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This paper studies the existence and uniform asymptotic stability of pseudo almost periodic solutions to Cohen-Grossberg neural
networks (CGNNs) with discrete and distributed delays by applying Schauder fixed point theorem and constructing a suitable
Lyapunov functional. An example is given to show the effectiveness of the main results.

1. Introduction

Since the model of Cohen-Grossberg neural networks
(CGNNs) was first proposed and studied by Cohen and
Grossberg [1], it has been widely investigated because of the
theoretical interest as well as the application considerations
such as optimization, pattern recognition, automatic control,
image processing, and associative memories. In recent years,
there are many important results on dynamic behaviors of
CGNNs. For instance, many sufficient conditions have been
successively obtained to ensure the existence and stability
of equilibrium point of CGNNs [1–10]. Some attractivity
and asymptotic stability results have also been published
[3, 11–14]. Many authors specially devote themselves to study
the existence and global exponential stability of periodic or
almost periodic solution to CGNNs [15–30]; for the other
dynamic properties, see also the literatures [31, 32]. However,
to the best of our knowledge, few authors have discussed
the existence and the global uniform asymptotic stability of
pseudo almost periodic solutions to CGNNs.

In this paper, we discuss the existence and the global uni-
form asymptotic stability of pseudo almost periodic solutions
to the following CGNNs:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑥

𝑖
(𝑡))

×
[

[

𝑏
𝑖
(𝑥

𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) ,

−

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥

𝑗
(𝑠)) 𝑑𝑠 − 𝐼

𝑖
(𝑡)

]

]

,

𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = Φ

𝑖
(𝑡) , 𝑡 < 0,

(1)

where 𝑐
𝑖𝑗
(𝑡), 𝑑

𝑖𝑗
(𝑡), 𝑝

𝑖𝑗
(𝑡), 𝐼

𝑖
(𝑡), Φ

𝑖
(𝑡) ∈ 𝐶(𝑅, 𝑅), 𝜏

𝑖𝑗
(𝑡) ∈

𝐶(𝑅, 𝑅
+
) are pseudo almost periodic functions.

The organization of this paper is as follows. In Section 2,
some basic definitions, marks, and lemmas are given. In
Section 3, some results are given to ascertain the existence
of pseudo almost periodic solution to the system (1) by
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applying Schauder fixed point theorem. In Section 4, the
global uniformasymptotic stability of pseudo almost periodic
solutions to the system (1) is obtained. In Section 5, an
example is provided to demonstrate the effectiveness of the
main results. In Section 6, the final conclusions are drawn.

2. Preliminaries

In this section, some basic definitions, lemmas, and assump-
tions are introduced.

Definition 1 (see [33]). 𝑓(𝑡) ∈ 𝐵𝐶(𝑅, 𝑅) is said to be Bohr
almost periodic if, for all 𝜖 > 0, set

𝑇 (𝑓, 𝜖) = {
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝜖, ∀𝑡 ∈ 𝑅} (2)

is relatively dense. Namely, for any 𝜖 > 0 there exists a number
𝑙 = 𝑙(𝜖) > 0 such that every interval [𝑎, 𝑎 + 𝑙] contains at
least one point of 𝜏 = 𝜏(𝜖) such that |𝑓(𝑡 + 𝜏) − 𝑓(𝑡)| < 𝜖

for every 𝑡 ∈ 𝑅. The collection of those functions is denoted
by 𝐴𝑃(𝑅, 𝑅

𝑚
). Define the class of functions 𝑃𝐴𝑃

0
(𝑅, 𝑅

𝑚
) as

follows:

𝑃𝐴𝑃
0
(𝑅, 𝑅

𝑚
) = {𝑓 ∈ 𝐵𝐶 (𝑅, 𝑅

𝑚
) |

lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝑑𝑡 = 0} .

(3)

Definition 2 (see [34]). A function 𝑓 ∈ 𝐵𝐶(𝑅, 𝑅
𝑚
) is called

pseudo almost periodic if it can be expressed as

𝑓 = 𝑓
1
+ 𝑓

0
, (4)

where 𝑓
1
∈ 𝐴𝑃(𝑅, 𝑅

𝑚
) and 𝑓

0
∈ 𝑃𝐴𝑃

0
(𝑅, 𝑅

𝑚
). The collection

of such functions will be denoted by 𝑃𝐴𝑃(𝑅, 𝑅
𝑚
).

Remark 3. From the definitions above, we have 𝐴𝑃(𝑅, 𝑅
𝑚
) ⊂

𝑃𝐴𝑃(𝑅, 𝑅
𝑚
).

Lemma 4 (see [3]). PAP(𝑅, 𝑅𝑚
) is a Banach space with the

norm |𝜙| = sup
𝑡∈𝑅

|𝜙(𝑡)|.

Lemma 5 (see [19]). If 𝑓(𝑡, 𝑢) ∈ 𝐶(𝑅 × 𝐷, 𝑅
𝑚
), where𝐷 is an

open set in 𝑅
𝑚 or 𝐷 = 𝑅

𝑚, 𝐶(𝑅 × 𝐷, 𝑅
𝑚
) denote continuous

function class. Suppose 𝑓 ∈ 𝑃𝐴𝑃(𝑅 × 𝐷) satisfies the Lipschitz
condition

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)󵄨󵄨󵄨

󵄨
≤ 𝐿 |𝑢 − V| , ∀𝑡 ∈ 𝑅, 𝑢, V ∈ 𝐷; (5)

if 𝜙(𝑡) ∈ 𝑃𝐴𝑃(𝑅), then the composite function 𝑓(𝑡, 𝜙(𝑡)) ∈

𝑃𝐴𝑃(𝑅). Suppose 𝑓 : 𝑅 × 𝐶 → 𝑅
𝑚; then the equation

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) (6)

is called lagging-type almost periodic differential equation.The
following system (7) is defined as the product systems of (6):

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
(𝑡)) , 𝑦

󸀠

(𝑡) = 𝑓 (𝑡, 𝑦
𝑡
(𝑡)) . (7)

Lemma 6. Suppose 𝜙(𝑡) ∈ 𝑃𝐴𝑃(𝑅, 𝑅
𝑚
); then 𝜙(𝑡 − 𝜏) ∈

𝑃𝐴𝑃(𝑅, 𝑅
𝑚
) for all 𝜏 ∈ 𝑅.

Proof. From Definition 2 of the 𝑃𝐴𝑃, we have 𝜙 = 𝜙
1
+ 𝜙

0
,

where 𝜙
1
∈ 𝐴𝑃(𝑅, 𝑅

𝑚
) and 𝜙

0
∈ 𝑃𝐴𝑃

0
(𝑅, 𝑅

𝑚
). Clearly 𝜙(𝑡 −

𝜏) = 𝜙
1
(𝑡−𝜏)+𝜙

0
(𝑡−𝜏); it is easy to know𝜙

1
(𝑡−𝜏) ∈ 𝐴𝑃(𝑅, 𝑅

𝑚
)

and

0 ≤

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
𝜙
0
(𝑡 − 𝜏)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 =

1

2𝑇

∫

𝑇−𝜏

−(𝑇+𝜏)

󵄨
󵄨
󵄨
󵄨
𝜙
0
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤

𝑇 + 𝜏

𝑇

⋅

1

2 (𝑇 + 𝜏)

∫

𝑇+𝜏

−(𝑇+𝜏)

󵄨
󵄨
󵄨
󵄨
𝜙
0
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡.

(8)

This indicates that 𝜙
0
(𝑡 − 𝜏) ∈ 𝑃𝐴𝑃

0
(𝑅, 𝑅

𝑚
). So 𝜙(𝑡 − 𝜏) ∈

𝑃𝐴𝑃(𝑅, 𝑅
𝑚
).

Definition 7. Assume that 𝑥∗(𝑡) is a pseudo almost periodic
solution of system (1). By a translation transformation 𝑦(𝑡) =

𝑥(𝑡)−𝑥
∗
(𝑡), system (1) is transformed into a new system. If the

zero solution of new system is globally uniformly asymptoti-
cally stable, then the pseudo almost periodic solution of
system (1) is said to be globally uniformly asymptotically
stable. As for the uniform asymptotical stability, see [35].

Lemma 8 (see [33]). There is a continuous functional
𝑉(𝑡, 𝜑, 𝜓) for 𝑡 ≥ 0, 𝜑, 𝜓 ∈ 𝐶

𝐻
, 𝐶

𝐻
= {𝜑 : 𝜑 ∈ 𝐶, |𝜑| < 𝐻},

|𝜑| = sup
𝜃∈[−𝑟,0]

|𝜑(𝜃)| such that
(𝐻

󸀠
2.1) 𝑢(|𝜑 − 𝜓|) ≤ 𝑉(𝑡, 𝜑, 𝜓) ≤ V(|𝜑 − 𝜓|);

(𝐻
󸀠
2.2) |𝑉(𝑡, 𝜑

1
, 𝜓

1
)−𝑉(𝑡, 𝜑

2
, 𝜓

2
)| ≤ 𝑘(|𝜑

1
−𝜑

2
|+|𝜓

1
−

𝜓
2
|);

(𝐻
󸀠
2.3) 𝑉

󸀠

(7)
(𝑡, 𝜑, 𝜓) ≤ −𝑎𝑉(𝑡, 𝜑, 𝜓),

where 𝑎 is a positive constant and 𝑢(𝑠) and V(𝑠) are continuous
nondecreasing functions; when 𝑠 → 0, 𝑢(𝑠) → 0, 𝑘 is a
positive constant. At this time, if (7) has a bounded solution
𝑥(𝑡, 𝜎, 𝜑) such that |𝑥(𝑡, 𝜎, 𝜑)| ≤ 𝐻

1
, where 𝑡 ≥ 𝜎 ≥ 0,

𝐻 > 𝐻
1

> 0, then (6) in 𝐶
𝐻
has a unique almost periodic

solution which is uniformly asymptotically stable.

Throughout this paper, we make the following assump-
tions.

(𝐻2.1): Functions 𝑎
𝑖
(𝑢) are continuous bounded and

there are positive constants 𝑎+
𝑖
, 𝑎

−

𝑖
such that

0 < 𝑎
−

𝑖
≤ 𝑎

𝑖
(𝑢) ≤ 𝑎

+

𝑖
, ∀𝑢 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑚. (9)

(𝐻2.2): Functions 𝑏
𝑖
(𝑢) ∈ 𝐶(𝑅, 𝑅) and there exist

positive constants 𝑏−
𝑖
, 𝑏

+

𝑖
such that

𝑏
−

𝑖
≤

𝑏
𝑖
(𝑢) − 𝑏

𝑖
(V)

𝑢 − V
≤ 𝑏

+

𝑖
, 𝑢 ̸= V,

∀𝑢, V ∈ 𝑅, 𝑏
𝑖
(0) = 0.

(10)

(𝐻2.3): 𝑐
𝑖𝑗
(𝑡), 𝑑

𝑖𝑗
(𝑡), 𝑝

𝑖𝑗
(𝑡), 𝐼

𝑖
(𝑡) ∈ 𝐶(𝑅, 𝑅), 𝜏

𝑖𝑗
(𝑡) ∈

𝐶(𝑅, 𝑅
+
) are pseudo almost periodic functions:

sup
𝑡∈𝑅

𝑐
𝑖𝑗
(𝑡) = 𝑐

+

𝑖𝑗
> 0, sup

𝑡∈𝑅

𝑑
𝑖𝑗
(𝑡) = 𝑑

+

𝑖𝑗
> 0,

sup
𝑡∈𝑅

𝑝
𝑖𝑗
(𝑡) = 𝑝

+

𝑖𝑗
> 0, sup

𝑡∈𝑅

𝐼
𝑖
(𝑡) = 𝐼

+

𝑖
> 0,

(11)

where 𝑅+
= [0,∞), 𝑖, 𝑗 = 1, 2, . . . , 𝑚.
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(𝐻2.4): Delay kernel functions 𝐺
𝑖𝑗

: [0, +∞) →

[0, +∞) are piecewise continuous and integrable

∫

+∞

0

𝐺
𝑖𝑗
(𝑢) 𝑑𝑢 = 1,

∫

∞

0

𝑢𝐺
𝑖𝑗
(𝑢) 𝑑𝑢 < +∞,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(12)

(𝐻2.5): Functions 𝑓
𝑗
(𝑢), 𝑔

𝑗
(𝑢), ℎ

𝑗
(𝑢) ∈ 𝐶(𝑅, 𝑅)

satisfy the Lipschitz condition; namely, there exist
nonnegative constants 𝐿𝑓

𝑗
, 𝐿𝑔

𝑗
, and 𝐿

ℎ

𝑗
such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿

𝑓

𝑗
|𝑢 − V| , ∀𝑢, V ∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿

𝑔

𝑗
|𝑢 − V| , ∀𝑢, V ∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑢) − ℎ

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿

ℎ

𝑗
|𝑢 − V| , ∀𝑢, V ∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑚.

(13)

3. The Existence of Pseudo
Almost Periodic Solution

In this section, we study the existence of pseudo almost
periodic solution to system (1).

It follows from (𝐻2.1) that the antiderivative of 1/𝑎
𝑖
(𝑥

𝑖
)

exists. Then we choose an antiderivative 𝐹
𝑖
(𝑥

𝑖
) of 1/𝑎

𝑖
(𝑥

𝑖
)

that satisfies 𝐹
𝑖
(0) = 0. Clearly, 𝐹󸀠

𝑖
(𝑥

𝑖
) = 1/𝑎

𝑖
(𝑥

𝑖
). Because

𝑎
𝑖
(𝑥

𝑖
) > 0, 𝐹

𝑖
(𝑥

𝑖
) is increasing about 𝑥

𝑖
and the inverse

function 𝐹
−1

𝑖
(𝑥

𝑖
) of 𝐹

𝑖
(𝑥

𝑖
) is existential, continuous, and

differential. Then (𝐹
−1

𝑖
(𝑥

𝑖
))
󸀠
= 𝑎

𝑖
(𝑥

𝑖
). Denote 𝐹

󸀠

𝑖
(𝑥

𝑖
)𝑥

󸀠

𝑖
(𝑡) =

𝑥
󸀠

𝑖
(𝑡)/𝑎

𝑖
(𝑥

𝑖
(𝑡)) ≐ 𝑢

󸀠

𝑖
(𝑡); we get 𝑥

𝑖
(𝑡) = 𝐹

−1

𝑖
(𝑢

𝑖
(𝑡)). Substituting

these equations into system (1), we get the following equiva-
lent equation:

𝑢
󸀠

𝑖
(𝑡) = − 𝑏

𝑖
(𝐹

−1

𝑖
(𝑢

𝑖
(𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑡)))

+

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑠))) 𝑑𝑠

+ 𝐼
𝑖
(𝑡) , 𝑡 ≥ 0,

𝑢
𝑖
(𝑡) = 𝐹

−1

𝑖
(Φ

𝑖
(𝑡)) = 𝜑

𝑖
(𝑡) , 𝑡 < 0.

(14)

From (14), we get 𝑏
𝑖
(𝐹

−1

𝑖
(𝑢

𝑖
(𝑡))) = [𝑏

𝑖
(𝐹

−1

𝑖
(𝜃
𝑖
𝑢
𝑖
(𝑡)))]

󸀠
𝑢
𝑖
(𝑡) ≐

𝑏
∼

𝑖
(𝑢

𝑖
(𝑡))𝑢

𝑖
(𝑡), where 0 ≤ 𝜃

𝑖
≤ 1. Putting it into (14), we obtain

𝑢
󸀠

𝑖
(𝑡) = − 𝑏

∼

𝑖
(𝑢

𝑖
(𝑡)) 𝑢

𝑖
(𝑡)

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑡)))

+

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝐹

−1

𝑗
(𝑢

𝑗
(𝑠))) 𝑑𝑠

+ 𝐼
𝑖
(𝑡) , 𝑡 ≥ 0,

𝑢
𝑖
(𝑡) = 𝐹

−1

𝑖
(Φ

𝑖
(𝑡)) = 𝜑

𝑖
(𝑡) , 𝑡 < 0.

(15)

Thus, system (1) has at least one pseudo almost periodic
solution if and only if the system (15) has at least one pseudo
almost periodic solution. So we only consider the pseudo
almost periodic solution of system (15). By Lagrange theorem,
we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
−1

𝑖
(𝑢) − 𝐹

−1

𝑖
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[𝐹
−1

𝑖
(V + 𝜃

𝑖
(𝑢 − V))]

󸀠

(𝑢 − V)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖
(V + 𝜃

𝑖
(𝑢 − V))󵄨󵄨󵄨

󵄨
|𝑢 − V| .

(16)

Again by (𝐻2.1), we get

𝑎
−

𝑖
|𝑢 − V| ≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
−1

𝑖
(𝑢) − 𝐹

−1

𝑖
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑎

+

𝑖
|𝑢 − V| . (17)

Combined with (𝐻2.2), we have

(𝐻3.6): 𝑏−
𝑖
𝑎
−

𝑖
≤ 𝑏

󸀠

𝑖
(𝐹

−1

𝑖
(⋅)) ≤ 𝑏

+

𝑖
𝑎
+

𝑖
.

In order to prove the main results, we give the following
lemma.

Lemma9. Suppose that assumptions (𝐻2.2)–(𝐻2.5) hold and
if 𝜙(𝑡) ∈ 𝑃𝐴𝑃(𝑅, 𝑅

𝑚
), then

𝐶
𝑖𝑗
= ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝜙

𝑗
(𝑠) 𝑑𝑠 ∈ 𝑃𝐴𝑃 (𝑅, 𝑅) ,

𝑖 = 1, 2, . . . , 𝑚.

(18)

Proof. From Definition 2, we have 𝜙
𝑗
= 𝜙

𝑗1
+ 𝜙

𝑗0
; then

𝐶
𝑖𝑗
= ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝜙

𝑗1
(𝑠) 𝑑𝑠 + ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝜙

𝑗0
(𝑠) 𝑑𝑠

= 𝐶
𝑖𝑗1

+ 𝐶
𝑖𝑗0
.

(19)

Firstly, we prove 𝐶
𝑖𝑗1

∈ 𝐴𝑃(𝑅, 𝑅). For any 𝜖 > 0, there
exists a number 𝑙 = 𝑙(𝜖) > 0 such that every interval [𝑎, 𝑎 + 𝑙]
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contains at least one point of 𝜏 = 𝜏(𝜖) such that |𝜙
𝑗1
(𝑡 + 𝜏) −

𝜙
𝑗1
(𝑡)| ≤ 𝜖 for every 𝑡 ∈ 𝑅. Therefore, from (𝐻2.2)–(𝐻2.4),

we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶
𝑖𝑗1

(𝑡 + 𝜏) − 𝐶
𝑖𝑗1

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡+𝜏

−𝜙

𝐺
𝑖𝑗
(𝑡 + 𝜏 − 𝑠) 𝜙

𝑗1
(𝑠) 𝑑𝑠

−∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝜙

𝑗1
(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

−∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗1

(𝑠 + 𝜏) − 𝜑
𝑗1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝜖∫

𝑡

−∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝜖

(20)

so that 𝐶
𝑖𝑗1

∈ 𝐴𝑃(𝑅, 𝑅).
And then we show that 𝐶

𝑖𝑗0
∈ 𝑃𝐴𝑃

0
(𝑅, 𝑅) because

lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶
𝑖𝑗0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

= sup
𝑡∈𝑅

lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝜙

𝑗0
(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑡

≤ sup
𝑡∈𝑅

lim
𝑇→+∞

1

2𝑇

∫

+∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝑇+𝑢

−(𝑇+𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑗0

(V) 𝑑V
󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

= 0.

(21)

Thus 𝐶
𝑖𝑗0

∈ 𝑃𝐴𝑃
0
(𝑅, 𝑅). So 𝐶

𝑖𝑗
∈ 𝑃𝐴𝑃(𝑅, 𝑅).

Theorem 10. Suppose that (𝐻2.1)–(𝐻2.5) and (𝐻3.6) hold; if

𝛿 = max
1≤𝑖≤𝑚

{

{

{

𝑎
+

𝑖

𝑏
−

𝑖
𝑎
−

𝑖

𝑚

∑

𝑗=1

(𝐿
𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
)

}

}

}

< 1, (22)

then the system (1) has at least one pseudo almost periodic
solution.

Proof. For all 𝑧(𝑡) = 𝜙(𝑡)
𝑇

= (𝜙
1
(𝑡), . . . , 𝜙

𝑚
(𝑡))

𝑇
∈

𝑃𝐴𝑃(𝑅, 𝑅
𝑚
), we define the nonlinear operator 𝑇 : 𝑧(𝑡) →

𝑇(𝑧)(𝑡) = 𝑧
(𝜙)
𝑇(𝑡) = (𝑥

𝜙
(𝑡))

𝑇, where

𝑥
𝜙𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

×
[

[

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠)))

+

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠) 𝑔

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑠) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑠 − V) ℎ

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(V))) 𝑑V

+𝐼
𝑖
(𝑠)

]

]

𝑑𝑠.

(23)

Now, we prove that

𝑇 : 𝑃𝐴𝑃 (𝑅, 𝑅
𝑚
) 󳨀→ 𝑃𝐴𝑃 (𝑅, 𝑅

𝑚
) . (24)

Let

𝐸
𝑖𝑗
=

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠)))

+

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠) 𝑔

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑠) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑠 − V) ℎ

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(V))) 𝑑V + 𝐼

𝑖
(𝑠) .

(25)

For 𝑧(𝑡) ∈ 𝑃𝐴𝑃(𝑅, 𝑅
𝑚
), conditions (𝐻2.2)–(𝐻2.4),

Lemmas 5, 6, and 9, and the composition theorem in [16],
we will get 𝐸

𝑖𝑗
∈ 𝑃𝐴𝑃(𝑅, 𝑅), ∀𝑖, 𝑗 = 1, 2, . . . , 𝑚.

From Definition 2, we have 𝐸
𝑖𝑗

= 𝐸
𝑖𝑗1

+ 𝐸
𝑖𝑗0
, ∀𝑖, 𝑗 =

1, 2, . . . , 𝑚. Where 𝐸
𝑖𝑗1

∈ 𝐴𝑃(𝑅, 𝑅) and 𝐸
𝑖𝑗0

∈ 𝑃𝐴𝑃
0
(𝑅, 𝑅).

Then

𝑥
𝜙𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗1

(𝑠) 𝑑𝑠

+ ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗0

(𝑠) 𝑑𝑠

= 𝑇
𝑖𝑗1

+ 𝑇
𝑖𝑗0
,

(26)

where 𝑇
𝑖𝑗1

= ∫

𝑡

−∞
𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗1
(𝑠)𝑑𝑠 and 𝑇

𝑖𝑗0
=

∫

𝑡

−∞
𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗0
(𝑠)𝑑𝑠.

Because 𝐸
𝑖𝑗1

∈ 𝐴𝑃(𝑅, 𝑅), for any 𝜖 > 0, there exists a
number 𝑙 = 𝑙(𝜖) > 0 such that every interval [𝑎, 𝑎+𝑙] contains
at least one point of 𝛿 = 𝛿(𝜖) such that sup

𝑡∈𝑅
|𝐸

𝑖𝑗1
(𝑡 + 𝛿) −

𝐸
𝑖𝑗1
(𝑡)| ≤ 𝜖 for every 𝑡 ∈ 𝑅 and ∀𝑖, 𝑗 = 1, 2, . . . , 𝑚. Hence, we

obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
𝑖𝑗1

(𝑡 + 𝛿) − 𝑇
𝑖𝑗1

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡+𝛿

−∞

𝑒
−∫
𝑡+𝛿

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗1

(𝑠) 𝑑𝑠
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−∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗1

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡+𝜏

−∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑏
−

𝑖
𝑎
−

𝑖
(𝑡−𝑠)

| 𝐸
𝑖𝑗1

(𝑠 + 𝛿) − 𝐸
𝑖𝑗1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠

≤

𝜖

𝑏
−

𝑖
𝑎
−

𝑖

(27)

so that 𝑇
𝑖𝑗1

∈ 𝐴𝑃(𝑅, 𝑅).
And because

lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗0

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑡

≤ lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−𝑇

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗0

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑡

+ lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

−𝑇

−∞

𝑒
−∫
𝑡

𝑠
𝑏
∼

𝑖
(𝜙𝑖(𝜏))𝑑𝜏

𝐸
𝑖𝑗0

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑡

≤ lim
𝑇→+∞

1

2𝑇

∫

𝑇

−𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
𝐸
𝑖𝑗0

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑡 ∫

𝑡

−𝑇

𝑒
−𝑏
−

𝑖
𝑎
−

𝑖
(𝑡−𝑠)

𝑑𝑠

+ lim
𝑇→+∞

sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝑖𝑗0

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2𝑇

∫

𝑇

−𝑇

𝑑𝑡 (∫

−𝑇

−∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑏
−

𝑖
𝑎
−

𝑖
(𝑡−𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠)

≤ lim
𝑇→+∞

1

2𝑇𝑏
−

𝑖
𝑎
−

𝑖

∫

𝑇

−𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
𝐸
𝑖𝑗0

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑡

+ lim
𝑇→+∞

sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝑖𝑗0

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2𝑇(𝑏
−

𝑖
𝑎
−

𝑖
)
2

(1 − 𝑒
−𝑏
−

𝑖
𝑎
−

𝑖
(2𝑇)

)

= 0 + lim
𝑇→+∞

sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝑖𝑗0

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2𝑇(𝑏
−

𝑖
𝑎
−

𝑖
)
2

(1 − 𝑒
−𝑏
−

𝑖
𝑎
−

𝑖
(2𝑇)

)

= 0,

(28)

thus 𝑇
𝑖𝑗0

∈ 𝑃𝐴𝑃
0
(𝑅, 𝑅). So ∀𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑥

𝜙𝑖
(𝑡) ∈

𝑃𝐴𝑃(𝑅, 𝑅). Therefore 𝑧
(𝜙)
𝑇(𝑡) ∈ 𝑃𝐴𝑃(𝑅, 𝑅

𝑚
).

From Lemma 9,𝑋 = 𝑃𝐴𝑃(𝑅, 𝑅
𝑚
) is a Banach space. If

𝛿 < 1, (29)

then there exists a sufficiently large 𝛽 ≥ 1 such that

𝛿 ≤ 1 − 𝛽
−1
𝐼, (30)

where

𝐼 = max
1≤𝑖≤𝑚

{

𝐼
+

𝑖

𝑏
−

𝑖
𝑎
−

𝑖

} . (31)

We choose a closed subset

𝐵 = {𝑧 (𝑡) = 𝜙(𝑡)
𝑇
= (𝜙

1
(𝑡) , . . . , 𝜙

𝑚
(𝑡))

𝑇

∈ 𝑋 : ‖𝑧‖ ≤ 𝛽} .

(32)

Firstly, we prove that 𝑇 : 𝐵 → 𝐵; that is, 𝑇𝐵 ⊂ 𝐵.

From (29)–(32) and for ∀𝑧 ∈ 𝐵, we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝜙𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ max

1≤𝑖≤𝑚

{

{

{

𝑎
+

𝑖

𝑏
−

𝑖
𝑎
−

𝑖

𝑛

∑

𝑗=1

(𝐿
𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
)

}

}

}

× ‖𝑧‖ + max
1≤𝑖≤𝑚

{

𝐼
+

𝑖

𝑏
−

𝑖
𝑎
−

𝑖

} ≤ 𝛽𝛿 + 𝐼 ≤ 𝛽.

(33)

Secondly, we prove that the mapping 𝑇 is completely
continuous.

By the continuity of the function 𝑓
𝑗
, 𝑔

𝑗
, ℎ

𝑗
, for any 𝜀 > 0,

there is 𝛾 = 𝛾(𝜀, 𝛽) such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
𝑓

𝑗
𝜀

𝛿

, |𝑢 − V| ≤ 𝛾,

∀𝑢, V ∈ 𝐵, 𝑗 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
𝑔

𝑗
𝜀

𝛿

, |𝑢 − V| ≤ 𝛾,

∀𝑢, V ∈ 𝐵, 𝑗 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑢) − ℎ

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
ℎ

𝑗
𝜀

𝛿

, |𝑢 − V| ≤ 𝛾,

∀𝑢, V ∈ 𝐵, 𝑗 = 1, 2, . . . , 𝑚.

(34)

Let𝑤(𝑡) = (𝜓
1
(𝑡), . . . , 𝜓

𝑚
(𝑡)), 𝑧, 𝑤 ∈ 𝐵, and ‖𝑧 −𝑤‖ ≤ 𝛾; then

‖𝑧‖ ≤ 𝛾, ‖𝑤‖ ≤ 𝛾 and 𝜙
𝑗
(𝑡), 𝜓

𝑗
(𝑡) ∈ 𝐶(𝑅, 𝐵); then, for any

𝑠 ∈ 𝑅, we get |𝜙
𝑗
(𝑠) − 𝜓

1
(𝑠)| ≤ 𝛾. So, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠))) − 𝑓

𝑗
(𝐹

−1

𝑗
(𝜓

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
𝑓

𝑗
𝜀

𝛿

, |𝑢 − V| ≤ 𝛾,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠))) − 𝑓

𝑗
(𝐹

−1

𝑗
(𝜓

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
𝑔

𝑗
𝜀

𝛿

, |𝑢 − V| ≤ 𝛾,

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠))) − 𝑓

𝑗
(𝐹

−1

𝑗
(𝜓

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐿
ℎ

𝑗
𝜀

𝛿

. |𝑢 − V| ≤ 𝛾.

(35)

Thus
‖𝑇 (𝑧) (𝑡) − 𝑇 (𝑤) (𝑡)‖

≤ max
1≤𝑖≤𝑚

{

{

{

1

𝑏
−

𝑖
𝑎
−

𝑖

𝑚

∑

𝑗=1

𝑎
+

𝑖
(𝐿

𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
)

}

}

}

𝜀

𝛿

≤ 𝛿

𝜀

𝛿

≤ 𝜀.

(36)

Therefore, 𝑇 is continuous.
Thirdly, we show that 𝑇 is compact.
Let 𝑆 = {𝑧(𝑡) ∈ 𝑋 : ‖𝑧‖ ≤ 𝐾}, where 𝐾 > 0 to be any

constant. We denote 𝜌 = max
1≤𝑖≤𝑚

{(𝑎
+

𝑖
/𝑏

−

𝑖
𝑎
−

𝑖
) ∑

𝑚

𝑗=1
𝐾(𝐿

𝑓

𝑗
𝑐
+

𝑖𝑗
+

𝐿
𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
) + 𝐼

+

𝑖
}. Then we have

‖𝑇 (𝑧) (𝑡)‖ = sup
𝑡∈𝑅

max
1≤𝑖≤𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝜙𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜌, ∀𝑧 ∈ 𝑆. (37)
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Hence, 𝑇 is uniformly bounded. Then, from (23), we get

[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝜙𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
]

󸀠

= −𝑏
∼

𝑖
(𝑥

𝜙𝑖
(𝑡)) 𝑥

𝜙𝑖
(𝑡)

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑡)))

+

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))))

+

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝐹

−1

𝑗
(𝜙

𝑗
(𝑠))) 𝑑𝑠

+ 𝐼
𝑖
(𝑡)

≤ 𝑏
+

𝑖
𝜌 +

𝑚

∑

𝑗=1

𝑎
+

𝑗
𝐾(𝐿

𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
) + 𝐼

+

𝑖
≤ 𝐿,

(38)

where

𝐿 = max
1≤𝑖≤𝑚

{

{

{

𝑏
+

𝑖
𝜌 +

𝑚

∑

𝑗=1

𝑎
+

𝑗
𝐾(𝐿

𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
) + 𝐼

+

𝑖

}

}

}

.

(39)

Therefore, 𝑇 is equicontinuous. By the Ascoli-Arzela the-
orem, the operator 𝑇 is compact; then it is completely
continuous. By the Schauder fixed point theorem, the system
(1) has at least one pseudo almost periodic solution.

4. The Global Uniform Asymptotic Stability of
Pseudo Almost Periodic Solution

In order to discuss the global uniform asymptotic stability of
pseudo almost periodic solution to system (1), we give the
following assumptions:

(𝐻4.1): delay functions 𝜏
𝑖𝑗
(𝑡) ∈ 𝐶

1
(𝑅, 𝑅

+
) satisfy that

̇𝜏
𝑖𝑗
(𝑡) ≤ 𝜏

∗

𝑖𝑗
< 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑚;

(𝐻4.2): 𝑁 = min
1≤𝑖≤𝑚

{𝑁
𝑖
} > 0, where 𝑁

𝑖
= 𝑏

−

𝑖
−

∑
𝑚

𝑗=1
𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
− ∑

𝑚

𝑗=1
(𝑑

+

𝑖𝑗
𝐿
𝑔

𝑗
/(1 − 𝜏

∗

𝑖𝑗
)) − ∑

𝑚

𝑗=1
𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
.

Theorem 11. Assume that (𝐻2.1)–(𝐻2.5) and (𝐻4.1)-(𝐻4.2)
hold; then the pseudo almost periodic solution of system (1) is
globally uniformly asymptotically stable.

Proof. The product system of the system (1) is

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑥

𝑖
(𝑡))

×
[

[

𝑏
𝑖
(𝑥

𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥

𝑗
(𝑠)) 𝑑𝑠 − 𝐼

𝑖
(𝑡)

]

]

,

𝑦
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑦

𝑖
(𝑡))

×
[

[

𝑏
𝑖
(𝑦

𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑦

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑦

𝑗
(𝑠)) 𝑑𝑠 − 𝐼

𝑖
(𝑡)

]

]

.

(40)

In order to apply the conclusion of Lemma 8, we construct a
Lyapunov functional about product system (40)

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (41)

where

𝑉
1
(𝑡) =

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥𝑖(𝑡)

𝑦𝑖(𝑡)

1

𝑎
𝑖
(𝑠)

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

;

𝑉
2
(𝑡) =

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠) − 𝑦

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠;

𝑉
3
(𝑡) =

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑢) − 𝑦

𝑖
(𝑢)

󵄨
󵄨
󵄨
󵄨
𝑑𝑢𝑑𝑠.

(42)

Let𝑋(𝑡) = 𝑥(𝑡)
𝑇
= (𝑥

1
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇 and𝑌(𝑡) = 𝑦(𝑡)
𝑇
=

(𝑦
1
(𝑡), . . . , 𝑦

𝑚
(𝑡))

𝑇. For product system (𝑋, 𝑌), we receive

|𝑋 − 𝑌| ≤ 𝑉 (𝑡, 𝑋 (𝑡) , 𝑌 (𝑡))

≤

𝑚

∑

𝑖=1

{

{

{

1

𝑎
−

𝑖

+

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝜏
+

𝑖𝑗

1 − 𝜏
∗

𝑖𝑗

+

𝑛

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑖
∫

+∞

0

𝐺
𝑖𝑗
(𝑠) 𝑠𝑑𝑠

}

}

}

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝑀
𝑖

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝑀 |𝑋 − 𝑌| ,

(43)

where 𝑀
𝑖

= (1/𝑎
−

𝑖
) + ∑

𝑚

𝑗=1
(𝑑

+

𝑖𝑗
𝐿
𝑔

𝑗
𝜏
+

𝑖𝑗
/(1 − 𝜏

∗

𝑖𝑗
)) +

∑
𝑛

𝑗=1
𝑝
+

𝑖𝑗
𝐿
ℎ

𝑖
∫

+∞

0
𝐺
𝑖𝑗
(𝑠)𝑠𝑑𝑠 and 𝑀 = max

1≤𝑖≤𝑚
{𝑀

𝑖
}. Let
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𝑢(𝑠) = 𝑠 and V(𝑠) = 𝑀𝑠; we easily know it satisfies condition
(𝐻

󸀠
2.1) of Lemma 8. Then we obtain

󵄨
󵄨
󵄨
󵄨
𝑉 (𝑡, 𝑋, 𝑌) − 𝑉 (𝑡, 𝑋

∗
, 𝑌

∗
)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥𝑖(𝑡)

𝑦𝑖(𝑡)

1

𝑎
𝑖
(𝑠)

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥
∗

𝑖
(𝑡)

𝑦
∗

𝑖
(𝑡)

1

𝑎
𝑖
(𝑠)

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠) − 𝑦

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑠) − 𝑦

∗

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑢) − 𝑦

𝑖
(𝑢)

󵄨
󵄨
󵄨
󵄨
𝑑𝑢𝑑𝑠

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
(𝑢) − 𝑦

∗

𝑖
(𝑢)

󵄨
󵄨
󵄨
󵄨
𝑑𝑢𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑚

∑

𝑖=1

1

𝑎
−

𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+

𝑚

∑

𝑖=1

1

𝑎
−

𝑖

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡) − 𝑦

∗

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

× ∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

(
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑠) − 𝑥

∗

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑠) − 𝑦

∗

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠)

× ∫

𝑡

𝑡−𝑠

𝑑𝑠 (
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡) − 𝑦

∗

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑀 (
󵄨
󵄨
󵄨
󵄨
𝑋 − 𝑋

∗󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑌 − 𝑌

∗󵄨
󵄨
󵄨
󵄨
) .

(44)

We also know that it satisfies condition (𝐻
󸀠
2.2) of Lemma 8.

Calculating the upright derivative of 𝑉
1
(𝑡), 𝑉

2
(𝑡), and

𝑉
3
(𝑡) along the system (40), respectively, and noting that

((1 − ̇𝜏
𝑖𝑗
(𝑡))/(1 − 𝜏

∗

𝑖𝑗
)) > 1, we have

𝐷
+
𝑉
1
(𝑡)

󵄨
󵄨
󵄨
󵄨(40)

=

𝑚

∑

𝑖=1

Sgn (𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)) [

𝑥
󸀠

𝑖
(𝑡)

𝑎
𝑖
(𝑥

𝑖
(𝑡))

−

𝑦
󸀠

𝑖
(𝑡)

𝑎
𝑖
(𝑦

𝑖
(𝑡))

]

≤

𝑚

∑

𝑖=1

{

{

{

−

𝑏
𝑖
(𝑥

𝑖
(𝑡)) − 𝑏

𝑖
(𝑦

𝑖
(𝑡))

𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝑠) − 𝑦

𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

}

}

}

≤

𝑚

∑

𝑖=1

{

{

{

−𝑏
−

𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝑠) − 𝑦

𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

}

}

}

;

𝐷
+
𝑉
2
(𝑡)

󵄨
󵄨
󵄨
󵄨(40)

=

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑦

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
;

𝐷
+
𝑉
3
(𝑡)

󵄨
󵄨
󵄨
󵄨(40)

=

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

+∞

0

𝐺
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡 − 𝑠) − 𝑦

𝑖
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(45)

Combining (45) and assumptions (𝐻4.1) and (𝐻4.2), we get

𝐷
+
𝑉 (𝑡)

󵄨
󵄨
󵄨
󵄨(40)

≤

𝑚

∑

𝑖=1

{

{

{

−𝑏
−

𝑖
+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
+

𝑚

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

+

𝑚

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗

}

}

}

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ −𝑁

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ −𝑎𝑉 (𝑡) .

(46)

From assumption (𝐻4.2), we have 𝑎 = 𝑁/𝑀 > 0.
By Lemma 8, the pseudo almost periodic solutions of

system (1) are globally uniformly asymptotically stable. This
completes the proof.
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Corollary 12. Consider the following periodic CGNNs sys-
tems:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑥

𝑖
(𝑡))

×
[

[

𝑏
𝑖
(𝑥

𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑚

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑠)) 𝑑𝑠 − 𝐼

𝑖
(𝑡)

]

]

,

𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = Φ

𝑖
(𝑡) , 𝑡 < 0,

(47)

where 𝑖 = 1, 2, . . . , 𝑚, and the following assumptions hold.

(𝐺4.1): Functions 𝑎
𝑖
(𝑢) are continuous bounded and

there are positive constants 𝑎+
𝑖
, 𝑎

−

𝑖
such that

0 < 𝑎
−

𝑖
≤ 𝑎

𝑖
(𝑢) ≤ 𝑎

+

𝑖
, ∀𝑢 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑚. (48)

(𝐺4.2): Functions 𝑏
𝑖
(𝑢) ∈ 𝐶(𝑅, 𝑅) and there exist

positive constants 𝑏−
𝑖
, 𝑏

+

𝑖
such that

𝑏
−

𝑖
≤

𝑏
𝑖
(𝑢) − 𝑏

𝑖
(V)

𝑢 − V
≤ 𝑏

+

𝑖
, 𝑢 ̸= V,

∀𝑢, V ∈ 𝑅, 𝑏
𝑖
(0) = 0.

(49)

(𝐺4.3): 𝑐
𝑖𝑗
(𝑡), 𝑑

𝑖𝑗
(𝑡) and 𝑝

𝑖𝑗
(𝑡), 𝐼

𝑖
(𝑡) ∈ 𝐶(𝑅, 𝑅), 𝜏

𝑖𝑗
(𝑡) ∈

𝐶(𝑅, 𝑅
+
) are all periodic functions, and

sup
𝑡∈𝑅

𝑐
𝑖𝑗
(𝑡) = 𝑐

+

𝑖𝑗
> 0, sup

𝑡∈𝑅

𝑑
𝑖𝑗
(𝑡) = 𝑑

+

𝑖𝑗
> 0,

sup
𝑡∈𝑅

𝑝
𝑖𝑗
(𝑡) = 𝑝

+

𝑖𝑗
> 0, sup

𝑡∈𝑅

𝐼
𝑖
(𝑡) = 𝐼

+

𝑖
> 0,

(50)

where 𝑅+
= [0,∞), 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(𝐺4.4): Delay kernel functions 𝐺
𝑖𝑗

: [0, +∞) →

[0, +∞) are piecewise continuous and integrable

∫

+∞

0

𝐺
𝑖𝑗
(𝑢) 𝑑𝑢 = 1, ∫

∞

0

𝑢𝐺
𝑖𝑗
(𝑢) 𝑑𝑢 < +∞,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(51)

(𝐺4.5): Functions 𝑓
𝑗
(𝑢) ∈ 𝐶(𝑅, 𝑅) satisfy the Lipschitz

condition; namely, there exist nonnegative constants 𝐿
𝑗

such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿

𝑗
|𝑢 − V| ,

∀𝑢, V ∈ 𝑅, 𝑗 = 1, 2, . . . , 𝑚.

(52)

(𝐺4.6): If 𝛿 = max
1≤𝑖≤𝑚

{(𝑎
+

𝑖
/𝑏

−

𝑖
𝑎
−

𝑖
) ∑

𝑚

𝑗=1
𝐿
𝑗
(𝑐
+

𝑖𝑗
+ 𝑑

+

𝑖𝑗
+

𝑝
+

𝑖𝑗
)} < 1,

then the system (47) has at least one periodic solution.

Corollary 13. Assume that (𝐺4.1)–(𝐺4.6) hold and suppose
further that

(𝐺4.7): delay functions 𝜏
𝑖𝑗
(𝑡) ∈ 𝐶

1
(𝑅, 𝑅

+
) satisfy that

̇𝜏
𝑖𝑗
(𝑡) ≤ 𝜏

∗

𝑖𝑗
< 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(𝐺4.8): 𝑁 = min
1≤𝑖≤𝑚

{𝑁
𝑖
} > 0, where 𝑁

𝑖
= 𝑏

−

𝑖
−

∑
𝑚

𝑗=1
𝑐
+

𝑖𝑗
𝐿
𝑗
− ∑

𝑚

𝑗=1
(𝑑

+

𝑖𝑗
𝐿
𝑗
/(1 − 𝜏

∗

𝑖𝑗
)) − ∑

𝑚

𝑗=1
𝑝
+

𝑖𝑗
𝐿
𝑗
; then

the periodic solution of system (47) is globally uniformly
asymptotically stable.

Remark 14. Recently, the global exponential stability of peri-
odic or almost periodic solution to CGNNs is studied by
many scholars (see [15–30]). However, few authors pay atten-
tion to the global uniform asymptotic stability. Corollaries 12
and 13 provide some new results.

5. An Example

An example is given to illustrate the feasibility of main results
in this paper. Consider the following simple neural networks:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑥

𝑖
(𝑡))

×
[

[

𝑏
𝑖
(𝑥

𝑖
(𝑡)) −

2

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓

𝑗
(𝑥

𝑗
(𝑡))

−

2

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

2

∑

𝑗=1

𝑝
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐺
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥

𝑗
(𝑠)) 𝑑𝑠 − 𝐼

𝑖
(𝑡)

]

]

,

𝑡 ≥ 0, 𝑖 = 1, 2,

(53)

where the initial functions 𝑥
1
(𝑡) = 4+cos(𝜋𝑡)1, 𝑡 < 0, 𝑥

2
(𝑡) =

5 + sin(2𝑡), 𝑡 < 0. 𝑎
𝑖
(𝑥

𝑖
(𝑡)) = 4 + cos𝜋𝑡 − 𝑒

−|𝑥𝑖(𝑡)|, 𝑏
𝑖
(𝑥

𝑖
(𝑡)) =

5 + sin 2𝑡 − 𝑒
−|𝑥𝑖(𝑡)|. Let

(

𝑐
11

(𝑡) 𝑐
12

(𝑡)

𝑐
21

(𝑡) 𝑐
22

(𝑡)

)

=

1

14

(

cos 𝑡 + 𝑒
−𝑡
4cos4𝑡 cos (√2𝑡) + 𝑒

−𝑡
4sin4𝑡

cos (√5𝑡) + 𝑒
−𝑡
4cos4𝑡 sin (2𝑡) + 𝑒

−𝑡
2cos4𝑡

) ,
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(

𝑑
11

(𝑡) 𝑑
12

(𝑡)

𝑑
21

(𝑡) 𝑑
22

(𝑡)

)

=

1

14

(

sin 𝑡 + 𝑒
−𝑡
2cos2𝑡 cos (√4𝑡) + 𝑒

−𝑡
2cos4𝑡

sin (√3𝑡) + 𝑒
−𝑡
4cos4𝑡 sin (2𝑡) + 𝑒

−𝑡
4cos4𝑡

) ,

(

𝑝
11

(𝑡) 𝑝
12

(𝑡)

𝑝
21

(𝑡) 𝑝
22

(𝑡)

)

=

1

14

(

cos (√5𝑡) + 𝑒
−𝑡
4cos2𝑡 sin (√3𝑡) + 𝑒

−𝑡
4cos4𝑡

cos (√3𝑡) + 𝑒
−𝑡
2cos2𝑡 sin (2𝑡) + 𝑒

−𝑡
2cos4𝑡

) .

(54)

𝐼
1
(𝑡) = 𝐼

2
(𝑡) = 2(sin(√3𝑡) + 𝑒

−𝑡
2cos4𝑡

), 𝑓
𝑗
(𝑥

𝑗
) = 𝑔

𝑗
(𝑥

𝑗
) =

ℎ
𝑗
(𝑥

𝑗
) = ((|𝑥 + 1| − |𝑥 − 1|)/2), 𝐺

𝑖𝑗
(𝑢) = 𝑒

−𝑢, 𝜏∗
𝑖𝑗
= 4/5. Then,

we have 𝑎
+

𝑖
= 5, 𝑎−

𝑖
= 2, 𝑏−

𝑖
= 3, 𝑐+

𝑖𝑗
= 𝑑

+

𝑖𝑗
= 𝑝

+

𝑖𝑗
= 1/7,

𝐿
𝑓

𝑗
= 𝐿

𝑔

𝑗
= 𝐿

ℎ

𝑗
= 1, where 𝑖, 𝑗 = 1, 2. Moreover

𝛿 = max
1≤𝑖≤2

{

{

{

𝑎
+

𝑖

𝑏
−

𝑖
𝑎
−

𝑖

2

∑

𝑗=1

(𝐿
𝑓

𝑗
𝑐
+

𝑖𝑗
+ 𝐿

𝑔

𝑗
𝑑
+

𝑖𝑗
+ 𝐿

ℎ

𝑗
𝑝
+

𝑖𝑗
)

}

}

}

=

5

7

< 1,

𝑁
𝑖
= 𝑏

−

𝑖
−

2

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
−

2

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗

1 − 𝜏
∗

𝑖𝑗

−

2

∑

𝑗=1

𝑝
+

𝑖𝑗
𝐿
ℎ

𝑗
= 1 > 0,

𝑖 = 1, 2.

(55)

Thus, by Theorem 10, we know that system (53) has at
least one pseudo almost periodic solution. It follows from
Theorem 11 that the unique pseudo almost periodic solution
of system (53) is globally uniformly asymptotically stable
(Figure 1).

6. Conclusions

In this paper, the existence and uniform asymptotic sta-
bility of pseudo almost periodic solutions of system (1) is
discussed. By applying Schauder fixed point theorem and
constructing a suitable Lyapunov functional, some sufficient
conditions are obtained to ensure the existence and uniform
asymptotic stability of pseudo almost periodic solutions of
system (1). The results have important leading significance
in the design and applications of CGNNs. In addition, an
example is given to demonstrate the effectiveness of main
results.
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