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The switched-inductor structure can be inserted into a traditional Buck-Boost converter to get a high voltage conversion ratio.
Nonlinear phenomena may occur in this new converter, which might well lead the system to be unstable. In this paper, a discrete
iteratedmappingmodel is established when the new Buck-Boost converter is working at continuous conduction current-controlled
mode. On the basis of the discrete model, the bifurcation diagrams and Poincare sections are drawn and then used to analyze
the effects of the circuit parameters on the performances. It can be seen clearly that various kinds of nonlinear phenomena are
easy to occur in this new converter, including period-doubling bifurcation, border collision bifurcation, tangent bifurcation, and
intermittent chaos. Value range of the circuit parameters that may cause bifurcations and chaos are also discussed. Finally, the time-
domain waveforms, phase portraits, and power spectrum are obtained by using Matlab/Simulink, which validates the theoretical
analysis results.

1. Introduction

In recent years, much attention was paid to the switched-
inductor structure because of its several unique character-
istics. One of the most remarkable feature of the switched-
inductor structure is that it can be combined with the
traditional DC-DC converters to provide new converters
with a steep voltage conversion ratio [1, 2]. The DC-DC con-
verter is strongly nonlinear system, and it has rich irregular
phenomena like subharmonic oscillations, time-bifurcation,
quasi-periodicity, chaos, and so on [3–8].

The nonlinear phenomena in the new Buck-Boost con-
verter may be rather complex than that in the traditional
converters, which will deteriorate the performance of the
converter to some extent. The bifurcation and the chaos in
traditional DC-DC converters were studied extensively [9–
14]. It was demonstrated that there was various kinds of
nonlinear phenomena in the traditional Buck-Boost con-
verter [15–17]. However, very little attention was paid to
complex behaviors in Buck-Boost converter combined with
the switched-inductor structure.

For this reason, the nonlinear phenomena in a current-
mode controlled Buck-Boost converter with switched-
inductor structure are studied in this paper. The discrete

iterated mapping model under continuous conduction mode
(CCM) is established.The bifurcation diagrams and Poincare
sections are drawn based on the discrete-time model, which
intuitively reflect the influence of the circuit parameters on
the system performance. It can be shown clearly that many
kinds of nonlinear phenomena existing in this new con-
verter, such as period-doubling bifurcation, border collision
bifurcation, tangent bifurcation, and intermittent chaos. At
last, the time-domain waveform, phase portraits, and power
spectrum under various load resistance are obtained by
Matlab/Simulink, which validates the conclusions that came
from the theoretical analysis. The research result provides an
important reference for engineering design and performance
analysis.

2. Operation Principle and
Modeling of the Converter

2.1. Operation Principle. The schematic of the new current-
mode controlled Buck-Boost converter with switched-
inductor structure is shown in Figure 1. In general, the value
of 𝐿
1
equals 𝐿

2
in this 𝐿-switching structure according to [1],

and all elements are assumed to be ideal ones. Let current
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Figure 1: Current-mode controlled buck-boost converter with
switched-inductor structure.

flowing through 𝐿
1
(i.e., 𝑖
𝐿
1

) be the control signal, operation
process of this system is described as follows. A feedback
path composed of an RS trigger and a comparator was used
to control switch 𝑆. In the comparator, the current 𝑖

𝐿
1

is
compared with a reference current 𝐼ref to generate on-off
signal. At the beginning of a cycle, switch 𝑆 is turned on. It
remains on state so that the 𝑖

𝐿
1

increases, until it reaches the
value 𝐼ref. Then, the switch 𝑆 is turned off, and it remains off
state until the next cycle begins. Thus, the converter toggles
between two linear configurations when it operates in CCM.
The switching topologies are shown in Figure 2.

As shown in Figure 2, 𝐿
1
and 𝐿

2
are being charged in

parallel when the switch is on;while they are being discharged
in series when the switch is off. Two parameters are defined as
follows: 𝐿eq is denoted as the equivalent inductor of 𝐿

1
and

𝐿
2
, and 𝑖eq is denoted as the current that flows through the

𝐿eq. And an assumption ismade that the switch 𝑆 is on during
[𝑡
0
, 𝑡
1
] and is off during [𝑡

1
, 𝑡
2
]. Therefore, both of these two

configurations can be characterized by a dynamic matrix and
an input matrix, say 𝐴

1
, 𝐴
2
and 𝐵

1
, 𝐵
2
, respectively.

Let 𝑥 = [𝑖eq 𝑢
𝐶]
𝑇 be a vector of state variables, the

differential equation of the configuration can be written as
follows during [𝑡

0
, 𝑡
1
]:

�̇� = 𝐴
1
𝑥 + 𝐵
1
𝐸, 𝑡

0
≤ 𝑡 ≤ 𝑡

1
, (1)

where

𝐴
1
= [

0 0

0 −
1

𝑅𝐶

] , 𝐵
1
= [

[

1

𝐿eq
0

]

]

. (2)

Similarly, the differential equation can be written as
follows during [𝑡

1
, 𝑡
2
]:

�̇� = 𝐴
2
𝑥 + 𝐵
2
𝐸, 𝑡

1
≤ 𝑡 ≤ 𝑡

2
, (3)

where

𝐴
2
=

[
[
[

[

0 −
1

𝐿eq
1

𝐶
−
1

𝑅𝐶

]
]
]

]

, 𝐵
2
= [

0

0
] . (4)
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Figure 2: Switching topologies of the converter. (a) Switch is on; (b)
switch is off.

Noting that there is a conversion between 𝐿
1
and 𝐿

2
from

parallel connection to series connection, the value of 𝐿eq
and 𝑖eq in (1) and (3) are not equal. Taking 𝐿

1
= 𝐿
2
into

consideration, we can get 𝐿eq and 𝑖eq in (1) as follows:

𝐿eq =
𝐿
1
× 𝐿
2

𝐿
1
+ 𝐿
2

=
1

2
𝐿
1
, 𝑖eq = 𝑖𝐿

1

+ 𝑖
𝐿
2

= 2𝑖
𝐿
1

. (5)

Also, we can get 𝐿eq and 𝑖eq in (3) as follows:

𝐿eq = 𝐿1 + 𝐿2 = 2𝐿1, 𝑖eq = 𝑖𝐿
1

= 𝑖
𝐿
2

. (6)

Considering that 𝑖
𝐿
1

is the control signal, we redefine
𝑥


= [𝑖𝐿
1

𝑢
𝐶]
𝑇 as a new vector in order to simplify

the derivation of the discrete iterated mapping model. And
the corresponding differential equations can be obtained
according to (1)–(6), as shown by

�̇�

= 𝐴


1
𝑥

+ 𝐵


1
𝐸, 𝑡

0
≤ 𝑡 ≤ 𝑡

1
, (7)

�̇�

= 𝐴


2
𝑥

+ 𝐵


2
𝐸, 𝑡

1
≤ 𝑡 ≤ 𝑡

2
, (8)

where 𝐴
1
= [
0 0

0 −1/𝑅𝐶
], 𝐴
2
= [
0 −1/(2𝐿

1
)

1/𝐶 −1/𝑅𝐶
], 𝐵
1
= [
1/𝐿
1

0
], and

𝐵


2
= [
0

0
].

According to the control theory, solutions of (7) and (8)
can be written as

𝑥

(𝑡
1
) = 𝑓
1
(𝑥

(𝑡
0
) , 𝑡
1
)

= 𝑒
𝐴


1
(𝑡
1
−𝑡
0
)
[𝑥

(𝑡
0
) + ∫

𝑡
1

𝑡
0

𝑒
𝐴


1
(𝑡
0
−𝜏)
𝐵


1
𝐸𝑑𝜏]

= 𝜙
1
(𝑡
1
− 𝑡
0
) [𝑥

(𝑡
0
) + ∫

𝑡
1

𝑡
0

𝜙
1
(𝑡
0
− 𝜏) 𝐵



1
𝐸𝑑𝜏] ,



Mathematical Problems in Engineering 3

𝑥

(𝑡
2
) = 𝑓
2
(𝑥

(𝑡
1
) , 𝑡
2
)

= 𝑒
𝐴


2
(𝑡
2
−𝑡
1
)
[𝑥

(𝑡
1
) + ∫

𝑡
2

𝑡
1

𝑒
𝐴


2
(𝑡
1
−𝜏)
𝐵


2
𝐸𝑑𝜏]

= 𝜙
2
(𝑡
2
− 𝑡
1
) [𝑥

(𝑡
1
) + ∫

𝑡
2

𝑡
1

𝜙
2
(𝑡
1
− 𝜏) 𝐵



2
𝐸𝑑𝜏] ,

(9)

where 𝜙
𝑖
(𝑡) = 𝑒

𝐴


𝑖
𝑡, 𝑖 = 1, 2; 𝜙

𝑖
(𝑡) is state transition matrix of

𝐴


𝑖
.

2.2. Discrete Iterated Mapping Model. In general, the discrete
timemodel can be established bymeans of stroboscopicmap,
S-switching map, or A-switching map.The stroboscopic map
was widely used to analyze the nonlinear phenomena in the
switching converters [18–20]. In this work, the discrete time
model of the Buck-Boost converter with switched-inductor is
obtained by using the stroboscopic map.

Let 𝑇 be the switching period of the switch 𝑆, 𝑖
1,𝑛

be the
instantaneous value of 𝑖

𝐿
1

at the beginning of 𝑛th cycle 𝑡 = 𝑛𝑇,
and 𝑢

𝑛
be the instantaneous value of 𝑢

𝐶
, then the solution of

the state equation (7) can be given as

𝑖
𝐿
1
(𝑡) = 𝑖

1,𝑛
+
𝐸𝑡

𝐿
1

,

𝑢
𝐶
(𝑡) = 𝑢

𝑛
𝑒
2𝑘𝑡
,

(10)

where 𝑘 = −1/2𝑅𝐶.
Also, when the converter is working during “off” period,

the solution of 𝑖
𝐿
1

and 𝑢
𝐶
in state equation (8) can be given as

𝑖
𝐿
1
(𝑡, ) = 𝑒

𝑘𝑡
(𝑐
1
cos𝑤𝑡 + 𝑐

2
sin𝑤𝑡) ,

𝑢
𝐶
(𝑡) = − (𝐿

1
+ 𝐿
2
) 𝑒
𝑘𝑡

× [(𝑘𝑐
1
+ 𝑐
2
𝑤) cos𝑤𝑡 + (𝑘𝑐

2
− 𝑐
1
𝑤) sin𝑤𝑡] ,

(11)

where

𝑅 >
1

2

√
𝐿
1
+ 𝐿
2

𝐶
, 𝑐
1
= 𝐼ref

𝑤 = √
1

(𝐿
1
+ 𝐿
2
) 𝐶

− (−𝑘)
2
,

(12)

and

𝑐
2
=
1

𝑤
(
−𝑢
𝑛
𝑒
2𝑘𝑡
𝑛

𝐿
1
+ 𝐿
2

− 𝑘𝑐
1
) . (13)

Based on the operating principle of the converter, the
switching condition of the system can be defined as

𝐼ref − 𝑖𝐿
1

(𝑡
𝑛
) = 0. (14)

According to (10) and (14), the on-time 𝑡
𝑛
can be obtained

by

𝑡
𝑛
= 𝐿
1
×
𝐼ref − 𝑖1,𝑛

𝐸
. (15)

If 𝑡
𝑛
≥ 𝑇 and the converter works in “on” state during the

whole 𝑛𝑇 ∼ (𝑛+1)𝑇, the values of 𝑢
𝑛
and 𝑖
1,𝑛

at the next clock
instant are given by

𝑖
1,𝑛+1

= 𝑖
1,𝑛
+
𝐸𝑇

𝐿
1

,

𝑢
𝑛+1

= 𝑢
𝑛
𝑒
2𝑘𝑇
.

(16)

If 𝑡
𝑛
< 𝑇, the converter works in “on” state during 𝑛𝑇 ∼

(𝑛𝑇 + 𝑡
𝑛
) and “off” state during (𝑛𝑇 + 𝑡

𝑛
) ∼ (𝑛 + 1)𝑇, the

mapping are given by

𝑖
1,𝑛+1

= 𝑒
𝑘𝑡
𝑚 (𝑐
1
cos𝑤𝑡

𝑚
+ 𝑐
2
sin𝑤𝑡

𝑚
) ,

𝑢
𝑛+1

= − (𝐿
1
+ 𝐿
2
) 𝑒
𝑘𝑡
𝑚

× [(𝑘𝑐
1
+ 𝑐
2
𝑤) cos𝑤𝑡

𝑚
+ (𝑘𝑐
2
− 𝑐
1
𝑤) sin𝑤𝑡

𝑚
] ,

(17)

where 𝑡
𝑚
is the off-time, and it can be calculated by

𝑡
𝑚
= 𝑇 × [1 − (

𝑡
𝑛

𝑇
) mod 1] . (18)

2.3. Voltage Conversion Ratio of the System. Let 𝑈
𝑖
and 𝑈

𝑜

be value of input voltage and output voltage at steady-state,
respectively. Ignoring the resistance of the inductors and
taking 𝐿

1
= 𝐿
2
into consideration, the voltage drop on 𝐿

1

during the “on” period can be written as

𝑈
𝐿
1

= 𝑈
𝑖
. (19)

The voltage drop on 𝐿
1
during the “off” period can be

written as

2𝑈
𝐿
1

= −𝑈
𝑜
. (20)

Thus, a voltage-second balance on 𝐿
1
can be written as

𝐷 ⋅ 𝑈
𝑖
+ (1 − 𝐷) ⋅ (−

1

2
𝑈
𝑜
) = 0 (21)

giving

𝑈
𝑜
=

2𝐷

1 − 𝐷
𝑈
𝑖
, (22)

where𝐷 is the duty cycle at steady-state.
Similarly, for a classical Buck-Boost converter, we can

easily get that

𝑈
𝑜
=

𝐷

1 − 𝐷
𝑈
𝑖
. (23)

Comparing (22) with (23), it can be seen that the voltage
conversion ratio of the new system is double that of the
classical one.

3. Analysis of Dynamic Characteristics

For the power converters, many kinds of methods like phase
portraits, bifurcation diagrams, and time-domain waveform
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Figure 3: Bifurcation diagram with different circuit parameters. (a) 𝐼ref as parameter; (b) 𝑅 as parameter; (c) 𝐸 as parameter.

can be used to analyze the nonlinear phenomenon in the
system. In this work, the bifurcation diagrams and Poincare
sections are drawn based on the discrete iterated mapping
model. Time-domain waveform, phase portraits, and power
spectrum are obtained by building simulation module in
Matlab/Simulink, which validates the theoretical analysis
results.

3.1. Bifurcation Diagrams. It can be seen clearly from Figure 1
that there are six major parameters in the system: the
reference current 𝐼ref, inductance 𝐿1 and 𝐿2, load resistance
𝑅, input voltage 𝐸, and capacitance𝐶. It is impossible to draw
all the bifurcation diagrams for all possible parameter values
and analyze them in detail in just one paper, so we present
only a few typical cases. In order to facilitate the analysis of
the complex dynamic behavior of the converter, (24) is given
to calculate the borderline of 𝑖

𝐿
1

, which is denoted by 𝐼
𝑏
.

Consider the following:

𝐼
𝑏
= 𝐼ref −

𝐸𝑇

𝐿
1

. (24)

Let reference current 𝐼ref vary from 2A to 13A with a
step of 0.02A while other parameters are fixed at 𝐸 = 24V,
𝐿
1
= 1mH, 𝐿

2
= 1mH, 𝐶 = 4 𝜇F, 𝑅 = 20Ω, and 𝑓 =

10KHz. Figure 3(a) shows the bifurcation diagram with 𝐼ref
as parameter, the dotted line in Figure 3(a) is the borderline
of 𝑖
𝐿
1

with the value of 𝐼
𝑏
= 𝐼ref − 2.4 according to (24).

This diagram shows clearly period doubling bifurcations at
𝐼ref = 3.25A. When 𝐼ref is equal to 5.25A, the period-2
orbit collides with the borderline and turns to 4-periodic.
Therefore, this period doubling phenomenon is not due to
a standard pitchfork bifurcation, but because of a border
collision bifurcation. The period-4 orbit goes through a
normal period doubling bifurcation at 𝐼ref = 6A and a
period-8 orbit is created. Then, this orbit collides with the
borderline again and turns into a chaotic orbit. Note that
the chaotic state degenerate to 3-periodic when 𝐼ref is nearly
equal to 11.5 A. This special phenomenon is called tangent
bifurcation, and the chaos that happened before tangent
bifurcation is called intermittent chaos.

The bifurcation diagramwith load resistance 𝑅 as param-
eter is shown in Figure 3(b). The load resistance 𝑅 is varied
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𝐼ref = 6.7A; (f) 𝐼ref = 9A; (g) 𝐼ref = 10.5A; (h) 𝐼ref = 11.1A.

from 10Ω to 55Ωwith a step of 0.05Ωwhile other parameters
are fixed at 𝐸 = 24 V, 𝐿

1
= 1mH, 𝐿

2
= 1mH,𝐶 = 4 𝜇F, 𝐼ref =

4A, and 𝑓 = 10KHz. Since the borderline is independent of
𝑅 according to (24),it is shown as a horizontal straight line
with 𝐼

𝑏
= 1.6A in this figure. And it can be seen clearly that

the period doubling bifurcation occurs at 𝑅 = 14Ω, then
the period-2 orbit collides with the borderline at 𝑅 = 30Ω

and a stable period-4 orbit is generated. The period-4 orbit
goes through a normal period doubling bifurcation at 𝑅 =

39Ω and a period-8 orbit is created, which collides with the
borderline at𝑅 = 40.5Ω and finally turns into a chaotic orbit.
It can be noted that there are no periodic windows within the
chaotic region.

The bifurcation diagram with input voltage 𝐸 as param-
eter is shown in Figure 3(c). The input voltage 𝐸 is varied
from 5V to 30V with a step of 0.05V while other parameters
are fixed at 𝑅 = 20Ω, 𝐿

1
= 1mH, 𝐿

2
= 1mH, 𝐶 = 4 𝜇F,

𝐼ref = 4A, and 𝑓 = 10KHz. Thus, the borderline of 𝑖
𝐿
1

can be obtained by 𝐼
𝑏
= 4 − 0.1 𝐸 according to (24). It

can be seen clearly from Figure 3(c) that with the change
of the input voltage 𝐸, its route to chaos is similar with
Figure 3(a), including period-doubling bifurcation, border
collision bifurcation,more than once tangent bifurcation, and
intermittent chaos. At the same time, the diagram reveals
that the bifurcation occurs with the decrease of 𝐸, which is
opposite to the change of 𝐼ref and 𝑅. And it is worth noting
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Figure 5: The time-domain waveform and phase portrait when 𝑅 = 10Ω. (a) Time-domain waveform; (b) phase portrait.

that the 3-periodic window is the most obvious periodic
window in the intermittent chaotic region.

3.2. Poincare Sections. Poincare sections can be an effective
method to analyze the dynamic characteristics of nonlinear
systems. According to nonlinear dynamics theory, the perfor-
mance of the system can be judged by observing the number
of the cutoff points on the Poincare sections. One point or a
few discrete points indicates that the converter is working in
periodical state, while the cutoff point with a fractal structure
reveals a chaotic behavior.

To prove that when the reference current 𝐼ref changes
from 2A to 13A, the converter exists; the nonlinear phe-
nomena shown is in Figure 3(a), Figure 4 gives the Poincare
sections under different value of 𝐼ref.

It can be seen clearly from Figures 4(a)–4(d) that the
points on the Poincare sections are discrete when 𝐼ref is
equal to 2A, 4A, 5.8 A, and 6.1 A, respectively. The converter
is working in period-1, period-2, period-4, and period-8
successively according to the number of the points. For
Figures 4(e) and 4(f), the cutoff points act as a banded
structure, indicating that the converter is operating in chaotic
state when 𝐼ref is equal to 6.7 A or 9A. Figures 4(g) and 4(h)
show that there is a 3-periodic window in the intermittent
chaotic region, and the 3-periodic orbit turns to period-
6 before it comes into chaos. The above consequences are
coinciding with the results shown in Figure 3(a). Therefore,
the Poincare sections further prove the correctness of the
discrete-time mapping model and reflect the operating state
of the converter under different value of 𝐼ref more vividly.

3.3. Time-Domain Waveform and Phase Portraits. The bifur-
cation diagram in Figure 3(b) shows that the converter
goes through period-1, period-2, period-4, and period-8 and
finally turns into intermittent chaos when the load resistance
increases from 10Ω to 55Ω. In order to prove the existence
of the above phenomena, we set up a simulation model by
Matlab/Simulink in this section according to Figure 1, and
we select different value of 𝑅 in this simulation model; the
corresponding time-domain waveforms and phase portraits
are shown inFigures 5, 6, 7, 8 and 9,

From Figures 5–8, we can easily find that when the load
resistance is equal to 10Ω, 20Ω, 35Ω, and 39.5Ω, the state of

the system is corresponding to period-1, period-2, period-4,
and period-8, respectively. Note that the phase portrait in
Figure 8(b) cannot reflect the periodicity of the converter
clearly, so we give the enlarged view of it in Figure 8(c) in
order to illustrate the number of the cycles better.

The time-domain waveform and phase portrait when the
load resistance is equal to 55Ω are shown in Figure 9. It can
be observed that the time-domain waveform appears to be
random, and there is a strange attractor in the phase portrait,
which indicates that the converter is working in chaotic state.

According to the time-domain waveforms and phase
portraits from Figure 5 to Figure 9, it can be seen clearly
that the conclusions obtained byMatlab/Simulink are in good
agreement with the results got by bifurcation diagram, which
confirms the validity of the theoretical analysis better.

3.4. Power Spectrum. The power spectrum is also an effective
way to analyze the stability of the circuit. When the circuit
operates in the cycle 𝑛, the peak of the waveform will only
appear when the frequency is equal to 𝑖/𝑛 times of the
operating frequency (𝑖 is a positive integer). When the circuit
is in a chaotic state, the power spectrum manifests as a
continuous spectrum, which contains a peak corresponding
to the periodic motion. Figures 10(a)–10(d) clearly reveal
that when the load resistance is equal to 10Ω, 20Ω, 35Ω,
and 55Ω, the converter works in period-1, period-2, period-
4, and chaotic state, respectively. The results are in good
agreementwith the previous analysis, which further verify the
correctness of the results obtained by theoretical analysis.

4. Conclusion

Inserting the switched-inductor structure into traditional
Buck-Boost converter can increase its voltage conversion
ratio significantly. However, it will lead to a conversion of
the inductors from series connection to parallel connection,
which makes it easier for the system to be affected by the cir-
cuit parameters. In this paper, the nonlinear behaviors of the
Buck-Boost converter with switched-inductor structure have
been studied systematically. The discrete iterated mapping
model underCCM is established.The effects of circuit param-
eters on system performance are analyzed using bifurcation
diagrams and Poincare sections. Then, the corresponding
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Figure 6: The time-domain waveform and phase portrait when 𝑅 = 20Ω. (a) Time-domain waveform; (b) phase portrait.
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Figure 7: The time-domain waveform and phase portrait when 𝑅 = 35Ω. (a) Time-domain waveform; (b) phase portrait.
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Figure 8: The time-domain waveform and phase portrait when 𝑅 = 39.5Ω. (a) Time-domain waveform; (b) phase portrait; (c) the partially
enlarged view of phase portrait.

time-domain waveforms, phase portraits, and power spec-
trum are obtained by Matlab/Simulink. The research results
show that various kinds of nonlinear phenomena are easy
to come in this new converter, including period-doubling
bifurcation, border collision bifurcation, tangent bifurcation,

and intermittent chaos. The results between the theoretical
analysis and the simulation are in general agreement with
each other. According to the analysis above, the Buck-
Boost converter with switched-inductor structure belongs to
strongly nonlinear system, and its performance can be easily
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Figure 9: The time-domain waveform and phase portrait when 𝑅 = 55Ω. (a) Time-domain waveform; (b) phase portrait.
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Figure 10: The power spectrum under different value of load resistance. (a) 𝑅 = 10Ω; (b) 𝑅 = 20Ω; (c) 𝑅 = 35Ω; (d) 𝑅 = 55Ω.

affectedwhen the circuit parameters are varied.Therefore, the
parameters should be chosen appropriately according to the
research results. The analysis methods and research findings
will possess an important reference value to engineering
design and performance analysis.
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down Ćuk/Sepic/Zeta converters,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’06),
pp. 5063–5066, May 2006.

[3] C. K. Tse and M. Di Bernardo, “Complex behavior in switching
power converters,” Proceedings of the IEEE, vol. 90, no. 5, pp.
768–781, 2002.

[4] A. El Aroudi and R. Leyva, “Quasi-periodic route to chaos
in a PWM voltage-controlled dc-dc boost converter,” IEEE
Transactions on Circuits and Systems I, vol. 48, no. 8, pp. 967–
978, 2001.

[5] S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich, “Theoretical
and experimental investigation of the fast- and slow-scale
instabilities of a DC-DC converter,” IEEE Transactions on Power
Electronics, vol. 16, no. 2, pp. 201–216, 2001.

[6] M. Debbat, A. El Aroudi, R. Giral, and L. Mart́ınez-Salamero,
“Hopf bifurcation in PWMcontrolled asymmetrical interleaved



Mathematical Problems in Engineering 9

dual boost DC-DC converter,” in Proceedings of the IEEE
International Conference on Industrial Technology, vol. 2, no. 2,
pp. 860–865, December 2003.

[7] D. Dai, C. K. Tse, and X. Ma, “Symbolic analysis of switching
systems: application to bifurcation analysis ofDC/DC switching
converters,” IEEE Transactions on Circuits and Systems I, vol. 52,
no. 8, pp. 1632–1643, 2005.

[8] H. H. C. Iu and C. K. Tse, “A study of synchronization in
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