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We introduced theweak ideal convergence of new sequence spaces combining an infinitematrix of complex numbers andMusielak-
Orlicz function over normed spaces. We also study some topological properties and inclusion relation between these spaces.

1. Introduction

Throughout the paper 𝜔, ℓ
∞
, 𝑐, 𝑐
0
, and ℓ

𝑝
denote the classes

of all, bounded, convergent, null, and 𝑝-absolutely summable
sequences of complex numbers. The sets of natural numbers
and real numbers will be denoted by N, R, respectively, and
𝐼 will denote an admissible ideal in N; 𝑋, 𝑋∗ will denote
a normed linear space (𝑋, ‖ ⋅ ‖) and its continuous dual,
respectively. Many authors studied various sequence spaces
using normed or seminormed linear spaces. In this paper,
using an infinite matrix of complex numbers and the notion
of weak ideal, we aimed to introduce some new sequence
spaces with Musielak-Orlicz function in normed spaces. By
an ideal we mean a family 𝐼 ⊂ 2𝑌 of subsets of a nonempty
set 𝑌 satisfying the following: (i) 𝜙 ∈ 𝐼; (ii) 𝐴, 𝐵 ∈ 𝐼 imply
𝐴∪ 𝐵 ∈ 𝐼; (iii) 𝐴 ∈ 𝐼, 𝐵 ⊂ 𝐴 imply 𝐵 ∈ 𝐼, while an admissible
ideal 𝐼 of𝑌 further satisfies {𝑥} ∈ 𝐼 for each 𝑥 ∈ 𝑌.The notion
of ideal convergence was introduced first by P. Kostyrko et al.
[1] as a generalization of statistical convergence. Given that
𝐼 ⊂ 2

N is a nontrivial ideal in N, the sequence (𝑥
𝑛
)
𝑛∈N in a

normed space (𝑋; ‖ ⋅ ‖) is said to be 𝐼-convergent to 𝑥 ∈ 𝑋 if,
for each 𝜀 > 0,

𝐴 (𝜀) = {𝑛 ∈ N :




𝑥
𝑛
− 𝑥




≥ 𝜀} ∈ 𝐼. (1)

A sequence (𝑥
𝑘
) in a normed space (𝑋, ‖ ⋅ ‖) is said to be 𝐼-

bounded if there exists 𝐿 > 0 such that

{𝑘 ∈ N :




𝑥
𝑘





> 𝐿} ∈ 𝐼. (2)

A sequence (𝑥
𝑘
) in a normed space (𝑋, ‖ ⋅ ‖) is said to be 𝐼-

Cauchy if, for each 𝜀 > 0, there exists a positive integer 𝑚 =
𝑚(𝜀) such that

{𝑛 ∈ N :




𝑥
𝑛
− 𝑥
𝑚





≥ 𝜀} ∈ 𝐼. (3)

Recently different classes of sequences have been introduced
using ideal convergence; see [2, 3]. Following [4, 5], Pehlivan
et al. [6] have introduced the concepts of weak 𝐼-convergence
and weak 𝐼-Cauchy sequence in a normed space and investi-
gated their basic properties. A sequence (𝑥

𝑛
)
𝑛∈N in a normed

space (𝑋; ‖ ⋅ ‖) is said to be weak 𝐼-convergent to 𝑥 ∈ 𝑋 if, for
each 𝜀 > 0 and for each 𝑓 ∈ 𝑋∗, the set

𝐴 (𝜀) = {𝑛 ∈ N :




𝑓 (𝑥
𝑛
) − 𝑓 (𝑥)





≥ 𝜀} ∈ 𝐼. (4)

A sequence (𝑥
𝑛
) in a normed space (𝑋, ‖ ⋅ ‖) is said to be weak

𝐼-bounded for each 𝑓 ∈ 𝑋∗ if there exists 𝐿 > 0 such that

{𝑘 ∈ N :




𝑓 (𝑥
𝑘
)




> 𝐿} ∈ 𝐼. (5)

A sequence (𝑥
𝑘
) in a normed space (𝑋, ‖ ⋅ ‖) is said to be weak

𝐼-Cauchy if, for each 𝜀 > 0 and for each 𝑓 ∈ 𝑋∗, there exists
a positive integer𝑚 = 𝑚(𝜀) such that

{𝑘 ∈ N :




𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑚
)




≥ 𝜀} ∈ 𝐼. (6)

AnOrlicz function is a function𝑀 : [0,∞) → [0,∞)which
is continuous, nondecreasing, and convex with 𝑀(0) = 0,
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𝑀(𝑥) > 0 for 𝑥 > 0, and 𝑀(𝑥) → ∞, as 𝑥 → ∞. If
convexity of 𝑀 is replaced by 𝑀(𝑥 + 𝑦) ≤ 𝑀(𝑥) + 𝑀(𝑦),
then it is called a modulus function, introduced by Nakano
[7]. Ruckle [8] and Maddox [9] used the idea of a modulus
function to construct some spaces of complex sequences. An
Orlicz function𝑀 is said to satisfyΔ

2
-condition for all values

of 𝑥 ≥ 0 if there exists a constant 𝑘 > 0, such that𝑀(2𝑥) ≤
𝑘𝑀(𝑥). The Δ

2
-condition is equivalent to𝑀(𝑙𝑥) ≤ 𝑘𝑙𝑀(𝑥)

for all values of 𝑥 and for 𝑙 > 1. Lindenstrauss and Tzafriri
[10] used the idea of anOrlicz function to define the following
sequence spaces:

ℓ
𝑀
= {𝑥 ∈ 𝜔 :

∞

∑

𝑘=1

𝑀(

|𝑥 (𝑘)|

𝜌

) < ∞} , (7)

which is a Banach space with the Luxemburg norm defined
by

‖𝑥‖ = inf {𝜌 > 0 :
∞

∑

𝑘=1

𝑀(

|𝑥 (𝑘)|

𝜌

) ≤ 1} . (8)

The space ℓ
𝑀

is closely related to the space ℓ
𝑝
, which is an

Orlicz sequence space with 𝑀(𝑥) = 𝑥𝑝 for 1 ≤ 𝑝 < ∞.
Recently different classes of sequences have been introduced
using Orlicz functions. See [11–14]. A sequenceM = (𝑀

𝑘
) of

Orlicz functions𝑀
𝑘
for all 𝑘 ∈ N is called a Musielak-Orlicz

function.

2. Definitions and Preliminaries

Let 𝑥 = (𝑥
𝑘
) be a sequence; then 𝑆(𝑥) denotes the set of all

permutations of the elements of (𝑥
𝑘
); that is,

𝑆 (𝑥) = {(𝑥
𝜋(𝑛)
) : 𝜋 is a permutation of N} . (9)

Definition 1. A sequence space 𝐸 is said to be symmetric if
𝑆(𝑥) ⊂ 𝐸 for all 𝑥 ∈ 𝐸.

Definition 2. A sequence space 𝐸 is said to be normal (or
solid) if (𝛼

𝑘
𝑥
𝑘
) ∈ 𝐸, whenever (𝑥

𝑘
) ∈ 𝐸 and for all sequence

(𝛼
𝑘
) of scalars with |𝛼

𝑘
| ≤ 1 for all 𝑘 ∈ N.

Let 𝐾 = {𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ } ⊆ N and let 𝐸 be a sequence

space. A 𝐾-step space of 𝐸 is a sequence space 𝜆𝐸
𝐾
= {(𝑥
𝑘
𝑛

) ∈

𝜔 : (𝑘
𝑛
) ∈ 𝐸}. A canonical preimage of a sequence 𝑥

𝑘𝑛
∈ 𝜆
𝐸

𝐾

is a sequence 𝑦
𝑘
∈ 𝜔 defined as

𝑦
𝑘
= {

𝑥
𝑘
, if 𝑘 ∈ 𝐾
0, otherwise.

(10)

A canonical preimage of a step space 𝜆𝐸
𝐾

is a set of
canonical preimages of all elements in 𝜆𝐸

𝐾
; that is, 𝑦 is

in canonical preimage of 𝜆𝐸
𝐾
if and only if 𝑦 is canonical

preimage of some 𝑥 ∈ 𝜆𝐸
𝐾
.

Definition 3. A sequence space 𝐸 is said to be monotone if 𝐸
contains the canonical preimages of all its step spaces.

Lemma 4. Every normal space is monotone.

For any bounded sequence (𝑝
𝑛
) of positive numbers, we

have the following well known inequality.
If 0 ≤ 𝑝

𝑘
≤ sup

𝑘
𝑝
𝑘
= 𝐺 and 𝐷 = max(1, 2𝐺−1), then

|𝑎
𝑛
+ 𝑏
𝑛
|
𝑝
𝑛
≤ 𝐷(|𝑎

𝑛
|
𝑝
𝑛
+ |𝑏
𝑛
|
𝑝
𝑛
) for all 𝑘 and 𝑎

𝑘
, 𝑏
𝑘
∈ C.

3. Main Results

In this section, we define some new weak ideal convergent
sequence spaces and investigate their linear topological struc-
tures. We find out some relations related to these sequence
spaces. Let 𝑤 − 𝐼 be a weak admissible ideal of N, let M =

(𝑀
𝑗
) be a Musielak-Orlicz function, and let 𝑋 and 𝑌 be two

nonempty subsets of the space 𝜔 of complex sequences. Let
𝐴 = (𝑎

𝑘𝑗
), (𝑘, 𝑗 = 1, 2, 3, . . .) be an infinite matrix of complex

numbers. We write 𝐴𝑥 = (𝐴
𝑗
(𝑥)) if 𝐴

𝑗
(𝑥) = ∑

∞

𝑚=1
𝑎
𝑗𝑚
𝑥
𝑚

converges for each 𝑗. Further, let 𝑝 = (𝑝
𝑘
) be any bounded

sequence of positive real numbers:

𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

=

{

{

{

𝑥 ∈ 𝜔 (𝑋) : ∀𝜀 > 0, ∀𝑓 ∈ 𝑋
∗

,

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥) − 𝑙

𝜌










)]

𝑝
𝑗

≥ 𝜀

}

}

}

∈ 𝐼

for some 𝜌 > 0, 𝑙 ∈ 𝑋
}

}

}

,

𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

0

=

{

{

{

𝑥 ∈ 𝜔 (𝑋) : ∀𝜀 > 0, ∀𝑓 ∈ 𝑋
∗

,

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

≥ 𝜀

}

}

}

∈ 𝐼

for some 𝜌 > 0
}

}

}

,

𝑚[𝐴,M, 𝑝, ‖⋅‖]
∞

=

{

{

{

𝑥 ∈ 𝜔 (𝑋) :

∃𝐾 > 0 s.t. sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

< ∞

for some 𝜌 > 0
}

}

}

,
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𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

∞

=

{

{

{

𝑥 ∈ 𝜔 (𝑋) :

∃𝐾 > 0, s.t.
{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

≥ 𝐾

}

}

}

∈ 𝐼

for some 𝜌 > 0 and each 𝑓 ∈ 𝑋∗
}

}

}

.

(11)

Let us consider a few special cases of the above sets.

(1) If 𝑀
𝑘
(𝑥) = 𝑀(𝑥) for all 𝑘 ∈ N, then the

above classes of sequences are denoted by𝑚[𝐴,𝑀, 𝑝,
‖ ⋅ ‖]
𝑤−𝐼, 𝑚[𝐴,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

0
, 𝑚[𝐴,𝑀, 𝑝, ‖ ⋅ ‖]

∞
, and

𝑚[𝐴,𝑀, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼

∞
, respectively.

(2) If 𝑝
𝑘
= 1 for all 𝑘 ∈ N, then the above

classes of sequences are denoted by𝑚[𝐴,M, ‖ ⋅ ‖]𝑤−𝐼,
𝑚[𝐴,M, ‖ ⋅ ‖]

𝑤−𝐼

0
, 𝑚[𝐴,M, ‖ ⋅ ‖]

∞
, and 𝑚[𝐴,M,

‖ ⋅ ‖]
𝑤−𝐼

∞
, respectively.

(3) If 𝑀
𝑘
(𝑥) = 𝑥 for all 𝑘 ∈ N and 𝑥 ∈ [0,∞[, then

the above classes of sequences are denoted by𝑚[𝐴, 𝑝,
‖ ⋅ ‖]
𝑤−𝐼,𝑚[𝐴, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

0
,𝑚[𝐴, 𝑝, ‖ ⋅ ‖]

∞
, and𝑚[𝐴, 𝑝,

‖ ⋅ ‖]
𝑤−𝐼

∞
, respectively.

(4) If we take𝑀
𝑘
(𝑥) = 𝑀(𝑥) for all 𝑘 ∈ N and 𝐴 = (𝑎

𝑘𝑗
)

as

𝑎
𝑘𝑗
=

{

{

{

1

𝑘

, 𝑘 ≥ 𝑗

0, otherwise,
(12)

then we denote the above classes of sequences by
𝑚[𝐶,𝑀, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼,𝑚[𝐶,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0

,𝑚[𝐶,𝑀, 𝑝, ‖ ⋅
‖]
∞
, and𝑚[𝐶,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

∞
, respectively.

(5) If we take𝑀
𝑘
(𝑥) = 𝑀(𝑥) and 𝐴 = (𝑎

𝑘𝑗
) as

𝑎
𝑘𝑗
=

{

{

{

1

𝜆
𝑘

, 𝑗 ∈ 𝐼
𝑘
= [𝑘 − 𝜆

𝑘
+ 1, 𝑘]

0, otherwise,
(13)

where (𝜆
𝑘
) is a nondecreasing sequence of positive

numbers tending to∞, 𝜆
1
= 1, and 𝜆

𝑘+1
≤ 𝜆
𝑘
+ 1,

then we denote the above classes of sequences by
𝑚[𝜆,𝑀, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼, 𝑚[𝜆,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0

, 𝑚[𝜆,𝑀, 𝑝,
‖ ⋅ ‖]
∞
, and𝑚[𝜆,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

∞
.

(6) By a lacunary 𝜃 = (𝑗
𝑟
), 𝑟 = 0, 1, 2, . . ., where 𝑗

0
= 0,

we will mean an increasing sequence of nonnegative
integers with 𝑗

𝑟
− 𝑗
𝑟−1
→ ∞ as 𝑟 → ∞. The interval

determined by 𝜃will be denoted by 𝐼
𝑟
= ]𝑗
𝑟−1
, 𝑗
𝑟
] and

ℎ
𝑟
= 𝑗
𝑟
− 𝑗
𝑟−1

and let 𝐴 = (𝑎
𝑘𝑗
) as

𝑎
𝑘𝑗
=

{

{

{

1

ℎ
𝑟

, 𝑗 ∈ 𝐼
𝑟
= ]𝑗
𝑟−1
, 𝑗
𝑟
] ,

0, otherwise.
(14)

Then we denote the above classes of sequences by
𝑚[𝜃,𝑀, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼, 𝑚[𝜃,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0

, 𝑚[𝜃,𝑀, 𝑝,
‖ ⋅ ‖]
∞
, and𝑚[𝜃,𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

∞
, respectively.

(7) If 𝑀
𝑘
(𝑥) = 𝑀(𝑥), for all 𝑘 ∈ N and 𝐴 = 𝐼, then

the above classes of sequences are denoted by𝑚[𝑀, 𝑝,
‖ ⋅ ‖]
𝑤−𝐼, 𝑚[𝑀, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

0
, 𝑚[𝑀, 𝑝, ‖ ⋅ ‖]

∞
, and

𝑚[𝑀, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼

∞
, respectively.

Theorem 5. The spaces 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼, 𝑚[𝐴,M, 𝑝,
‖ ⋅ ‖]
𝑤−𝐼

0
, and𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

∞
are linear spaces.

Proof. Wewill prove the assertion for𝑚[𝐴,M, 𝑝, ‖ ⋅‖]𝑤−𝐼
0

; the
others can be proved similarly. Assume that 𝑥 = (𝑥

𝑘
), 𝑦 =

(𝑦
𝑘
) ∈ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼

0
, and 𝛼, 𝛽 ∈ C. Then, there exist 𝜌

1

and 𝜌
2
such that the sets

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

≥

𝜀

2

}

}

}

∈ 𝐼,

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
2











)]

𝑝
𝑗

≥

𝜀

2

}

}

}

∈ 𝐼.

(15)

Since 𝑓 is linear and the Orlicz function𝑀
𝑗
is convex for all

𝑗 ∈ N, the following inequality holds:

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝛼𝑥 + 𝛽𝑦)

|𝛼| 𝜌
1
+




𝛽




𝜌
2











)]

𝑝
𝑗

≤ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗

|𝛼| 𝜌
1

|𝛼| 𝜌
1
+




𝛽




𝜌
2

[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

+ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗





𝛽




𝜌
2

|𝛼| 𝜌
1
+




𝛽




𝜌
2

[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
2











)]

𝑝
𝑗

≤ 𝐷𝐿

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

+ 𝐷𝐿

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
2











)]

𝑝
𝑗

,

(16)
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where 𝐿 = max{|𝛼|𝜌
1
/(|𝛼|𝜌

1
+ |𝛽|𝜌

2
), |𝛽|𝜌

2
/(|𝛼|𝜌

1
+ |𝛽|𝜌

2
)}.

On the other hand from the above inequality we get

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝛼𝑥 + 𝛽𝑦)

|𝛼| 𝜌
1
+




𝛽




𝜌
2











)]

𝑝
𝑗

≥ 𝜀

}

}

}

⊆

{

{

{

𝑘 ∈ N : 𝐷𝐿
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

≥

𝜀

2

}

}

}

∪

{

{

{

𝑘 ∈ N : 𝐷𝐿
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
2











)]

𝑝
𝑗

≥

𝜀

2

}

}

}

.

(17)

Since the two sets on the right hand side belong to 𝐼, this
completes the proof.

Theorem 6. The spaces 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼, 𝑚[𝐴,M, 𝑝,
‖ ⋅ ‖]
𝑤−𝐼

0
, and𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

∞
are paranormed spaces with

respect to the paranorm 𝑔 defined by

𝑔 (𝑥) = inf
𝑘

{
{

{
{

{

𝜌
𝑝
𝑘
/𝐻

:
[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

]

]

1/𝐻

≤ 1 for some 𝜌 > 0
}
}

}
}

}

,

(18)

where𝐻 = max{1, sup
𝑘
𝑝
𝑘
}.

Proof. Clearly 𝑔(−𝑥) = 𝑔(𝑥) and 𝑔(𝑥) = 0 ⇔ 𝑥 = Θ, where
Θ is the zero element of 𝑋. Let 𝑥 = (𝑥

𝑘
) and 𝑦 = (𝑦

𝑘
) ∈

𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼

0
. Then, for 𝜌 > 0, we set

𝐴
1
=

{

{

{

𝜌 :

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

≤ 1

}

}

}

,

𝐴
2
=

{

{

{

𝜌 :

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌











)]

𝑝
𝑗

≤ 1

}

}

}

.

(19)

Let 𝜌
1
∈ 𝐴
1
, 𝜌
2
∈ 𝐴
2
, and 𝜌 = 𝜌

1
+ 𝜌
2
; then we have

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑥 + 𝑦)

𝜌











)]

𝑝
𝑗

≤

𝜌
1

𝜌
1
+ 𝜌
2

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

+

𝜌
2

𝜌
1
+ 𝜌
2

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
2











)]

𝑝
𝑗

≤ 1,

𝑔 (𝑥 + 𝑦) = inf {(𝜌
1
+ 𝜌
2
)
𝑝
𝑘
/𝐻

: 𝜌
1
∈ 𝐴
1
, 𝜌
2
∈ 𝐴
2
}

≤ inf {(𝜌
1
)
𝑝
𝑘
/𝐻

: 𝜌
1
∈ 𝐴
1
}

+ inf {(𝜌
2
)
𝑝
𝑘
/𝐻

: 𝜌
2
∈ 𝐴
2
}

= 𝑔 (𝑥) + 𝑔 (𝑦) .

(20)

Let 𝜆𝑡 → 𝜆 where 𝜆𝑡, 𝜆 ∈ C, and let 𝑔(𝑥𝑡 − 𝑥) → 0 as
𝑡 → ∞. We have to show that 𝑔(𝜆𝑡𝑥𝑡 −𝜆𝑥) → 0 as 𝑡 → ∞.
We set

𝐴
3
=

{

{

{

𝜌
𝑡
:

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌
𝑡










)]

𝑝
𝑗

≤ 1

}

}

}

,

𝐴
4
=

{

{

{

𝜌
1

𝑡
:

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑦)

𝜌
1

𝑡











)]

𝑝
𝑗

≤ 1

}

}

}

.

(21)

If𝜌
𝑡
∈ 𝐴
3
and𝜌1
𝑡
∈ 𝐴
4
, by using nondecreasing and convexity

of the Orlicz function𝑀
𝑗
for all 𝑗 ∈ N, we obtain that

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥)

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡











)]

𝑝
𝑗

≤

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥
𝑡

)

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡











+











𝑓 (𝜆𝑥
𝑡

− 𝜆𝑥)

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡











)]

𝑝
𝑗

≤





𝜆
𝑡

− 𝜆




𝜌
𝑡

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑥
𝑡

)

𝜌
𝑡











)]

𝑝
𝑗

+

|𝜆| 𝜌
1

𝑡

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝑥
𝑡

− 𝑥)

𝜌
1

𝑡











)]

𝑝
𝑗

.

(22)

From the above inequality, it follows that

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(











𝑓 (𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥)

|𝜆
𝑡
− 𝜆| 𝜌

𝑡
+ |𝜆| 𝜌

1

𝑡











)]

𝑝
𝑗

≤ 1, (23)

and consequently

𝑔 (𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥)

= inf {(

𝜆
𝑡

− 𝜆






𝜌
𝑡
+ |𝜆| 𝜌

1

𝑡
)

𝑝
𝑘
/𝐻

: 𝜌
𝑡
∈ 𝐴
3
, 𝜌
1

𝑡
∈ 𝐴
4
}
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≤






𝜆
𝑡

− 𝜆







𝑝
𝑘
/𝐻

inf {(𝜌
𝑡
)
𝑝
𝑘
/𝐻

: 𝜌
𝑡
∈ 𝐴
3
}

+ |𝜆|
𝑝
𝑘
/𝐻 inf {(𝜌1

𝑡
)

𝑝
𝑘
/𝐻

: 𝜌
1

𝑡
∈ 𝐴
4
}

≤ max {

𝜆
𝑡

− 𝜆






,






𝜆
𝑡

− 𝜆







𝑝
𝑘
/𝐻

}𝑔 (𝑥
𝑡

)

+max {|𝜆| , |𝜆|𝑝𝑘/𝐻} 𝑔 (𝑥𝑡 − 𝑥) .
(24)

Note that 𝑔(𝑥𝑡) ≤ 𝑔(𝑥)+𝑔(𝑥𝑡 −𝑥) for all 𝑡 ∈ N. Hence, by our
assumption, the right hand of (24) tends to 0 as 𝑡 → ∞, and
the result follows. This completes the proof of the theorem.

Theorem 7. LetM = (𝑀
𝑗
),M = (𝑀

𝑗
), andM = (𝑀

𝑗
) be

Musielak-Orlicz functions. Then, the following hold:

(a) 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0
⊆ 𝑚[𝐴,M ⋅ M, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼

0
,

provided 𝑝 = (𝑝
𝑘
) be such that 𝐺

0
= inf 𝑝

𝑘
> 0,

(b) 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0
⊆ 𝑚[𝐴,M +M, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼

0
.

Proof. (a) Let 𝜀 > 0 be given. Choose 𝜀
1
> 0 such that

sup
𝑘
(∑
∞

𝑗=1
𝑎
𝑘𝑗
)max{𝜀𝐺

1
, 𝜀
𝐺
0

1
} < 𝜀. Using the continuity of the

Orlicz function𝑀, choose 0 < 𝛿 < 1 such that 0 < 𝑡 < 𝛿
implies that𝑀(𝑡) < 𝜀

1
.

Let 𝑥 = (𝑥
𝑘
) be any element in𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

0
; put

𝐴
𝛿
=

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

≥ 𝛿
𝐺
}

}

}

. (25)

Then, by definition of ideal convergent, we have the set 𝐴
𝛿
∈

𝐼. If 𝑛 ∉ 𝐴
𝛿
, then we have

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

< 𝛿
𝐺

⇒ [𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

< 𝛿
𝐺

⇒ 𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










) < 𝛿.

(26)

Using the continuity of the Orlicz function𝑀
𝑗
for all 𝑗 and

the relation (26), we have

𝑀
𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)] < 𝜀
1
. (27)

Consequently, we get

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

< sup
𝑘

(

∞

∑

𝑗=1

𝑎
𝑘𝑗
)max {𝜀𝐺

1
, 𝜀
𝐺
0

1
} < 𝜀

⇒

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

< 𝜀.

(28)

This shows that

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

≥ 𝜀

}

}

}

⊆ 𝐴
𝛿
∈ 𝐼. (29)

This proves the assertion.
(b) Let 𝑥 = (𝑥

𝑘
) be any element in 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼

0
.

Then, by the following inequality, the results follow:
∞

∑

𝑗=1

𝑎
𝑘𝑗
[(𝑀


𝑗
+𝑀


𝑗
) (










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

≤ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

+ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀


𝑗
(










𝑓 (𝑥)

𝜌
1










)]

𝑝
𝑗

.

(30)

Theorem 8. Let 0 < 𝑝
𝑘
≤ 𝑞
𝑘
for all 𝑘 ∈ N; then 𝑚[𝐴,M, 𝑝,

‖ ⋅ ‖]
∞
⊆ 𝑚[𝐴,M, 𝑞, ‖ ⋅ ‖]

∞
.

Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]

∞
; then there exists

some 𝜌 > 0 such that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

< ∞. (31)

This implies that

𝑀
𝑗
(










𝑓 (𝑥)

𝜌










) < 1, (32)

for sufficiently large value of 𝑗. Since 𝑀
𝑗
for all 𝑗 ∈ N is

nondecreasing, we get

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑞
𝑗

≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

< ∞.

(33)

Thus, 𝑥 ∈ 𝑚[𝐴,M, 𝑞, ‖ ⋅ ‖]
∞
. This completes the proof of the

theorem.

Theorem 9. (i) If 0 < inf 𝑝
𝑘
≤ 𝑝
𝑘
< 1, then 𝑚[𝐴,M, 𝑝,

‖ ⋅ ‖]
∞
⊆ 𝑚[𝐴,M, ‖ ⋅ ‖]

∞
.

(ii) If 0 < 𝑝
𝑘
≤ sup

𝑘
𝑝
𝑘
< ∞, then 𝑚[𝐴,M, ‖ ⋅ ‖]

∞
⊆

𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
∞
.

Proof. (i) Let 𝑥 = (𝑥
𝑗
) ∈ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]

∞
; since 0 <

inf
𝑘
𝑝
𝑘
≤ 𝑝
𝑘
< 1, then we have

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑀
𝑗
(










𝑓 (𝑥)

𝜌










) ≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

< ∞,

(34)

and hence 𝑥 ∈ 𝑚[𝐴,M, ‖ ⋅ ‖]
∞
.
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(ii) Let 0 < 𝑝
𝑘
≤ sup

𝑘
𝑝
𝑘
< ∞ and 𝑥 = (𝑥

𝑗
) ∈ 𝑚[𝐴,M,

‖ ⋅ ‖]
∞
. Then for each 0 < 𝜀 < 1 there exists a positive integer

𝑗
0
such that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑀
𝑗
(










𝑓 (𝑥)

𝜌










) ≤ 𝜀 < 1, (35)

for all 𝑗 ≥ 𝑗
0
. This implies that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗

≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑀
𝑗
(










𝑓 (𝑥)

𝜌










) < ∞.

(36)

Thus 𝑥 ∈ 𝑚[𝐴,M, 𝑝, ‖⋅‖]
∞
and this completes the proof.

Theorem 10. For any sequence of Orlicz functionsM = (𝑀
𝑗
)

which satisfies Δ
2
-condition, one has 𝑚[𝐴, 𝑝, ‖ ⋅ ‖]𝑤−𝐼 ⊂

𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼.

Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑚[𝐴, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼, and let 𝜀 > 0 be given.
Then, there exists 𝜌 > 0 such that the set

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥) − 𝑙

𝜌










)]

𝑝
𝑗

≥ 𝜀

}

}

}

∈ 𝐼

for some 𝑙.

(37)

By taking 𝑦
𝑗
= |(𝑓(𝑥) − 𝑙)/𝜌| and let 𝜀 > 0 and choose 𝛿 with

0 < 𝛿 < 1 such that𝑀
𝑗
(𝑡) < 𝜀 for all 𝑗 ∈ N and for 0 ≤ 𝑡 ≤ 𝛿.

Consider
∞

∑

𝑗=1

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

=

∞

∑

𝑗=1,𝑦
𝑗
≤𝛿

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

+

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

.

(38)

Since𝑀
𝑗
is continuous for all 𝑛 ∈ N, we have

∑

𝑗∈𝐼
𝑘
,𝑦
𝑗
≤𝛿

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

< 𝜀. (39)

For 𝑦
𝑗
> 𝛿, we use the fact that 𝑦

𝑗
< (𝑦
𝑗
/𝛿) < 1+(𝑦

𝑗
/𝛿). Since

M = (𝑀
𝑗
) is nondecreasing and convex, it follows that

𝑀
𝑗
(𝑦
𝑗
) < 𝑀

𝑗
(1 +

𝑦
𝑗

𝛿

) <

1

2

𝑀
𝑗
(2) +

1

2

𝑀
𝑗
(

2𝑦
𝑗

𝛿

) . (40)

SinceM = (𝑀
𝑗
) satisfies Δ

2
-condition,

𝑀
𝑗
(𝑦
𝑗
) <

𝑦
𝑗

2𝛿

𝐿𝑀
𝑗
(2) +

𝑦
𝑗

2𝛿

𝐿𝑀
𝑗
(2) =

𝑦
𝑗

𝛿

𝐿𝑀
𝑗
(2) . (41)

Hence
∞

∑

𝑗=1,𝑦
𝑗
>𝛿

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

< max{1, sup
𝑗

(𝐿𝛿
−1

𝑀
𝑗
(2))

𝑝
𝑗

}

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

(𝑦
𝑗
)

𝑝
𝑗

.

(42)

By putting (39) and (42) in (38), we get
∞

∑

𝑗=1

[𝑀
𝑗
(𝑦
𝑗
)]

𝑝
𝑗

< 𝜀 +max{1, sup
𝑗

(𝐿𝛿
−1

𝑀
𝑗
(2))

𝑝
𝑗

}

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

(𝑦
𝑗
)

𝑝
𝑗

.

(43)

This proves that𝑚[𝐴, 𝑝, ‖ ⋅ ‖]𝑤−𝐼 ⊂ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼.

Theorem 11. Let 0 < 𝑝
𝑛
≤ 𝑞
𝑛
< 1 and let (𝑞

𝑛
/𝑝
𝑛
) be bounded;

then

𝑚[𝐴,M, 𝑞, ‖⋅‖]
𝑤−𝐼

⊆ 𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

. (44)

Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑚[𝐴,M, 𝑞, ‖ ⋅ ‖]

∞
; we put 𝑦

𝑗
=

[𝑀
𝑗
(|(𝑓(𝑥) − 𝑙)/𝜌|)]

𝑞
𝑗 and 𝛽

𝑗
= 𝑝
𝑗
/𝑞
𝑗
for all 𝑗 ∈ N. Then

0 < 𝛽
𝑗
≤ 1 for all 𝑗 ∈ N. Let 𝛽 be such that 0 < 𝛽 ≤ 𝛽

𝑗

for all 𝑗 ∈ N. Define the sequences (𝑎
𝑗
) and (𝑏

𝑗
) as follows: for

𝑦
𝑗
≥ 1, let 𝑎

𝑗
= 𝑦
𝑗
and 𝑏
𝑗
= 0; for 𝑦

𝑗
< 1 let 𝑎

𝑗
= 0 and 𝑏

𝑗
= 𝑦
𝑗
.

Then clearly, for all 𝑗 ∈ Nwe have 𝑦
𝑗
= 𝑎
𝑗
+𝑏
𝑗
, 𝑦𝛽𝑗
𝑗
= 𝑎

𝛽
𝑗

𝑗
+𝑏

𝛽
𝑗

𝑗
,

𝑎

𝛽
𝑗

𝑗
≤ 𝑎
𝑗
≤ 𝑦
𝑗
, and 𝑏𝛽𝑗

𝑗
≤ 𝑏
𝛽

𝑗
. Therefore, we have

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑦

𝛽
𝑗

𝑗
≤

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑦
𝑗
≤
[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗
𝑦
𝑗

]

]

𝛽

. (45)

Hence 𝑥 ∈ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
∞
.

Theorem 12. For any two sequences 𝑝 = (𝑝
𝑘
) and 𝑞 = (𝑞

𝑘
) of

positive real numbers and for any two norms ‖ ⋅ ‖
1
and ‖ ⋅ ‖

2
on

𝑋, the following holds:

𝑍 [𝐴,M, 𝑝, ‖⋅‖
1
] ∩ 𝑍 [𝐴,M, 𝑞, ‖⋅‖

2
] ̸= 𝜙, (46)

where 𝑍 = 𝑚𝑤−𝐼, 𝑚𝑤−𝐼
0

,𝑚𝑤−𝐼
∞

, and𝑚
∞
.

Proof. Proof of the theorem is obvious, because the zero
element belongs to each of the sequence spaces involved in
the intersection.

Theorem 13. The sequence spaces𝑍[𝐴,M, 𝑝, ‖ ⋅ ‖] are normal
as well as monotone, where 𝑍 = 𝑚𝑤−𝐼

0
, 𝑚
𝑤−𝐼

∞
.

Proof. Wewill give the proof for𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]𝑤−𝐼
0

only. Let
𝑥 = (𝑥

𝑗
) ∈ 𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]

𝑤−𝐼

0
and let 𝛼 = (𝛼

𝑗
) be a sequence

of scalars such that |𝛼
𝑗
| ≤ 1 for all 𝑗 ∈ N. Then, we have

{

{

{

𝑘 ∈ N :
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝛼𝑥)

𝜌










)]

𝑝
𝑗}

}

}

⊆

{

{

{

𝑘 ∈ N : 𝐸
∞

∑

𝑗=1

𝑎
𝑘𝑗
[𝑀
𝑗
(










𝑓 (𝑥)

𝜌










)]

𝑝
𝑗}

}

}

,

(47)

where 𝐸 = max{1, |𝛼
𝑗
|
𝐺
0
}; hence, 𝛼𝑥 = (𝛼

𝑗
𝑥
𝑗
) ∈

𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼

0
. By Lemma 4, we have that the space

𝑚[𝐴,M, 𝑝, ‖ ⋅ ‖]
𝑤−𝐼

0
is monotone.
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Note. It is clear from the definitions that

𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

0
⊆ 𝑚[𝐴,M, 𝑝, ‖⋅‖]

𝑤−𝐼

⊆ 𝑚[𝐴,M, 𝑝, ‖⋅‖]
𝑤−𝐼

∞
.

(48)
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