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As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied
in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the
incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper,
an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all
rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT
imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and
in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The
measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and
widely used in any imaging process. Experimental results validate the two proposed indexes.

1. Introduction

Electrical impedance tomography (EIT) technique [1] is one
nondestructive visualization measurement technology. Due
to fast-response, noninvasive, low cost in obtaining 2D/3D
distribution parameter information, EIT has been widely
used in several principal areas such as medical imaging,
industrial process imaging, and geophysical surveying [2].
But the EIT techniques are greatly limited to the low spatial
resolutions [3–5] that greatly result from the following three
problems.

(1) Low Relative Resolution of Measurable Data. When these
measuring data are of low relative resolution, that is, too
small size difference of measuring data compared with their
own sizes, the reconstructed EIT image is of low spatial
resolution. In fact, most of the existing EIT imaging methods
depend on an optimization process associated with a good
relative solution of measurable data, while this process is
an ill-conditioned, highly nonlinear, and uncertain problem
[6]. If there are not good relative solutions of measurable
data, the reconstructed images are of low resolution.Thus, an
optimal measuring data preprocessing is necessary since the

ill-conditioned equation is tightly associated with the meas-
uring data.

(2) Low Signal-to-Noise Ratio. The EIT measuring data are
of low signal-to-noise ratio (SNR). Besides machine noise,
owing to the use of weak current excitation, the measuring
data in EIT must be a weak signal, and any small measuring
errors or noise may lead to large spatial resolution of the
investigated objects in anEIT image, or roughly speaking, any
change of any objects in the investigated field could affect all
measured data of all other objects in the investigated field.
This is called “soft-field” effect which is a much undesired
case in practice [7, 8]. Thus, “soft-field” effect is mainly
responsible for the low SNR in the EIT imaging process
[9, 10]. The existing ET imaging processes are unstable and
often unacceptable in most noisy conditions [11, 12].

(3) Imaging Algorithm. A challenging problem in the EIT
imaging process is how to quantitatively choose the proper
algorithm to obtain the highest spatial resolution of EIT
images. As a result, these reconstructed images usually do
not have interpretability or understandability [13]. Some
researchers attempt to solve this problem using simulation,
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Figure 1: EIT imaging process. (a) Original investigated objects of three blocks of watered agars. (b) Each pixel is covered by 16 projection
fields (in grey) from 16 excitations. (c) Reconstructed EIT image by the LBP algorithm based on measuring data.

visualization, and new hardware system for gaining com-
parable statistics [14, 15], but these methods are of little
applicability in practice.

The importance of the preprocessing processes of mea-
suring data has been realized. In order to obtain the EIT
image of high resolution, some researches attempt to adjust
the size of original measuring data based on the hardware
system. For example, the measuring data are amplified by
a special integrated circuit. However, these methods con-
centrate on a/some linear transformations to all data, while
a linear transformation cannot change the relative size of
these measuring data. When there are noisy data, a linear
transformationwill simultaneously amplify signal and noises.
In this paper, we present a nonlinear transformation to all
measuring data. In terms of rooting all measured data, an
EIT data preprocessing method is proposed and evaluated by
two constructed indexes based on all rooted EIT measured
data. One index aims to maximize the relative size among
measurable data, and the other one aims to maximize SNR
of the measuring data. Dependent on their optimums of the
two indexes, the optimal root of the measuring data can
be obtained. One purpose of rooting all data is to find the
optimal relative size of measurable data such that the EIT
spatial resolution of the EIT imaging can be improved greatly.
Another purpose of rooting the measuring data is to attain as
high SNR as possible. The research in this paper shows that
the two proposed indexes have nearly the same optimums
but different motivations. The analytic optimal solutions of
the two proposed indexes are obtained by a mathematical
analysis. The analysis of the two indexes involves the existing
study [16]. Recently, the natural clustering structures hidden
in the EIT measuring data have been recovered and the fuzzy
clustering algorithm termed as FC-EIT is proposed for EIT
imaging process. The reconstructed images by the FC-EIT
algorithm can obtainmuch higher spatial resolution in awide
range of parameter settings. Particularly, some experimental
results from the FC-EIT algorithmare unable to be completed
by other existing EIT algorithms at all. In this research, FC-
EIT and other three existing EIT imaging algorithms are
applied to test the correctness of the two proposed indexes.

The rest of this paper is organized as follows. Section 2
introduces the EIT imaging principle. In Section 3, the

two indexes for measuring data preprocessing are pro-
posed and analyzed in different conditions. Experimental
tests and results of the two indexes are interpreted in
Section 4. Section 5 is the conclusion.

2. EIT Imaging Principle

As an example, an ERT system of a total of 16 electrodes
evenly distributed around a 16-centimeter radius pipe is
applied to illustrate the EIT imaging structure and process.
Original investigated objects are three blocks of watered agars
that are put in salt water, as shown in Figure 1.

Figure 1(a) shows the investigated objects and the dis-
tribution of 16 electrodes in an ERT system. The adjacent
exciting strategy is used for data collection, that is, among
a total of 16 pairs of electrodes when the exciting current
is added to one electrode pair (𝑖, 𝑖 + 1), 15 voltage values
of other electrodes are measured, 𝑖 = 1, 2, . . . , 16. After
excitation electrode pair is switched 16 times, 16 groups of
measurements are obtained amongwhich twomeasurements
including excitation electrode pairs need to be discarded due
to the large errors. Consequently, 13 groups of measurements
in each excitation are used for a frame of EIT image
reconstruction. To reconstruct a frame of ERT image, the
cross-section is discretized by rectangular or triangular units
related to pixels in the ERT image (see Figure 1(b)). The
cross-section boundary and any pair of equipotential lines
connected to two adjacent electrodes construct a projection
field. Each extraction electrode corresponds to 16 projection
fields (in grey) over the entire cross-section, and thus any
pixel in the cross-section must be covered by 16 projection
fields, respectively, from 16 different extraction electrodes. In
terms of these measuring data, the investigated objects are
visually reconstructed (see Figure 1(c)).

The EIT imaging process obeys the general Maxwell
equation [5] whose simplified physical model for EIT can be
written as

𝑈 = 𝑓 (𝜎; 𝐼) = 𝑅 (𝜎) 𝐼, (1)

where𝑈 is the measured voltage vector on the electrodes sur-
rounding the periphery of a subject, 𝐼 is the injected current
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vector, 𝜎 is the conductivity distribution in a cross-section
of the subject, 𝑓(𝜎; 𝐼) is the nonlinear model mapping 𝜎

and 𝐼 to 𝑈, and 𝑅(𝜎) is the model mapping 𝜎 to resistance.
This model depends nonlinearly on the conductivity 𝜎 and
linearly on the current 𝐼. The aim of image reconstruction
for EIT is to obtain the conductivity distribution 𝜎 using the
boundary voltage vector 𝑈 and the injected current vector 𝐼.
The mathematical expression of the tomographic problem is
given by the following equations:

[Δ𝑈]𝐾×1 = [𝑈]𝐾×𝑁 ⋅ [Δ𝐺]𝑁×1 or 𝑈 = 𝑆𝐺, (2)

where 𝑆 is a Jacobian matrix, that is, the sensitivity distribu-
tion, and 𝐾 and 𝑁 are the numbers of total measurements
and pixels, respectively.The goal is to determine the unknown
image 𝑋 when the experimental projections 𝑈 are available.
In the discrete form, the aim of image reconstruction for the
EIT field is to find the unknown pixel vector from the known
𝑈 by using (2); that is,

𝐺 = 𝑆
−1
𝑈. (3)

However, the direct analytical solution for (3) does not
exist since the inverse problem is both nonlinear and ill-
posed, and little noise in the measured data could cause large
errors in the estimated conductivity. Many algorithms have
been proposed to indirectly solve the above ill-posed problem
as explained below.

(1) LBP Algorithm.The most used EIT image reconstruction
algorithm is the linear back projection (LBP) [6]. In the
LBP algorithm, the conductivity distributions are assumed to
comprise a number of discrete regions within the measure-
ment space such that the conductivity within each region is
constant. According to (3), 𝐴−1𝐵 is approximated as

𝐺 =
𝑆
𝑇
𝑈

𝑆𝑇𝑈
𝜆

, s.t. 𝑈
𝜆
= [1, 1, . . . , 1] . (4)

Equation (4) shows that the grey value of any pixel is calcu-
lated by using a weighted form in the LBP algorithm.

(2) Landweber Algorithm. The Landweber algorithm (LW)
[14] was originally designed for solving the classical ill-
posed problem using the strategy similar to the gradient
descending algorithm in the optimization process by the
following equation:

𝐺
𝑡+1

= 𝐺
𝑡
− 𝛼𝑆
𝑇
(𝑆𝐺
𝑡
− 𝜆) , (5)

where the constant 𝛼 is known as the gain factor and is
used to control the convergence rate. As the iterative process
described by (5) proceeds, the norm of the capacitance
residual will be minimized. Since the norm may tend to be
a certain value larger than zero, the original algorithm often
is modified as

𝐺
𝑡+1

= 𝑃 [𝐺
𝑡
− 𝛼𝑆
𝑇
(𝑆𝐺
𝑡
− 𝜆)] . (6)

The value of 𝑃 has been adopted by inclusion of a nonlinear
function to constrain the estimated image so that 𝐺

𝑡+1
∈

[0, 1]; that is, when a normalized gray level is less than zero,
it is constrained to be zero, and when it is larger than “1”, it is
constrained to be “1”.

(3) Tikhonov Regularization. The Tikhonov regularization
(TR) [15] is one efficient method and is presented as a mini-
mization function shown as follows:

𝐽 (𝑔) =
1

2
‖𝑈 − 𝑆𝜎‖

2
+ 𝜇𝑅 (𝜎) , (7)

where𝑅(𝑔) is the regularization function and 𝜇 is the regular-
ization parameter. The function is often expressed in 𝐿

2 form
as

𝑅 (𝑔) = ‖𝐿 (𝜎 − 𝜎)‖
2
, (8)

where 𝐿 is an appropriate regularization matrix and 𝜎 is a
prior estimate of the permittivity or the conductivity distri-
bution.

(4) FC-EIT Algorithm. Recently, one efficient and original
EIT imaging algorithm [16], termed as FC-EIT, has been
proposed. FC-EIT firstmaps𝐾measuring data of pixel 𝑗 after
𝐾 excitations into a 𝐾-dimensional vector as

(V
𝑗,1
V
𝑗,2
, . . . , V

𝑗,𝐾
)
𝑇

, ∀𝑗 = 1, 2, . . . , 𝑛. (9)

All vectors associated with all pixels consist of a set 𝑋 and
then all vectors in𝑋 are partitioned into 𝑐 clusters by the fuzzy
𝑐-means (FCM) algorithm [17]. Let 𝑢

𝑖𝑗
be the membership

degree of 𝑗th vector (pixel) to 𝑖th cluster, let V
𝑖
be the cluster

prototype of 𝑖th cluster, and let 𝐺(V
𝑖
) be the gray value of 𝑖th

cluster prototype, 𝑖 = 1, 2, . . . , 𝑐; 𝑗 = 1, 2, . . . , 𝑛. So the gray
value of 𝑗th pixel 𝑔(𝑗) is determined by the weighted average
form:

𝑔 (𝑗) =

𝑐

∑

𝑖=1

𝑢
𝑖𝑗
𝐺 (V
𝑖
) , 𝑗 = 1, 2, . . . , 𝑛. (10)

All pixels are endowed with different gray values based on
(10). These determined gray values thus can reconstruct a
frame of EIT image to show various conductivities and to
recover the distributions of investigated objects in the cross-
section.

LBP is a typical noniterative algorithm and has the least
excusive time, and the others are iterative algorithms and
need more runtime. These EIT imaging algorithms are the
most used ones in practice. In this paper, the above algo-
rithms are applied for EIT imaging reconstruction to examine
the spatial resolutions before and after performingmeasuring
data preprocessing.

3. Optimal Data Preprocessing Method

In this section, we define a relative size (RS) index and a
signal-to-noise ratio (SNR) index of the measureable data,
respectively. The optimums of the two indexes are applied
to realize the optimal measuring data preprocessing and
improve the EIT spatial resolution. The characteristics of the
two indexes are illustrated below.
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Figure 2: Extraction of roots for the measured data.

3.1. Two Quantitative Indexes for Evaluating Data Preprocess-
ing Process. The relative sizes of 𝐾 measuring data of any
pixel after 𝐾 excitations can lead to great differences for the
EIT spatial resolution. Due to the weak current excitation in
EIT, most of the measuring data have very small size. Thus,
amplifying the original data to a proper size is a necessary step
for the EIT imaging process [2, 12]. The larger measureable
data relative size, the higher EIT images spatial resolution [12,
16]. The first proposed index aims to maximize the relative
size by using a nonlinear transformation of all measuring
data, because a linear amplification must keep the relative
sizes being a constant. Assuming that an investigated field
is partitioned into 𝑛 pixels, a nonlinear transformation is
performed by finding 𝑧 root to all measuring data as in the
following form:

𝑦
𝑘,𝑗

= 𝑧√V
𝑘,𝑗
, 𝑘 = 1, . . . , 𝐾; 𝑗 = 1, 2, . . . , 𝑛, (11)

where V
𝑘,𝑗

is the measured data of the 𝑗th pixel in the 𝑘th
excitation, 𝑘 = 1, 2, . . . , 𝐾.The proposed index, termed as the
relative size (RS) index, is defined as

𝜉 =

𝑛

∑

𝑗=1

𝐾

∑

𝑠,𝑡=1

(max {𝑦
𝑗,𝑠
, 𝑦
𝑗,𝑡
} −min {𝑦

𝑗,𝑠
, 𝑦
𝑗,𝑡
})

𝑛 (𝐾 − 1)
, (12)

where 𝑠 and 𝑡 are two consecutive integers, and V
𝑗,𝑠

and V
𝑗,𝑡

are two successive measuring data from the two successive
excitations. The value of 𝜉 totally reflects the relative size of
measuring data of all pixels. Tomaximize the relative size, the
optimum of (12) is solved as

𝑧
∗
= arg max

𝑧
𝜉. (13)

Independent of any measuring data and any EIT imaging
algorithms, (13) must have a maximum at least for any set
of pixels associated with these investigated objects due to the
following three reasons.

(A) For 𝜉 ≧ 0, the inequality holds from (12).
(B) For 𝜉 = 0when 𝑧 → ∞,𝑦

𝑖𝑗
→ 1, the equation holds

since zero exponents of any number are 1 and thus are
equivalent to each other.

(C) For 𝜉 ≈ 0when 𝑧 → 1, all measuring data keep their
original values and the mutual differences of these
data are very small.

Equation (13) shows that the optimal measuring data can be
solved by the optimum of the RS index of (13). Thus, the
optimal determination of the rooting times of the measuring
data can enhance their relative sizes.

Figure 2(a) shows an original image that is simulated
in Comsol simulation environment [18]. The reconstructed
objects are two circles with conductivity 200 and the cor-
responding background with conductivity 100. Figure 2(b)
shows the simulated measurable data associated with the
original image. It is difficult to identify these measuring
data in terms of their original relative sizes. As compared,
the second and the fifth roots of these measurable data are
shown in the same coordinate. Compared with the original
measuring data, their relative sizes become larger. In fact,
their values of 𝜉 are 12.12 and 19.30, respectively, while
the value of 𝜉 of the original measuring data is 2.73. This
demonstrates that extracting the root of measurable data can
increase their relative sizes.

On the other hand, for 𝐾 measuring data of any pixel,
there are seriously noisy data and “soft-field” effects. Usually,
the two measuring data that are closest and farthest to a pair
of exciting electrodes are of low SNR.The closest one is due to
the strong proximity effect between exciting and measuring
electrodes, and the farthest one is prone to be affected by
these polarization effects and “soft-field” effects in the field.
Consequently, these measuring data that are nearly located in
themiddle between the closest and farthest electrodes are the
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Figure 3: Original image and effects of rooting measuring data.

most effective among 𝐾 measuring data. The second index
aims to minimize the effect of the two measuring data by
finding their optimal root by (11). So the second index, termed
as the SNR index, is defined as

𝜂 =
2

𝑛𝐾

×

𝑛

∑

𝑗=1

∑
𝐾

𝑘=1
V
𝑗,𝑘

max{V
𝑗,1
, V
𝑗,2
, . . . , V

𝑗,𝑘
}+min{V

𝑗,1
, V
𝑗,2
, . . . , V

𝑗,𝑘
}

,

(14)

where max{V
𝑗,1
, V
𝑗,2
, . . . , V

𝑗,𝑘
} and min{V

𝑗,1
, V
𝑗,2
, . . . , V

𝑗,𝑘
} are

the farthest and closest measuring data in𝐾measuring data,
respectively. The coefficients of 2/𝑛𝐾 make the values of 𝜂
equal to 1 when all values of V

𝑗,𝑘
are equivalent to each other.

It is clear that the larger the values of 𝜂 are, the higher the SNR
is.Thus, values of 𝜂 can show the SNR level of thesemeasuring
data. To obtain the highest SNR, (14) is solved by

𝑧
∗
= arg max

𝑧
𝜂. (15)

The optimum of (15) shows the SNR level of the measuring
data after finding the optimal root. Equation (15) must have
a maximum at least for any set of pixels associated with these
investigated objects due to the following three reasons.

(A) For 𝜂 ≧ 1, the inequality holds from (14).
(B) For 𝜂 ≈ 1when 𝑧 → 1, all measuring data keep their

original values and the mutual differences of these
data are very small.

(C ) For 𝑛 = 1 when 𝑧 → ∞, 𝑦
𝑖𝑗

→ 0, the equation
holds since the infinite roots of any numbers are 1 and
thus are equivalent to each other.

Figure 3 shows a simulation in Comsol simulation envi-
ronment [18]; the original image consists of three circles with
the same conductivity as well as background. The simulated
measuring data shown in their optimal 3rd root. Compared

with the original measuring data, the data after finding their
roots havemuch larger values of 𝜂.This demonstrates that the
rooting operation is helpful in improving the SNR level.

3.2. Optimal Solution of the Two Proposed Indexes. The cross-
section in an EIT system is called a full field when the
investigated objects are contained and otherwise is called an
empty field.The optimums of (13) and (15) are solved in a full
field. However, it is impossible to obtain an analytic optimum
for an arbitrary full field owing to extremely complex distri-
butions of investigated objects. Notice that the relative sizes
of measuring data in a full field are nearly proportional to
those in the empty field [12, 13]. Consequently, the optimums
of (13) and (15) are solved in an empty field. Without loss
of generalization, a system of 16 electrodes is taken in a
circular investigated field as an example. For each excitation,
13 measuring data consist of a U-shaped curve and all
measuring data from 16 excitations are summed up to 208
for the same pixel, as shown in Figure 4(a). Assume that
𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, 𝑇
5
, 𝑇
6
, and 𝑇

7
are 7 electrodes on a circular

empty field, as shown in Figure 4(b).
The circle equation with radius 𝑅 in a polar coordinate

system can be formulated as

𝜌 = 2𝑅 sin 𝜃, (16)

where 𝜌 is polar radius and 𝜃 is polar angle. Each pair of
exciting electrodes 𝐴 and 𝐵 is regarded as an electric dipole
since they have enough small distance compared with the
radius of the circled field. The polar coordinate equation on
the equipotential line in arbitrary 𝑃 point in the investigated
field is shown as

𝜌 = 𝐶√cos 𝜃, (17)

where 𝐶 is the potential value of the equipotential line that
goes through 𝑃 point. According to the basic mathematical
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Figure 4: Measuring data with U-shaped curve and polar coordinate system.

theorem [19], the same arc has equivalent angle in a circular
segment, drawing out the following relation:

∠𝑇
1
𝑂𝑇
2
= ∠𝑇
2
𝑂𝑇
3
= ⋅ ⋅ ⋅ = ∠𝑇

6
𝑂𝑇
7
. (18)

Let the polar coordinates 𝑇
1
, 𝑇
2
, . . . , 𝑇

7
be (𝜌
1
, 𝜃
1
), (𝜌
2
, 𝜃
2
),

. . . , (𝜌
7
, 𝜃
7
) after the polar point is taken as the center of the

exciting electrodes 𝐴 and 𝐵, respectively. To begin with 𝑥-
axis at the 𝑘th excitation, these polar angles 𝑇

1
, 𝑇
2
, . . . , 𝑇

7
are

represented as

𝜃
𝑖
= (

2𝜋

15
𝑖)

0

≈ (24𝑖)
0
, 𝑖 = 1, 2, . . . , 7. (19)

After combining (16) and (17), the potential values of 𝑇
1
∼ 𝑇
7

are solved as

𝐶 =
2𝑅 sin 𝜃

√cos 𝜃
⇒ 𝐶

𝑖
=

2𝑅 sin 𝜃
𝑖

√cos 𝜃
𝑖

= 𝑄
𝑖
𝑅, 𝑖 = 1, 2, . . . , 7,

(20)

where 𝑄
𝑖
= 2 sin 𝜃

𝑖
/√cos 𝜃

𝑖
, 𝑖 = 1, 2, . . . , 7, are 7 invariant

constants when the number of electrodes 𝐾 is fixed. The
potential relative sizes of these measuring data among the
seven electrodes 𝑇

1
, . . . , 𝑇

7
are

V
𝑗,𝑘

= 𝑢
𝑗,𝑘+1

− 𝑢
𝑗,𝑘

= (𝑄
𝑗,𝑖+1

− 𝑄
𝑗,𝑖
) 𝑅,

𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 7.

(21)

Generally, owing to V
𝑗,1

> V
𝑗,2

> ⋅ ⋅ ⋅ > V
𝑗,7

and 𝑧√𝐾
𝑗,2

− 𝐾
𝑗,1

>

𝑧√𝐾
𝑗,3

− 𝐾
𝑗,2

> ⋅ ⋅ ⋅ > 𝑧√𝐾
𝑗,𝐾+1

− 𝐾
𝑗,𝐾

, therefore (13) and (15)
can be rewritten as

𝜉 =

𝑛

∑

𝑗=1

𝑘

∑

𝑠,𝑡=1

( 𝑧√𝑄
𝑗,𝑠+1

− 𝑄
𝑗,𝑠

− 𝑧√𝑄
𝑗,𝑡+1

− 𝑄
𝑗,𝑡
)
𝑧

√𝑅

𝑛 (𝐾 − 1)
,
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Figure 5: Variance of U-shaped curves after rooting the measuring
data.

When the number of electrodes is fixed, the optimums of (13)
and (15) are two constants and can be solved easily. According
to the finite element method [20], when 𝐾 = 16 for ERT and
𝐾 = 12 for ECT, the optimums of (1/𝑧) in (13) are 0.26 and
0.34, and the optimums in (15) are 0.23 and 0.33, respectively.

According to the two original images in Figures 2 and
3, Figure 5 shows the optimal solutions of (13) and (15).
Figure 5 shows that the relative sizes of the measuring data
gradually increase from 0.1 to 0.26 and decrease from 0.26 to
0.1, where all origins of U-shaped curves after rooting these
measuring data are located in the same point.

Both (13) and (15) can provide the optimalmeasuring data
preprocessing according to the same rooting operation in (11)
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but are based on different motivations. In the experimental
part in this paper, our research shows their interrelations.

3.3. The Correctness of the Two Proposed Indexes. The opti-
mums of the two proposed indexes are solved under this
assumption that variances of the measuring data are nearly
directly proportional to each other in the empty and full
fields. However, a real investigated field can be affected by
various and complex applicable conditions, and thus it is
necessary to consider the correctness of the two indexes
in these conditions. Generally, the investigated objects in a
field consist of materials with different attributes, such as
conductivity, permittivity, and permeability. The materials of
the same attribute must have the similar distribution of the
measuring data, while the ones of different attributes have dif-
ferent distributions.The same distributions of measured data
correspond to the same cluster, while different distributions
correspond to different clusters. Consequently, the task of ET
imaging aims to find all clusters of measuring data [12, 16].
Most of the actual investigated objects consist of clusters with
various characteristics such as sizes, densities, and positions.
So in this paper the three characteristics are generally defined
to evaluate the effect of the two proposed indexes as follows.

The quantity to show position characteristic is computed
as

position (𝑐) =

𝑐−1

∑

𝑖=1

𝑐

∑

𝑗=𝑖+1

{max (𝑃
𝑖
, 𝑃
𝑗
) /min (𝑃

𝑖
, 𝑃
𝑗
)}

𝐶2
𝑐

, (23)

where 𝑃
𝑘
represents the minimal distance to the 𝑘th clus-

ter from other clusters and is computed by all pairwise
distances from the 𝑘th cluster to the closest cluster, for
𝑘 = 1, 2, . . . , 𝑐. Clearly, position(𝑐) > 1 since the value
of max(𝑃

𝑖
, 𝑃
𝑗
)/min(𝑃

𝑖
, 𝑃
𝑗
) must be larger than 1. Values of

position(𝑐) are smaller and distributions among clusters are
more consistent and symmetric. Thus, values of position(𝑐)
can efficiently show the characteristics of relative position
among all clusters.

The quantity to represent size characteristic is computed
as

size (𝑐) =
𝑐−1

∑

𝑖=1

𝑐

∑

𝑗=𝑖+1

{max (𝑆
𝑖
, 𝑆
𝑗
) /min (𝑆

𝑖
, 𝑆
𝑗
)}

𝐶2
𝑐

, (24)

where 𝑆
𝑘
refers to the size of 𝑘th cluster and is computed by

the average of all pairwise distances between the two data
vectors in 𝑘th cluster, for 𝑘 = 1, 2, . . . , 𝑐. Clearly, size(𝑐) >

1 since the value of max(𝑆
𝑖
, 𝑆
𝑗
)/min(𝑆

𝑖
, 𝑆
𝑗
) is larger than 1.

Values of size(𝑐) are smaller and sizes among clusters are
more consistent. Thus, values of size(𝑐) can efficiently show
the characteristics of relative size among all clusters.

The quantity to show density characteristic is computed
as

density (𝑐) =
𝑐−1

∑

𝑖=1

𝑐

∑

𝑗=𝑖+1

{max (𝐷
𝑖
, 𝐷
𝑗
) /min (𝐷

𝑖
, 𝐷
𝑗
)}

𝐶2
𝑐

, (25)

where 𝐷
𝑘
represents the density of 𝑘th cluster and is com-

puted by a division between the number of data vectors and

𝐷
𝑘
in the 𝑘th cluster. Clearly, density(𝑐) > 1 for the value of

max(𝐷
𝑖
, 𝐷
𝑗
)/min(𝐷

𝑖
, 𝐷
𝑗
) is larger than 1. Smaller values of

density(𝑐) show that all clusters have nearly the same number
of data vectors.Thus, values of density(𝑐) can efficiently show
the characteristics of relative density among all clusters.

To begin with a dataset of three clusters, we reconstruct
220 three cluster-contained datasets of different characteris-
tics by changing one quantity and changing a pair of quan-
tities related to the above three characteristics, respectively.
Figures 6(a), 6(c), and 6(e) show three representative datasets
when changing one of the three quantities, respectively. As
these quantities are changed, their determined optimums
of the RS index are shown in Figures 6(b), 6(d), and 6(f).
Figure 6 shows that in a wide sampling range, position(𝑐) ∈

[1, 3], size(𝑐) ∈ [1, 4], and density(𝑐) ∈ [1, 4] each quantity
in itself has little effect on the determined optimum of the
proposed index.

Figures 7(a)–7(c) show the effect of three pairs of com-
bined quantities for the optimums of the RS index. When
position(𝑐) > 3.1 and size(𝑐) > 2.8, the optimum of the RS
index is 0.24; when size(𝑐) > 3.6 and density(𝑐) > 3.8, the one
is 0.26, and for position(𝑐) ∈ [1, 3] and size(𝑐) ∈ [1, 4] the one
is around 0.3. When the above three pairs of combinations
take the other values, the determined number of all clusters
is 5. Thus, the combined quantities of position(𝑐) and size(𝑐)
play a major role in the optimum of the RS index, size(𝑐)
and density(𝑐) play a second important role, and position(𝑐)
and density(𝑐) have no apparent effect on the final optimums.
Please note that position(𝑐) ∈ [1, 3], size(𝑐) ∈ [1, 4], and
density(𝑐) ∈ [1, 4] are very general conditions and are
encountered in most real applications.

In sum, the RS index has the following key characteristics.
The optimum of the RS index can keep unchangeable in a
wide range of various characteristics and thus is robust to
satisfy the general needs in practice. If the number of exciting
electrodes is fixed, this optimum is a constant. The optimum
of the RS index assures the effectiveness and generalization
of the EIT imaging process. The SNR index behaves as the
RS index but they have different motivations and applicable
ranges. The experimental part in this paper will present their
relative sizes and interrelations.

4. Experiments

Two groups of experiments are applied to validate the two
proposed indexes in Comsol simulation and real test, respec-
tively. The spatial resolution of EIT sensitive field is defined
as the total relative error of all pixels in the reconstructed EIT
image and formulated as

𝜉 = (
1

𝐾
)

𝐾

∑

𝑗=1

(𝑔
𝑗
− 𝑔
∗

𝑗
)

𝑔
∗

𝑗

, (26)

where 𝑔
𝑗
is the reference gray value of the 𝑗th pixel and is

known as a prior or real measuring data. 𝑔∗
𝑗
is the gray value



8 The Scientific World Journal

(a) Original model

0.08
0.12

0.16
0.2

0 5 15 25 35
10 20 30 40

150

250
200

350
300

400
450

200

250

300

350

400

450

Times of root
R

r

(b) Effect of cluster size

(c) Original model

0.450.55 0.5 0.40.60.7 0.650.75

0
5
10
15

20
25

30

100
150
200
250
300
350

Distance to center

Tim
es of root

160
140

180

220

320
300
280
260
240

200

r

(d) Effect of cluster distributions

100 200

10

(e) Original model

48121620
0 5 10 15 20 25 30

200
250
300
350
400
450
500
550

 Conductivity

r

250

500

450

400

350

300

Times of root

(f) Effect of conductivity magnitude

Figure 6: Effect of various characteristics on the optimum of the RS index. (a), (c), and (e) are six original images, and (b), (d), and (f) are
the curves of the optimums by the index.

of the 𝑗th pixel after an EIT image, 𝑗 = 1, 2, . . . , 𝐾, and 𝜉 is
the average of the total error of all the𝐾 pixels.

The four algorithms, LBP, TR, LW, and FC-EIT, are
applied to the EIT imaging process to test the correctness of
the two proposed indexes.

4.1. Simulation in Comsol Environment. The group of exper-
iments is implemented in Comsol simulation environment
[18]. An EIT system of 16 electrodes is set up. The original
images consist of two, three, four, and five circles with contin-
uously distributedmaterials, respectively, as shown in the first
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Figure 7: Effect of various three pairs of characteristics on the optimum of the RS index. (a), (c), and (e) are six original images, and (b), (d),
and (f) are the curves of the optimums by the RS index.

row in Figure 14. These circles have the same conductivity
and thus should be shown as the same gray degree in any
EIT image, while the background has another gray value.
The ratio of conductivity between the circles and background

is set to 4 : 1. By the adjacent excitation way, the measuring
data are produced. According to (12) and (15), we take the
optimal values of theRS index and the SNR index individually
as 𝑧 = 3.5 and 𝑧 = 3.9. In terms of these roots to all
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Figure 8: Contrast of the reconstructed images after and before adding the optimal root.

measuring data, these circles in these original images are
reconstructed. Figure 14 shows these circles before and after
finding the optimal root to all measuring data. Compared
with the original images, the reconstructed circles based on
the RS index are clear and nearly consistent after rooting
all measuring data. Additionally, the trail traces in an EIT
image can visually evaluate the spatial resolution of the image.
It can be observed that the trail traces in these EIT images
are widely distributed without data preprocessing, and even
some circles are incorrectly connected to the same area.
Particularly, Figure 14 shows that the Landweber algorithm
can distinguish these circles better than the other three
algorithms, and reconstructed images have much smaller
trail traces under a wide range of parameter settings. These
results further demonstrate that the Landweber algorithm
outperforms the other three algorithms in the four groups
of datasets and has much smaller trail traces. In fact, the
average spatial resolution of these images can be raised by
17.5% by finding the optimal root of measuring data. As
compared, when 𝑧 = 3.9, the SNR index can improve
spatial resolution about 12.7% according to (26). Notice that
the Comsol simulation is set without noisy data, and thus
the RS index may give higher improvement than the SNR
index. On the other hand, the highest resolutions of the four
models are 3.4, 3.8, 4.5, and 2.7, respectively. The error of the
optimum is assured by the assumption that the actual data
is directly proportional to the real increment of measuring
data. But it should be noted that the two proposed indexes
have no mathematical basis at present and this can be further
improved.

When the noisy data are added into the measured data,
the spatial resolution of the reconstructed EIT must reduce.
But the proposed method of rooting operation can slightly
be affected and is far away from the optimums about 10%.
Figure 8 shows two reconstructed EIT images before and
after 15% noisy data, where the optimal rooting values are

0.38 and 0.34 for RS and SNR, respectively, while their
theoretical optimal solutions of (13) and (15) are 0.36 and 0.35,
respectively.

4.2. Test on an ECT Field. In the experiment, two movable
glass rods are inserted into a measuring pipe, and the back-
ground material is air, as shown in Figure 9. A 16-electrode
ECT sensor is equipped on a cross-section of the pipe to
excite and obtain the measuring data.Themeasuring process
is repeated 20 times for different positions of the two rods
to form data sequence sampling. There are noisy signals in
this sampling process. Thus, the SNR index is applied to
measuring data preprocessing to decrease the effect of the
noisy signal as much as possible.

Figure 10 shows the measuring data distribution before
and after finding their optimal roots. According to the opti-
mum of the SNR index, the measuring data before finding
the optimal root are irregular and some of them deviate
from the traces of U-shaped curve. Particularly, some meas-
uring data are mixed with each other due to quite small
relative size. Thus, these data may produce trail traces in the
reconstructed EIT images and inevitably decrease the spatial
resolution. Such partial data are caused by the machine noise
in the sampling process besides the “soft-field” effect. Instead,
after finding the optimal root, these measuring data become
regular. Their relative sizes become larger than those before
finding the optimal root.

In terms of these measuring data before and after finding
the optimal root, the LBP algorithm is applied to reconstruct
the two rods, as shown in Figure 11. The two reconstructed
rods after finding the optimal root aremuch clearer and tidier
than before. According to the values of (26), in 20 times of
experiments, the former averagely is 0.35 and the latter is 0.47.
Consequently, the spatial resolutions of these EIT images are
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(a) The measuring equipment (b) The cross-section of the measuring sensor

Figure 9: The measuring equipment and investigated objects.
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Figure 10: Contrast of the measured data after and before finding the optimal root.
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Figure 11: Contrast of the EIT images after and before finding the optimal root.
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Figure 12: Contrast of the reconstructed images after and before finding the optimal root.
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Figure 13: Contrast of the reconstructed images after and before finding the optimal root.

greatly improved based on the SNR index. In addition, the
proposed data preprocessing process hardly needs to be at the
expense of extra runtime since the process to find the optimal
root needs much less runtime than the EIT imaging process
itself.

When the RS index is applied to data preprocessing and
the LBP algorithm is applied to reconstruct the two rods, as
shown in Figure 12, the increment of spatial resolution of the
EIT image from the RS index is not as large as that from the
SNR index. In fact, the values of (26) based on the RS index
are averagely 2.33. Thus, the SNR index is more suitable for
the noisy condition, while theRS index ismore accuratewhen
measuring data conclude little noise or are simulated data.

When the rooting times in the RS index are taken from 0.2 to
0.8, the spatial resolutions of all reconstructed images can be
improved with different extents. Thus, the rooting operation
is a very useful data preprocessing method for the original
measuring data.

When the target objects are located in centric and
boundary areas, respectively, the optimal rooting values have
approximately the same results even though the spatial reso-
lutions in the two areas are very different. But the reformu-
lations of the spatial resolution are very limited for the EIT
images. In the average meaning, the spatial resolution in the
centric area reduces to 60% as much as that in the boundary
area, as shown in Figure 13.
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Figure 14: Continued.
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Figure 14: Test on the effect of finding the optimal root of measuring data. Note. “𝑥” and “𝑥 − 1” are the EIT images before and after rooting
the measuring data, respectively.

5. Conclusion

In this paper, a nonlinear transformation method of opti-
mally rooting all measuring data is proposed to improve
the EIT spatial resolution. The optimal rooting times are
determined by two constructed indexes for measuring data
preprocessing. The rooting operation has the following
advantages.

(1) Easy Operation.The simple rooting operation of measur-
ing data is very easy to be implemented in software and hard-
ware systems. Moreover, various EIT techniques can follow
the same way in practice.

(2) Robustness. The spatial resolution of EIT images can be
improved in a very wide range of the rooting values as well
as their optimums. This characteristic is very suitable for
engineering applications.

(3) Effectiveness.The proposed method has been validated in
four most used EIT imaging algorithms and can hold in most
EIT algorithms.

(4) Different Effects. The SNR index is more suitable under
noisy conditions, while the RS index works better in simu-
lated or hardly free-noisy conditions when applying an EIT
system. Moreover, to our knowledge, so far there is no quan-
tity to measure the characteristics of investigated objects in
various conditions, so these three quantities proposed in this
paper are valuable for further setting a uniform criterion to
compare various imaging processes and different algorithms.

There is a great room to improve the two proposed
indexes.While promising, our immediate next studies will be
as follows.

(1) The use of the sensitive coefficients in the investi-
gated field could generate vectors of more accurate
characteristics to find more effective nonlinear tool
instead of the rooting operation. The use of sensitive

coefficients can provide better spatial resolutions,
which has been demonstrated in the existing ET
image algorithms.

(2) The second study will be concerned with determining
different weighting values for different components
of all vectors. The existing study has shown that the
measured data in different electrode pairs contain
different noise-signal ratios and thus have different
effects on the final EIT imaging results. Consequently,
the use of different weight values to present these
different effects is preferable to enhance the imaging
spatial resolutions.

(3) The third study will be on the use of other nonlin-
ear transformations to measurable data besides the
rooting operation. Various nonlinear transformation
techniques have been developed for decades, and
various research ways and achievements are rich and
efficient.
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