98, and 𝜏 = 0.2.
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Figure 3:The fractional-order time-delay Lü chaotic attractors with
𝑎
1
= 35, 𝑏

1
= 3, 𝑐

1
= 28, 𝛼 = 0.78, and 𝜏 = 1.

In 2009, Liu et al. proposed a novel three-dimensional
autonomous chaos system (called Liu system) [39].
Daftardar-Gejji and Bhalekar [40] studied a fractional
version of the chaotic system. Here we investigate a
fractional order time-delay Liu system as follows:

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= −𝑎
2
𝑥 − 𝑒𝑦

2

,

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= 𝑏
2
𝑥 − 𝑘𝑥𝑧,

𝑑
𝛼

𝑧

𝑑𝑡𝛼
= 𝑚𝑥𝑦 − 𝑐

2
𝑧 (𝑡 − 𝜏) ,

(6)

where 𝑎
2
= 1, 𝑏

2
= 2.5, 𝑐

2
= 5, 𝑒 = 1, 𝑘 = 4, and 𝑚 = 4. The

system can be in the chaotic state as shown in Figure 4.

2.3. Numerical Method. According to, [41–43] the predictor-
corrector scheme for system (4) is derived. Here we give
an improved version of Adams-Bashforth-Moulton method
[43]. Based on the fractional order time-delay Chen system,
let us illustrate this scheme.

The following differential equation:

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝑓 (𝑡, 𝑥) , 0 ≤ 𝑡 ≤ 𝑇,

𝑥
(𝑘)

(0) = 𝑥
(𝑘)

0
, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1,

(7)

is equivalent to the Volterra integral equation [42]

𝑥 (𝑡) =

𝑛−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘

𝑘!
+

1

Γ (𝛼)
∫

𝑡

0

𝑓 (𝜏1, 𝑥)

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏1. (8)
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Figure 4: The fractional-order time-delay Liu chaotic attractors
with 𝑎

2
= 1, 𝑏

2
= 2.5, 𝑐

2
= 5, 𝑒 = 1, 𝑘 = 4, 𝑚 = 5, 𝛼 = 0.985,

and 𝜏 = 0.002.

Let ℎ = 𝑇/𝑁, 𝑡
𝑛

= 𝑛ℎ (𝑛 = 0, 1, 2, . . . , 𝑁), and 𝑛1 = 𝜏/ℎ.
Then (8) can be discretized as follows:

𝑥
ℎ
(𝑡
𝑛+1

) =

𝑛−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘+1

𝑛

𝑘!
+

ℎ
𝛼

Γ (𝛼 + 2)
𝑓 (𝑡
𝑛+1

, 𝑥
𝜌

ℎ
(𝑡
𝑛+1

))

+
ℎ
𝛼

Γ (𝛼 + 2)
∑𝑎
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) ,

(9)

where

𝑎
𝑗,𝑛+1

=

{{{{

{{{{

{

𝑛
𝛼+1

− (𝑛 − 𝛼) (𝑛 + 1)
𝛼+1

, 𝑗 = 0

(𝑛 − 𝑗 + 2)
𝛼+1

+ (𝑛 − 𝑗)
𝛼+1

−2(𝑛 − 𝑗 + 1)
𝛼+1

, 1 ≤ 𝑗 ≤ 𝑛

1, 𝑗 = 𝑛 + 1,

𝑥
𝜌

ℎ
(𝑡
𝑛+1

) =

𝑛−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘+1

𝑛

𝑘!
+

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) ,

𝑏
𝑗,𝑛+1

=
ℎ
𝛼

𝛼
((𝑛 − 𝑗 + 1)

𝛼

− (𝑛 − 𝑗)
𝛼

) .

(10)

The error estimate is 𝑒 = Max |𝑥(𝑡
𝑗
) − 𝑥
ℎ
(𝑡
𝑗
)| = 𝑂(ℎ

𝜌

) (𝑗 =

0, 1, . . . , 𝑁) where 𝜌 = Min(2, 1 + 𝛼).
Applying the above method, (4) can be discretized as

follows:

𝑥
𝑛+1

= 𝑥
0
+

ℎ
𝛼

Γ (𝛼 + 2)
𝑎 (𝑦
𝜌

𝑛+1
− 𝑥
𝜌

𝑛+1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝛾
1,𝑗,𝑛+1

𝑎 (𝑦
𝑗
− 𝑥
𝑗
) ,

𝑦
𝑛+1

= 𝑦
0
+

ℎ
𝛼

Γ (𝛼 + 2)
[(𝑐 − 𝑎) 𝑥

𝜌

𝑛+1
− 𝑥
𝜌

𝑛+1
𝑧
𝜌

𝑛+1
+ 𝑐𝑦
𝜌

𝑛+1
]

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝛾
2,𝑗,𝑛+1

[(𝑐 − 𝑎) 𝑥
𝑗
− 𝑥
𝑗
𝑧
𝑗
+ 𝑐𝑦
𝑗
] ,

𝑧
𝑛+1

= 𝑧
0
+

ℎ
𝛼

Γ (𝛼 + 2)
(𝑥
𝜌

𝑛+1
𝑦
𝜌

𝑛+1
− 𝑏𝑧
𝜌

𝑛+1−𝑛1
)

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝛾
3,𝑗,𝑛+1

(𝑥
𝑗
𝑦
𝑗
− 𝑏𝑧
𝑗−𝑛1

) ,

(11)
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where

𝑥
𝜌

𝑛+1
= 𝑥
0
+

1

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝜔
1,𝑗,𝑛+1

𝑎 (𝑦
𝑗
− 𝑥
𝑗
) ,

𝑦
𝜌

𝑛+1
= 𝑦
0
+

1

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝜔
2,𝑗,𝑛+1

[(𝑐 − 𝑎) 𝑥
𝑗
− 𝑥
𝑗
𝑧
𝑗
+ 𝑐𝑦
𝑗
] ,

𝑧
𝜌

𝑛+1
= 𝑧
0
+

1

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝜔
3,𝑗,𝑛+1

(𝑥
𝑗
𝑦
𝑗
− 𝑏𝑧
𝑗−𝑛1

) ,

𝛾
𝑖,𝑗,𝑛+1

=

{{{{

{{{{

{

𝑛
𝛼+1

− (𝑛 − 𝛼) (𝑛 + 1)
𝛼+1

, 𝑗 = 0

(𝑛 − 𝑗 + 2)
𝛼+1

+ (𝑛 − 𝑗)
𝛼+1

−2(𝑛 − 𝑗 + 1)
𝛼+1

, 1 ≤ 𝑗 ≤ 𝑛

1, 𝑗 = 𝑛 + 1,

𝜔
𝑖,𝑗,𝑛+1

=
ℎ
𝛼

𝛼
((𝑛 − 𝑗 + 1)

𝛼

− (𝑛 − 𝑗)
𝛼

) ,

0 ≤ 𝑗 ≤ 𝑛, 𝑖 = 1, 2, 3.

(12)

3. Chaos Synchronization between Fractional
Order Time-Delay Liu and Chen System

In this section we study the synchronization between Liu and
Chen systems. Assuming that the Liu system drives the Chen
system, we define the drive (master) and response (slave)
systems as follows:

𝑑
𝛼

𝑥
1

𝑑𝑡𝛼
= −𝑎
1
𝑥
1
− 𝑒𝑦
2

1
,

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= 𝑏
1
𝑥
1
− 𝑘𝑥
1
𝑧
1
,

𝑑
𝛼

𝑧
1

𝑑𝑡𝛼
= 𝑚𝑥
1
𝑦
1
− 𝑐
1
𝑧
1
(𝑡 − 𝜏) ,

(13)

𝑑
𝛼

𝑥
2

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) ,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2
+ 𝑢
2
(𝑡) ,

𝑑
𝛼

𝑧
2

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) .

(14)

The unknown terms 𝑢
1
, 𝑢
2
, and 𝑢

3
in (14) are active con-

trol functions to be determined. Define the error functions
as

𝑒
1
= 𝑥
2
− 𝑥
1
, 𝑒

2
= 𝑦
2
− 𝑦
1
, 𝑒

3
= 𝑧
2
− 𝑧
1
. (15)

Equation (15) together with (13) and (14) yields the error
system

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) + 𝑎

1
𝑥
1
+ 𝑒𝑦
2

1
,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2
+ 𝑢
2
(𝑡) − 𝑏

1
𝑥
1
+ 𝑘𝑥
1
𝑧
1
,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) − 𝑚𝑥

1
𝑦
1
+ 𝑐
1
𝑧
1
(𝑡 − 𝜏) .

(16)

By using Matignon’s theorem [44], so we here define
active control function 𝑢

𝑖
(𝑖 = 1, 2, 3) as

𝑢
1
(𝑡) = − 3𝑒

1
− 2𝑒
1
(𝑡 − 𝜏) − 4𝑒

2

− 3𝑒
2
(𝑡 − 𝜏) − 𝑎

2
(𝑦
2
− 𝑥
2
) − 𝑎
1
𝑥
1
− 𝑒𝑦
2

1
,

𝑢
2
(𝑡) = − 6𝑒

2
− 5𝑒
2
(𝑡 − 𝜏) − (𝑐

2
− 𝑎
2
) 𝑥
2

+ 𝑥
2
𝑧
2
− 𝑐
2
𝑦
2
+ 𝑏
1
𝑥
1
− 𝑘𝑥
1
𝑧
1
,

𝑢
3
(𝑡) = − 2𝑒

1
− 𝑒
1
(𝑡 − 𝜏) − 8𝑒

2
− 3𝑒
2
(𝑡 − 𝜏)

− 10𝑒
3
− 7𝑒
3
(𝑡 − 𝜏) − 𝑥

2
𝑦
2
+ 𝑏
2
𝑧
2
(𝑡 − 𝜏)

+ 𝑚𝑥
1
𝑦
1
− 𝑐
1
𝑧
1
(𝑡 − 𝜏) .

(17)

Substituting (17) into (16), we achieve

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= −3𝑒

1
− 2𝑒
1
(𝑡 − 𝜏) − 4𝑒

2
− 3𝑒
2
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= −6𝑒

2
− 5𝑒
2
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= − 2𝑒

1
− 𝑒
1
(𝑡 − 𝜏) − 8𝑒

2

− 3𝑒
2
(𝑡 − 𝜏) − 10𝑒

3
− 7𝑒
3
(𝑡 − 𝜏) .

(18)

Then we start to prove that the error system (18) is
asymptotically stable; that is, the system (13) and the system
(14) with the active control law (17) are synchronized.

Taking the Laplace transformation in two sides of (18),
letting 𝐸

𝑖
(𝑠) = 𝐿(𝑒

𝑖
(𝑡)) (𝑖 = 1, 2, 3), and utilizing 𝐿(𝑑

𝛼

𝑒
𝑖
/

𝑑𝑡
𝛼

) = 𝑠
𝛼

𝐸
𝑖
(𝑠) − 𝑠

𝛼−1

𝑒
𝑖
(0) (see [21]), we obtain

𝑠
𝛼

𝐸
1
(𝑠) − 𝑠

𝛼−1

𝑒
1
(0)

= −3𝐸
1
(𝑠) − 2𝐸

1
(𝑠) 𝑒
−𝑠𝜏

− 4𝐸
2
(𝑠) − 3𝐸

2
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
2
(𝑠) − 𝑠

𝛼−1

𝑒
2
(0) = −6𝐸

2
(𝑠) − 5𝐸

2
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
3
(𝑠) − 𝑠

𝛼−1

𝑒
3
(0)

= −2𝐸
1
(𝑠) − 𝐸

1
(𝑠) 𝑒
−𝑠𝜏

− 8𝐸
2
(𝑠) − 3𝐸

2
(𝑠) 𝑒
−𝑠𝜏

− 10𝐸
3
(𝑠) − 7𝐸

3
(𝑠) 𝑒
−𝑠𝜏

.

(19)
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Equation (19) can be rewritten as follows:

𝐸
1
(𝑠) =

𝑠
𝛼−1

𝑒
1
(0) + (−4 − 3𝑒

−𝑠𝜏

) 𝐸
2
(𝑠)

𝑠𝛼 + 3 + 2𝑒−𝑠𝜏
,

𝐸
2
(𝑠) =

𝑠
𝛼−1

𝑒
2
(0)

𝑠𝛼 + 6 + 5𝑒−𝑠𝜏
,

𝐸
3
(𝑠) =

𝑠
𝛼−1

𝑒
3
(0) + (−2 − 𝑒

−𝑠𝜏

) 𝐸
1
(𝑠) + (−8 − 3𝑒

−𝑠𝜏

) 𝐸
2
(𝑠)

𝑠𝛼 + 10 + 7𝑒−𝑠𝜏
.

(20)

By use of the final-value theorem of the Laplace transforma-
tion, we have

lim
𝑡→+∞

𝑒
2
(𝑡) = lim
𝑠→0
+

𝑠𝐸
2
(𝑠) =

𝑠
𝛼

𝑒
2
(0)

𝑠𝛼 + 6 + 5𝑒−𝑠𝜏
= 0. (21)

At the same time, from (20), we can get

lim
𝑡→+∞

𝑒
1
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
1
(𝑠)

=
𝑠
𝛼

𝑒
1
(0) + 𝑠 (−4 − 3𝑒

−𝑠𝜏

) 𝐸
2
(𝑠)

𝑠𝛼 + 3 + 2𝑒−𝑠𝜏
= 0,

lim
𝑡→+∞

𝑒
3
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
3
(𝑠)

=
𝑠
𝛼

𝑒
3
(0) + 𝑠 (−2 − 𝑒

−𝑠𝜏

) 𝐸
1
(𝑠) + 𝑠 (−8 − 3𝑒

−𝑠𝜏

) 𝐸
2
(𝑠)

𝑠𝛼 + 10 + 7𝑒−𝑠𝜏

= 0.

(22)

The above analysis implies that the fractional-order drive
system (13) and the fractional-order response system (14)
with the active control law (17) are synchronized.

3.1. Simulation Research. Here, let 𝑎
1
= 1, 𝑏

1
= 2.5, 𝑐

1
= 5,

𝑒 = 1, 𝑘 = 4, 𝑚 = 5 in the Liu system and parameters of
the Chen system are taken as 𝑎

2
= 35, 𝑏

2
= 3, 𝑐

2
= 28.

The fractional order 𝛼 is taken to be 0.985 and assume 𝜏 =

0.002. The initial conditions for drive and response system
are 𝑥
1
(0) = −8, 𝑦

1
(0) = −2, 𝑧

1
(0) = −0.5 and 𝑥

2
(0) = 0.5,

𝑦
2
(0) = 1, 𝑧

2
(0) = 10, respectively. Thus initial conditions

for the error system are 𝑒
1
(0) = 8.5, 𝑒

2
(0) = 3, 𝑒

3
(0) = 10.5.

Figures 5(a)–5(c) shows the synchronization between Chen
and Liu system. The errors 𝑒

𝑖
(𝑡) for the drive and response

system are shown in Figure 5(d).

4. Chaos Synchronization between Fractional
Order Time-Delay Lü and Chen System

In this section we consider Lü system as the drive systems

𝑑
𝛼

𝑥
1

𝑑𝑡𝛼
= 𝑎
1
(𝑦
1
− 𝑥
1
) ,

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= 𝑐
1
𝑥
1
− 𝑥
1
𝑧
1
,

𝑑
𝛼

𝑧
1

𝑑𝑡𝛼
= 𝑥
1
𝑦
1
− 𝑏
1
𝑧
1
(𝑡 − 𝜏) ,

(23)

and the Chen system as the response system

𝑑
𝛼

𝑥
2

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) ,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2
+ 𝑢
2
(𝑡) ,

𝑑
𝛼

𝑧
2

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) .

(24)

The unknown terms 𝑢
1
, 𝑢
2
, 𝑢
3
in (24) are active control

functions to be determined. Define the error functions as

𝑒
1
= 𝑥
2
− 𝑥
1
, 𝑒

2
= 𝑦
2
− 𝑦
1
, 𝑒

3
= 𝑧
2
− 𝑧
1
, (25)

Equation (25) together with (23) and (24) yields the error
system

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) − 𝑎

1
(𝑦
1
− 𝑥
1
) ,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2
+ 𝑢
2
(𝑡) − 𝑐

1
𝑦
1
+ 𝑥
1
𝑧
1
,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) − 𝑥

1
𝑦
1
+ 𝑏
1
𝑧
1
(𝑡 − 𝜏) .

(26)

By using of the Matignon’s theorem [44], so we here
define active control function 𝑢

𝑖
(𝑖 = 1, 2, 3) as

𝑢
1
(𝑡) = − 4𝑒

1
− 3𝑒
1
(𝑡 − 𝜏) − 𝑎

2
(𝑦
2
− 𝑥
2
)

+ 𝑎
1
(𝑦
1
− 𝑥
1
) ,

𝑢
2
(𝑡) = − 6𝑒

1
− 3𝑒
1
(𝑡 − 𝜏) − 7.5𝑒

2
− 5.3𝑒

2
(𝑡 − 𝜏)

− 3𝑒
3
− 𝑒
3
(𝑡 − 𝜏) − (𝑐

2
− 𝑎
2
) 𝑥
2
+ 𝑥
2
𝑧
2

− 𝑐
2
𝑦
2
+ 𝑐
1
𝑦
1
− 𝑥
1
𝑧
1
,

𝑢
3
(𝑡) = − 8𝑒

1
− 4𝑒
1
(𝑡 − 𝜏) − 9𝑒

3
− 2𝑒
3
(𝑡 − 𝜏)

− 𝑥
2
𝑦
2
+ 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑥

1
𝑦
1
− 𝑏
1
𝑧
1
(𝑡 − 𝜏) .

(27)
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Figure 5: Chaos synchronization between (13) and (14). (a) Signals 𝑥
1
, 𝑥
2
. (b) Signals 𝑦

1
, 𝑦
2
. (c) Signals 𝑧

1
, 𝑧
2
. (d) Error system.

Substituting (27) into (26), we achieve

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= −4𝑒

1
− 3𝑒
1
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= − 6𝑒

1
− 3𝑒
1
(𝑡 − 𝜏) − 7.5𝑒

2

− 5.3𝑒
2
(𝑡 − 𝜏) − 3𝑒

3
− 𝑒
3
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= −8𝑒

1
− 4𝑒
1
(𝑡 − 𝜏) − 9𝑒

3
− 2𝑒
3
(𝑡 − 𝜏) .

(28)

Then we start to prove that the error system (28) is
asymptotically stable, that is, the system (23) and the system
(24) with the active control law (27) are synchronized.

Taking the Laplace transformation in two sides of (28),
letting 𝐸

𝑖
(𝑠) = 𝐿(𝑒

𝑖
(𝑡)) (𝑖 = 1, 2, 3), and utilizing 𝐿(𝑑

𝛼

𝑒
𝑖
/

𝑑𝑡
𝛼

) = 𝑠
𝛼

𝐸
𝑖
(𝑠) − 𝑠

𝛼−1

𝑒
𝑖
(0) (see [18]), we obtain

𝑠
𝛼

𝐸
1
(𝑠) − 𝑠

𝛼−1

𝑒
1
(0)

= −4𝐸
1
(𝑠) − 3𝐸

1
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
2
(𝑠) − 𝑠

𝛼−1

𝑒
2
(0)

= −6𝐸
1
(𝑠) − 3𝐸

1
(𝑠) 𝑒
−𝑠𝜏

− 7.5𝐸
2
(𝑠)

− 5.3𝐸
2
(𝑠) 𝑒
−𝑠𝜏

− 3𝐸
3
(𝑠) − 𝐸

3
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
3
(𝑠) − 𝑠

𝛼−1

𝑒
3
(0)

= −8𝐸
1
(𝑠) − 4𝐸

1
(𝑠) 𝑒
−𝑠𝜏

− 9𝐸
3
(𝑠) − 2𝐸

3
(𝑠) 𝑒
−𝑠𝜏

.

(29)
Equation (29) can be rewritten as follows:

𝐸
1
(𝑠) =

𝑠
𝛼−1

𝑒
1
(0)

𝑠𝛼 + 4 + 3𝑒−𝑠𝜏
,

𝐸
2
(𝑠) =

𝑠
𝛼−1

𝑒
2
(0) + (−6 − 3𝑒

−𝑠𝜏

) 𝐸
1
(𝑠) + (−3 − 𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 7.5 + 5.3𝑒−𝑠𝜏
,

𝐸
3
(𝑠) =

𝑠
𝛼−1

𝑒
3
(0) + (−8 − 4𝑒

−𝑠𝜏

) 𝐸
1
(𝑠)

𝑠𝛼 + 9 + 2𝑒−𝑠𝜏
.

(30)

By use of the final-value theorem of the Laplace transforma-
tion, we have

lim
𝑡→+∞

𝑒
1
(𝑡) = lim
𝑠→0
+

𝑠𝐸
1
(𝑠) =

𝑠
𝛼

𝑒
1
(0)

𝑠𝛼 + 4 + 3𝑒−𝑠𝜏
= 0. (31)
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At the same time, from (30), we can get

lim
𝑡→+∞

𝑒
3
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
3
(𝑠)

=
𝑠
𝛼

𝑒
3
(0) + 𝑠 (−8 − 4𝑒

−𝑠𝜏

) 𝐸
1
(𝑠)

𝑠𝛼 + 9 + 2𝑒−𝑠𝜏
= 0

lim
𝑡→+∞

𝑒
2
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
2
(𝑠)

=
𝑠
𝛼

𝑒
2
(0) + 𝑠 (−6 − 3𝑒

−𝑠𝜏

) 𝐸
1
(𝑠) + 𝑠 (−3 − 𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 7.5 + 5.3𝑒−𝑠𝜏

= 0.

(32)

The above analysis implies that the fractional-order drive
system (23) and the fractional-order response system (24)
with the active control law (27) are synchronized.

4.1. Simulation Research. Here, let 𝑎
1
= 35, 𝑏

1
= 3, and 𝑐

1
=

28 in the Lü system and parameters of the Chen system are
the same as in Section 3.1. The fractional order 𝛼 is taken
to be 0.78 and assume 𝜏 = 1. The initial conditions for
drive and response system are 𝑥

1
(0) = 0.2, 𝑦

1
(0) = 0,

𝑧
1
(0) = 0.5, and 𝑥

2
(0) = −2, 𝑦

2
(0) = 2, 𝑧

2
(0) = −4,

respectively. Thus initial conditions for the error system (28)
are 𝑒
1
(0) = −2.2, 𝑒

2
(0) = 2, and 𝑒

3
(0) = −4.5. Figures 6(a)–

6(c) show the synchronization between Chen and Lü system.
The errors 𝑒

𝑖
(𝑡) for the drive and response system are shown

in Figure 6(d).

5. Chaos Synchronization between Fractional
Order Time-Delay Lorenz and Chen System

Assuming that Chen system is synchronized with Lorenz
system, define the drive system as

𝑑
𝛼

𝑥
1

𝑑𝑡𝛼
= 𝑎
1
(𝑦
1
− 𝑥
1
) ,

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= 𝑐
1
𝑥
1
− 𝑦
1
− 𝑥
1
𝑧
1
,

𝑑
𝛼

𝑧
1

𝑑𝑡𝛼
= 𝑥
1
𝑦
1
− 𝑏
1
𝑧
1
(𝑡 − 𝜏)

(33)

and the Chen system as the response system

𝑑
𝛼

𝑥
2

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) ,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2
+ 𝑢
2
(𝑡) ,

𝑑
𝛼

𝑧
2

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) .

(34)

Let 𝑒
1
= 𝑥
2
− 𝑥
1
, 𝑒
2
= 𝑦
2
− 𝑦
1
, and 𝑒

3
= 𝑧
2
− 𝑧
1
be error

functions. For synchronization it is essential that the errors
𝑒
𝑖
→ 0 as 𝑡 → 0. Then we can get

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= 𝑎
2
(𝑦
2
− 𝑥
2
) + 𝑢
1
(𝑡) − 𝑎

1
(𝑦
1
− 𝑥
1
) ,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= (𝑐
2
− 𝑎
2
) 𝑥
2
− 𝑥
2
𝑧
2
+ 𝑐
2
𝑦
2

+ 𝑢
2
(𝑡) − 𝑐

1
𝑦
1
+ 𝑥
1
𝑧
1
+ 𝑦
1
,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= 𝑥
2
𝑦
2
− 𝑏
2
𝑧
2
(𝑡 − 𝜏) + 𝑢

3
(𝑡) − 𝑥

1
𝑦
1
+ 𝑏
1
𝑧
1
(𝑡 − 𝜏) .

(35)

By using Matignon’s theorem [44], so we here define
active control function 𝑢

𝑖
(𝑖 = 1, 2, 3) as

𝑢
1
(𝑡) = − 8𝑒

1
− 7𝑒
1
(𝑡 − 𝜏) − 6𝑒

2
− 5𝑒
2
(𝑡 − 𝜏)

− 4𝑒
3
− 3𝑒
3
(𝑡 − 𝜏) − 𝑎

2
(𝑦
2
− 𝑥
2
) + 𝑎
1
(𝑦
1
− 𝑥
1
) ,

𝑢
2
(𝑡) = − 4.8𝑒

2
− 2.7𝑒

1
(𝑡 − 𝜏) − 2.9𝑒

3
− 1.3𝑒

3
(𝑡 − 𝜏)

− (𝑐
2
− 𝑎
2
) 𝑥
2
+ 𝑥
2
𝑧
2
− 𝑐
2
𝑦
2
+ 𝑐
1
𝑦
1
− 𝑥
1
𝑧
1
− 𝑦
1
,

𝑢
3
(𝑡) = − 2𝑒

3
− 𝑒
3
(𝑡 − 𝜏) − 𝑥

2
𝑦
2
+ 𝑏
2
𝑧
2
(𝑡 − 𝜏)

+ 𝑥
1
𝑦
1
− 𝑏
1
𝑧
1
(𝑡 − 𝜏) .

(36)

Substituting (36) into (35), we achieve

𝑑
𝛼

𝑒
1

𝑑𝑡𝛼
= − 8𝑒

2
− 7𝑒
2
(𝑡 − 𝜏) − 6𝑒

2
− 5𝑒
2
(𝑡 − 𝜏)

− 4𝑒
3
− 3𝑒
3
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
2

𝑑𝑡𝛼
= −4.8𝑒

2
− 2.7𝑒

2
(𝑡 − 𝜏) − 2.9𝑒

3
− 1.3𝑒

3
(𝑡 − 𝜏) ,

𝑑
𝛼

𝑒
3

𝑑𝑡𝛼
= −2𝑒

3
− 𝑒
3
(𝑡 − 𝜏) .

(37)

Then we start to prove that the error system (37) is asymptot-
ically stable; that is, the system (33) and the system (34) with
the active control law (36) are synchronized.

Taking the Laplace transformation in two sides of (37),
letting 𝐸

𝑖
(𝑠) = 𝐿(𝑒

𝑖
(𝑡)) (𝑖 = 1, 2, 3), and utilizing 𝐿(𝑑

𝛼

𝑒
𝑖
/

𝑑𝑡
𝛼

) = 𝑠
𝛼

𝐸
𝑖
(𝑠) − 𝑠

𝛼−1

𝑒
𝑖
(0) (see [18]), we obtain

𝑠
𝛼

𝐸
1
(𝑠) − 𝑠

𝛼−1

𝑒
1
(0) = − 8𝐸

1
(𝑠) − 7𝐸

1
(𝑠) 𝑒
−𝑠𝜏

− 6𝐸
2
(𝑠) − 5𝐸

2
(𝑠) 𝑒
−𝑠𝜏

− 4𝐸
3
(𝑠) − 3𝐸

3
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
2
(𝑠) − 𝑠

𝛼−1

𝑒
2
(0) = − 4.8𝐸

2
(𝑠) − 2.7𝐸

2
(𝑠) 𝑒
−𝑠𝜏

− 2.9𝐸
3
(𝑠) − 1.3𝐸

3
(𝑠) 𝑒
−𝑠𝜏

,

𝑠
𝛼

𝐸
3
(𝑠) − 𝑠

𝛼−1

𝑒
3
(0) = − 2𝐸

3
(𝑠) − 𝐸

3
(𝑠) 𝑒
−𝑠𝜏

.

(38)
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Figure 6: Chaos synchronization between (23) and (24). (a) Signals 𝑥
1
, 𝑥
2
. (b) Signals 𝑦

1
, 𝑦
2
. (c) Signals 𝑧

1
, 𝑧
2
. (d) Error system.

Equation (38) can be rewritten as follows:
𝐸
1
(𝑠)

=
𝑠
𝛼−1

𝑒
1
(0) + (−6 − 5𝑒

−𝑠𝜏

) 𝐸
2
(𝑠) + (−4 − 3𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 8 + 7𝑒−𝑠𝜏
,

𝐸
2
(𝑠) =

𝑠
𝛼−1

𝑒
2
(0) + (−2.9 − 1.3𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 4.8 + 2.7𝑒−𝑠𝜏
,

𝐸
3
(𝑠) =

𝑠
𝛼−1

𝑒
3
(0)

𝑠𝛼 + 2 + 𝑒−𝑠𝜏
.

(39)
By use of the final-value theorem of the Laplace transforma-
tion, we have

lim
𝑡→+∞

𝑒
3
(𝑡) = lim
𝑠→0
+

𝑠𝐸
3
(𝑠) =

𝑠
𝛼

𝑒
3
(0)

𝑠𝛼 + 2 + 𝑒−𝑠𝜏
= 0. (40)

At the same time, from (39), we can get
lim
𝑡→+∞

𝑒
2
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
2
(𝑠)

=
𝑠
𝛼

𝑒
2
(0) + 𝑠 (−2.9 − 1.3𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 4.8 + 2.7𝑒−𝑠𝜏
= 0

lim
𝑡→+∞

𝑒
1
(𝑡)

= lim
𝑠→0
+

𝑠𝐸
1
(𝑠)

=
𝑠
𝛼

𝑒
1
(0) + 𝑠 (−6 − 5𝑒

−𝑠𝜏

) 𝐸
2
(𝑠) + 𝑠 (−4 − 3𝑒

−𝑠𝜏

) 𝐸
3
(𝑠)

𝑠𝛼 + 8 + 7𝑒−𝑠𝜏

= 0.

(41)

So the error system (37) is asymptotically stable and chaos
synchronization between the two systems is achieved.

5.1. Simulation Research. Here, we take parameters for frac-
tional order time-delay Lorenz system as 𝑎

1
= 10, 𝑏

1
= 8/3,

and 𝑐
1
= 28 and parameters of the Chen system are the same

as in Section 3.1.The fractional order 𝛼 is taken to be 0.95 and
assume 𝜏 = 0.4. The initial conditions for the two systems are
𝑥
1
(0) = −8, 𝑦

1
(0) = 2, 𝑧

1
(0) = 3, and 𝑥

2
(0) = 4, 𝑦

2
(0) = −5,

and 𝑧
2
(0) = 6, respectively. Hence the initial conditions for

the error system (37) are 𝑒
1
(0) = 12, 𝑒

2
(0) = −7, and 𝑒

3
(0) = 3.

Figures 7(a)–7(c) show the synchronization between Chen
and Lorenz system.The errors 𝑒

𝑖
(𝑡) for the drive and response

system are shown in Figure 7(d).
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Figure 7: Chaos synchronization between (33) and (34). (a) Signals 𝑥
1
, 𝑥
2
. (b) Signals 𝑦

1
, 𝑦
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, 𝑧
2
. (d) Error system.

Table 1: Errors for different values of 𝛼 and 𝑡.

𝑡 𝛼 = 0.985 𝛼 = 0.92 𝛼 = 0.86 𝛼 = 0.79 𝛼 = 0.75 𝛼 = 0.72

𝑒
1
(𝑡)10
−5

5 14.810 53.589 64.378 60.895 55.085 49.929
8 5.4515 20.460 25.487 25.197 23.386 21.610
10 3.4284 13.070 16.534 16.655 15.629 14.563

𝑒
2
(𝑡)10
−5

5 1.4810 5.2970 6.3961 6.1012 5.5483 5.0483
8 0.55838 2.0920 2.6062 2.5806 2.3980 2.2177
10 0.3352 1.3509 1.7069 1.7190 1.6131 1.5029

𝑒
3
(𝑡)10
−5

5 3.0197 10.877 12.963 12.079 10.794 9.6725
8 1.0866 4.0671 5.0380 4.9228 4.5231 4.1391
10 0.67821 2.5795 3.2468 3.2359 3.0081 2.7774

6. Effects of Order 𝛼 and
Time Delay 𝜏 on Synchronization

Recently, fractional order chaotic systems have been focus
of attention. Generally speaking, there is a lowest order in a
fractional order chaotic system. From the literature [23–25],
we know that the order 𝛼 affects the behavior of fractional
chaotic dynamical systems. As shown in [35, 45], the time

delay 𝜏 also affects the behavior of chaotic dynamical systems.
In the section, we pay attention to the effects of the order 𝛼
and the delay 𝜏 on synchronization. In Table 1, some results
are given about the error functions for different values of
order in system (13) and system (14). Here experiments are
done for fixed value of the delay 𝜏 = 0.002. It is obvious
that the error in synchronization firstly increases and then
decreases as the order 𝛼 is decreased, which is not the case
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Table 2: Errors for different values of 𝜏 and 𝑡.

𝑡 𝜏 = 0.1 𝜏 = 0.4 𝜏 = 0.8 𝜏 = 1 𝜏 = 1.5 𝜏 = 2

𝑒
1
(𝑡)10
−6

30 6.4058 8.1702 10.551 11.816 13.629 17.216
32 5.5652 7.1822 9.3213 10.4366 13.0955 16.1873
35 4.8842 6.1556 8.0039 8.2546 10.0036 13.2583

𝑒
2
(𝑡)10
−6

30 5.3471 10.9933 15.9716 71.8276 12800 18800
32 4.7002 9.4500 78.9665 194.0404 63455 7420
35 3.9123 7.8744 15.0866 88.1245 4950 28500

𝑒
3
(𝑡)10
−6

30 7.4512 5.4716 2.1277 0.5743 3.1265 7.0165
32 6.5074 4.4264 1.7500 0.44107 2.9125 6.4450
35 5.4538 3.7911 1.4449 0.3588 2.4521 5.3607

in [46]. At the same time, we have summarized some results
about the error functions for different values of the time delay
𝜏 in system (23) and system (24). In these observations, we
take the order 𝛼 = 0.78. From Table 2, it is clear that the
error functions 𝑒

1
(𝑡) and 𝑒

2
(𝑡) become bigger as the delay 𝜏

is increased. But the error function 𝑒
3
(𝑡) firstly decreases and

then increases.

7. Conclusions

In the paper, chaos synchronization of different fractional
order time-delay chaotic systems is considered. Based on the
Laplace transform theory, the conditions for achieving syn-
chronization of different fractional order time-delay chaotic
systems are analyzed by use of active control technique.Then
numerical simulations are provided to verify the effectiveness
and feasibility of the developed method. Finally, effects of
the fraction order and the time delay on synchronization are
further discussed.
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