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Wideband spectrum sensing for cognitive radios requires very demanding analog-to-digital conversion (ADC) speed and dynamic
range. In this paper, a mixed-signal parallel compressive sensing architecture is developed to realize wideband spectrum sensing
for cognitive radios at sub-Nqyuist rates by exploiting the sparsity in current frequency usage. Overlapping windowed integrators
are used for analog basis expansion, that provides flexible filter nulls for clock leakage spur rejection. A low-speed experimental
system, built with off-the-shelf components, is presented. The impact of circuit nonidealities is considered in detail, providing
insight for a future integrated circuit implementation.

1. Introduction

Cognitive Radio (CR), first proposed in [1], provides a
new paradigm to improve spectrum efficiency by enabling
Dynamic Spectrum Access (DSA). In CR, spectrum holes
that are unoccupied by primary users can be assigned to
appropriate secondary users as long as the interference
introduced by secondary users is not harmful to the primary
users [2–4]. The design of cognitive radio networks is a
complicated cross-layer procedure [5]. In this paper, we focus
on the spectrum sensing problem in CR, in which sensing
and detection of primary users is done in order to realize
Dynamic Spectrum Access.

Spectrum sensing can be a very challenging task for CR
due to many factors. First, for the sake of improving the
frequency usage efficiency, the sensing bandwidth for CR can
expand from hundreds of MHz to several GHz. Second, the
sensing radio should be able to detect very weak primary
users, which arise due to fading and the hidden terminal
problem [5]. With traditional time-domain Nyquist sam-
pling, sensors are needed with both wide bandwidth and high
dynamic range, stressing technology, and demanding higher
power [6, 7]. Conventional wideband sensing with a high-

speed and high-resolution ADC becomes less appealing as
the bandwidth becomes significant. Alternative approaches,
such as a fixed bank of analog filters followed by parallel
ADCs, impose strict requirements on the filter design.

It has been observed that today’s spectrum usage presents
some sparsity in the sense that only a small portion of the
available frequency bands are heavily loaded while others are
partially or rarely occupied [5]. This frequency usage sparsity
can be exploited under the framework of Compressed Sens-
ing (CS) [8, 9] to effectively reduce the sampling rate. The
sparse signal can be captured via projection over a random
basis that is incoherent with respect to the signal basis, and
perfect signal reconstruction from these projections can be
obtained with high probability, where the number of random
projections is on the order of the signal’s information rate
rather than the Nyquist rate.

The idea of applying CS for wideband spectrum sensing
was reported, for example, in [10]. However, this approach
assumes full-rate analog-to-digital conversion which does
not reduce the complexity of the spectrum sensing receiver.
We have proposed a mixed-signal parallel segmented com-
pressive sensing (PSCS) architecture for wideband spectrum
sensing [11], where the high-speed ADCs were avoided by
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carrying out an analog basis expansion in parallel before
sampling. In this paper we elaborate on the idea of applying
the PSCS front-end [11], with special emphasis on imple-
mentation issues such as spurious frequency tones, timing,
and other mismatches. First, we show that the proposed
overlapping windowed integration in the PSCS architecture
provides a scheme to mitigate the spurs due to clock leakage
by setting the lowpass filter nulls flexibly, which is favorable
for practical implementation. Second, a low-speed prototype
built with off-the-shelf components is presented in detail
from the overall system configuration to building blocks, in
which practical constraining issues are addressed.

The remainder of the paper is organized as follows. A
brief background on CS is provided in Section 2 and the
spectral occupancy signal modeling is given in Section 3.
Section 4 introduces the mixed-signal parallel compressive
spectrum sensing scheme. Section 5 discusses the spurious
frequency rejection schemes in the PSCS front-end. A low-
speed prototype is introduced in Section 6. Conclusions are
made in Section 7.

2. Compressive Sensing Background

A signal r(t) that is spanned by S basis functions Ψs(t) (s =
1, 2, . . . , S), that is, r(t) =∑S

s=1 asΨs(t), or in the matrix form
r = Ψa, is a K-sparse signal if only K out of the S coefficients
as|Ss=1 are nonzero at any time, where K � S. A signal r(t)
is compressible if its approximation error by a K-sparse signal
decays exponentially as K increases.

According to CS theory, a signal that is sparse or compress-
ible over a known basis Ψ can be sampled and reconstructed
at sub-Nyquist rate, and the sampling rate reduction depends
on the signal’s sparsity and the reconstruction algorithms.
Specifically, the sub-Nyquist rate sampling is achieved by
projecting the signal into a transform-domain over which
the sampling operation occurs, which is different from
the traditional way of sampling the signal in the time-
domain. Mathematically, this procedure can be described
as y = ΦΨa, where y are the collected samples, and Φ
is incoherent with Ψ which is the basis for the transform-
domain. The reconstruction of the original signal relies on
the estimation of the coefficients a, which is obtained by
solving the following l1–norm optimization problems, for
which many convex optimization techniques or iterative
greedy algorithms can be used:

(i) noiseless case:

â = arg min‖a‖1 s.t. y = ΦΨa, (1)

(ii) noisy case:

â = arg min‖a‖1 s.t.
∥
∥y −ΦΨa

∥
∥

2 ≤ ε, (2)

where ε is the error due to the noise.

Note that, in this paper, we generally do not differentiate
between sparse and compressible unless specifically noted.
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Figure 1: Illustration of the multiband analog signal to the sensing
radio.

3. Signal Modeling

The received signal r(t) is a modeled as a multiband analog
signal whose spectrum is illustrated in Figure 1. Specifically,
we assume that r(t), with a frequency span from fl to
fh, is the superposition of primary users, perhaps using
W different wireless standards [5]. Each wireless standard
occupies a certain finite frequency band which consists of
multiple channels. According to the measurements done by
FCC in the US [12], in many cases the current frequency
usage exhibits sparsity because only a part of the allocated
channels is utilized at a given time.

Without loss of generality, we assume that r(t) is
bandlimited to [0, fh]; so r(t) can be written as

r(t) =
∫∞

−∞
R
(
f
)
e j2π f tdf =

∫ fh

0
R
(
f
)
e j2π f tdf , (3)

where R( f ) is the Fourier transform of r(t).
The continuous-time analog signal can be captured with

a finite dimensional model; for example, see [13, 14]. We
directly approximate r(t) with a model of finite dimension
as follows:

r(t) ≈
S−1∑

s=0

R
(
sΔ f

)
e j2πsΔ f tΔ f , t ∈ [0,Ts], (4)

where Δ f = 1/Ts is the resolution on the frequency axis and
(S − 1)Δ f = fh. In other words, r(t) is approximated as a
multicarrier signal bandlimited to [0, fh] and with a carrier
spacing of Δ f . The sparse frequency occupancy means that
statistically, speaking, only K out of the S carriers are active
at any time, where K � S. The multicarrier model is
convenient for representing user occupancy with spectral
sparsity. Comparing (3) and (4), we notice that this model
is based on a finite dimensional approximation of the signal
spectrum. Since there are S unknowns where R(sΔ f ) in (4)
and R(sΔ f ) change every Ts seconds, the model in (4) is a
case of a Finite Rate of Innovation (FRI) model in which the
innovation locations lie on the Nyquist grid. For clarity, we
rewrite (4) as

r(t) =
S−1∑

s=0

asΨs(t) + n(t), (5)
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Figure 2: Block diagram of the parallel segmented compressive sensing (PSCS) architecture.
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Figure 3: Illustration of overlapping windows.

where n(t) is additive white Gaussian noise (AWGN),
Ψ = [Ψ0(t),Ψ1(t), . . . ,ΨS−1(t)], Ψs(t) = e j2πsΔ f t , a =
[a0(t), a1(t), . . . , aS−1(t)] ∈ CS, as = Δ f R(sΔ f ), and a has
only K � S nonzero elements. Since Δ f is a scalar, for
simplicity, we discard it in the rest of the paper. The spectrum
hole detection, for example, energy or feature detection, is
usually based on the observed signal spectrum R(sΔ f ), or
equivalently, the estimation of the coefficients as.

4. Wideband Parallel Compressive
Spectrum Sensing

Wideband spectrum sensing is composed of several cru-
cial steps: first, spectrum estimation; second, calculate the
sufficient statistics, during which digital signal processing
is needed to improve the front-end sensing sensitivity by
processing gain and identification of the primary users
based on knowledge of the signal characteristics [5]; last,
to decide whether there exist primary users based on the
sufficient statistics. Here we focus on the wideband spectrum
estimation step, that is, estimating the unknown coefficients
a in (5).

4.1. Mixed-Signal Compressive Sensing Architecture. The
parallel segmented compressive sensing (PSCS) structure is
shown in Figure 2, which we first proposed in [11]. For the
completeness of this paper, in this section we recap how the
analog compressive sensing at sub-Nyquist rate is realized via
the PSCS architecture.

In the PSCS architecture, the input signal r(t) is sent
to N parallel paths. In the nth path, r(t) is mixed with a
random basis function Φn(t). A good choice for the random

basis is to use PN (Pseudonoise) sequences because they
can be conveniently generated by digital logic circuits. The
output of the mixer is then sent to a sliding window with
a width of Tc and integrated. Two adjacent windows have
an overlapping time Tc − Tm, which defines an overlapping
percentage OVR = (Tc − Tm)/Tc, as shown in Figure 3.
The output of the integrators is sampled and M samples are
collected at each path. The mth sample of the nth branch is
given by

ymN+n =
∫ mTm+Tc

mTm
r(t)Φ∗n (t)dt. (6)

There are a total of L = MN samples collected every Ts
seconds and these samples are organized into a vector as
follows:

y =
[

ỹT0 , ỹT1 , . . . , ỹTM−1

]T
, (7)

where ỹm = [ymN , ymN+1, . . . , ymN+N−1]T is the vector
consisting of the mth samples from all N branches.

Similarly, we can calculate the reconstruction matrix V =
ΦΨ = {vi, j}L×S. The element at the mN + n row and the s
column is given by

VmN+n,s =
∫ mTm+Tc

mTm
e j2πsΔ f tΦ∗n (t)dt. (8)

Therefore, we have y = Va. Then, we can estimate a by
solving the problem in (1) and reconstruct the original signal
using r = Ψâ.

4.2. A Wideband Spectrum Sensing Example. To show the
effectiveness of the proposed wideband PSCS architecture
we present a simulation, where the input signal is modeled
as a frequency-domain sparse multi-carrier signal as given
in (5). The mixed-signal compressive sensing based on the
PSCS architecture given in Figure 2 is used for spectrum
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Figure 4: Time-domain signals of a simulated multiband signal.
From top to bottom, the four plots represent the transmitted signal
by primary users, the received primary users’ signal at the sensing
radio, the reconstructed signal from the time-domain samples
via the Nyquist rate ADC, and the reconstructed signal from the
transform-domain samples via mixed-CS at an NSR of 0.32.

estimation. The sampling rate reduction is measured by the
Normalized Sampling Rate (NSR), which is defined as

NSR = fCS
fNq

= MN

S
, (9)

where fCS is the sampling rate required using the PSCS and
fNq is the corresponding Nyquist sampling rate. The signal
reconstruction quality is evaluated by the normalized Mean
Square Error (MSE), which is equal to

∥
∥a− â

∥
∥

2

‖a‖2
. (10)

In the simulation, the input signal to the PSCS
architecture is assumed to be a 17-sparse frequency-
domain multi-carrier signal with 128 subcarriers, that is,
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Figure 5: Frequency-domain signals of a simulated multiband
signal. From top to bottom, the four plots represent the transmitted
signal by primary users, the received primary users’ signal at
the sensing radio, the reconstructed signal from the time-domain
samples via the Nyquist rate ADC, and the reconstructed signal
from the transform-domain samples via mixed-CS at a NSR of 0.32.

S = 128 and K = 17. There are 5 primary bands with
an overall bandwidth of 528 MHz. The subcarrier spacing
Δ f = 528 MHz/128 = 4.125 MHz and the primary user’s
frequencies are (17, 18, 43, 44, 45, 63, 64, 65, 66, 67,
76, 77, 118, 119, 120, 121, 122) × 4.125 MHz. The input
power dynamic range of the primary users is 15 dB.
SNRoverall = 0 dB, where SNRoverall is the total signal power
over the whole bandwidth divided by the total noise power
over the whole bandwidth. (Note how noisy the received
signal is in this example, shown in Figure 4.) In Figures
4 and 5, from top to bottom, the four plots represent the
primary transmitted signal, the received primary users’
signal at the sensing radio, the reconstructed signal from
the time-domain samples via the Nyquist rate ADC, and the
reconstructed signal from the transform-domain samples
via mixed-CS at an NSR of 0.32. The measured MSE for the
two reconstructed signals is −5 dB and −14 dB, respectively.
Note that even with a lower sampling rate, the sensing radio
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Figure 6: Clock leakage into the integrators from the clock of the
PN generators.
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Figure 7: The location of the spurious leakage frequency relative to
the filter nulls with different overlapping ratio. With OVR = 0, the
strongest clock leakage is close to the peak of the filter’s 3rd sidelobe;
with OVR = 0.1125, the strongest clock leakage is on the 4th null of
the filter.

based on mixed-signal PSCS is more robust against noise
than the traditional digital approach based on the DFT,
because CS takes advantage of the knowledge of the signal
structure and its sparsity.

5. Flexible Spur Rejection via the Overlapping
Windowed Integration

In addition to the capability of sensing and reconstructing
sparse signals at sub-Nqyuist rate, the PSCS architecture
has many special characteristics. For example, the parallel
architecture gives a design tradeoff between the sampling
rate and the system complexity [11]. In this section, we
focus on the PSCS architecture’s spurious frequency rejection
schemes. Since one critical type of spur in the PSCS
architecture is the leakage of the clocks for the PN generators
to the integrator, as illustrated in Figure 6, we will focus
on this particular type of spur in this section, although the
rejection scheme applies more generally.

Recall that in Figure 2, the output after the mixer is
sent to a sliding window with a width of Tc and integrated
over Tc seconds, and there is an overlap time of Tc × OVR
between two adjacent windows as illustrated in Figure 3.
The integrator, with a reset every Tc seconds, provides a
simple realization of a sinc type lowpass filter with nulls at
frequencies of f0×k, where f0 = 1/Tc. By setting the random
generator clock frequency equal to a harmonic of the reset
frequency, the sinc nulls coincide with spur frequencies from
the random generator clock and so filters them, where the
overlapping scheme provides the flexibility on setting the
locations of the nulls. In some cases, without the overlapping
scheme, the objective of setting the clock frequency on
the nulls of the sinc type lowpass filter may conflict with
the sampling rate requirement which is determined by the
signal’s sparsity. In order to show this, consider the following
example.

Let the input signal to the PSCS architecture be a
19-sparse frequency-domain multi-carrier signal with 128
subcarriers, that is, S = 128 and K = 19, which corresponds
to a sparsity of 15%. The subcarrier spacing is Δ f =
1 GHz/128 = 7.8125 MHz and the symbol duration time
is Ts = 1/Δ f = 128 nanoseconds. The locations of the K
active subcarriers are chosen randomly and changed every Ts
seconds. According to simulation results, the minimum NSR
is 0.5625 = 72/128 for this parameter setup. Equivalently
speaking, 72 samples are needed per 128ns to reconstruct
the signal perfectly. Using two parallel paths, 36 samples
are collected every 128 nanoseconds at each path, that is,
M = 36 and N = 2. With this parameter setup and without
the overlapping scheme, Tc = T/M = 128/36 = 3.56 ns,
f0 = 1/Tc = 281.25 MHz, and the nulls of the sinc type
lowpass filter occur at k × 281.25 MHz.

There may exist some leakage into the integrators from
the clock signal, as illustrated in Figure 6. According to the
CS theory, the clock frequency is usually at the Nyquist
frequency fNq where fNq = 1 GHz in this example. Because
fNq/ f0 ≈ 3.56, the spurs due to the clock leakages will fall
near the 3rd sidelobe’s peak of the sinc type lowpass filter
and bring distortion to the reconstructed signal. With the
overlapping scheme, we can choose Tc = 4 ns and f0 =
250 MHz by introducing an overlapping ratio of 11.43%,
then fNq/ f0 = 4 and the spurs due to the clock leakage can
be filtered (considering the clock resolution requirement, an
overlapping ratio of 11.25% is suggested in practice.). Based
on Figure 3, this can be mathematically expressed as

T = Tc(M − (M − 1)OVR), (11)

fNq = S

T
, (12)

f0 = 1
Tc

, (13)

=⇒ fNq
f0
= S

M − (M − 1)OVR
. (14)

According to (14), given a desired sampling rate, or equiv-
alently speaking, a specific M, varying OVR will change the
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Figure 8: MSE of the reconstructed signal with different overlap-
ping ratio when there is clock leakage, where the input signal is
an 18-sparse multi-carrier signal with 128 possible subcarriers and
sampled by the 2-path PSCS working at 56.25% of the Nyquist rate.

relative location of the leakage frequency to the filter nulls, as
illustrated in Figure 7.

Note that if we do not want to introduce any overlapping
but still wish to null out the clock leakage, the only option
in the above example is to increase the sampling rate and
make fNq/ f0 an integer no less than 
3.56�. By introducing
a nonzero OVR, we can conveniently make fNq/ f0 an integer
without increasing the sampling rate.

Figure 8 shows the MSE of the reconstructed signal
versus the overlapping ratio when there is some clock
leakage into the integrators. Note that in the simulation
the amplitude of each subcarrier is set to 1. Since K =
19, the signal’s peak amplitude is 19. Allowing a 10 dB
margin to account for the multi-carrier signal’s large peak-
to-average ratio, the clock leakage with an amplitude of 0.1
(0.4) is roughly 35 dB (23 dB) below the signal’s average
power. As shown in Figure 8, the flexibility of setting the null
frequencies by the overlapping scheme can bring about 20 dB
gain after filtering the spurs due to the clock leakage.

Note also that the overlap in the integration windows
provides wider filter nulls than the sinc filter. Because of the
existence of the phase noise on the clock signal in practice,
even if we can set the clock on the null frequency, it is
inevitable that remains some leakage due to the widening of
the spurs spectrum. The wider nulls provides the possibility
of further improving the harmonic rejection when the phase
noise is significant.

6. Low-Speed Off-the-Shelf
Component Prototype

As a proof of concept, we built a low-speed prototype using
off-the-shelf components, where the input signal is a real
BPSK modulated multi-carrier signal with 4 active subcar-
riers and the active subcarriers hop over the frequencies

μ-
controller

PC

Digital Analog Data collection

Control Function
generator

Triggering
Clock

Oscilloscope
∫

Figure 9: Overall configuration of the prototype using off-the-shelf
components.
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Figure 10: Macro model of one parallel path.

(i ∗ 2 − 1) KHz (i = 1, 2, . . . , 100) every 500 microseconds.
Considering the system complexity, we employed 4 parallel
paths for the prototype. Simulation shows that the signal can
be reconstructed perfectly when each parallel path produces
16 samples every 500 microseconds, which corresponds to
32% of the Nyquist sampling rate.

6.1. Overall Configuration. The overall configuration of the
prototype is shown in Figure 9, where the digital part
is responsible for generating the input sparse signal, the
triggering signal, the pseudorandom basis, and the clock. The
analog part is used to realize the random basis projection that
is essential for the signal reconstruction. The built-in ADC
in the oscilloscope is used to collect the sampled data. Then,
the collected data is sent to a PC and processed via Matlab
code to reconstruct the signal. In the following sections, each
building block will be introduced in detail.

6.2. Multicarrier Signal Generator. An Agilent 33120A arbi-
trary waveform generator is used to generate the input
multitone sparse signal. Specifically, the multitone signal is
programmed in the PC first and then downloaded into the
wave generator. The output port of the generator is triggered
by the microcontroller in order to synchronize with the
integrator clock that is also generated by the microcontroller.

6.3. Mixers and Integrators. Figure 10 depicts the macro-
model of one path in the prototype. As shown, the input
signal is first translated into current by the OTA and then
mixed with the pseudorandom signal. After mixing, the
signal is integrated in the sampling capacitor with a timing
window. In the sampling circuit the interleaving capacitor
is employed. Finally the ADC yields digital output data.
The OTA we employed is a TIOPA861 with Gm of 116mS
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Figure 13: Schematic of the integrator with overlapping.

and all the switches are implemented with transmission gate
CD4066BCN.

The pseudorandom number (PN) is −1 or 1, whose
spectrum is a sinc function. The main lobe is from 0 to 1/Tclk,
where Tclk is the clock period of the PN generator. In our test
bed Tclk is 1μs. After the mixing, the signal is shaped by the
embedded lowpass filter provided by the integration window.
The frequency response of the LPF is a sinc function. The
main lobe spans 1/Tc, where Tc is the integration time. In
our test bed the 1/Tc is roughly 30 KHz.

The random projection of the input analog signals is
realized with mixers and integrators. Figure 11 gives the

circuit implementation of one parallel path and Figure 12
gives the corresponding pin connection relationship for
the integrator. The transconductance amplifier (Gm stage)
translates the signal voltage into current, which can be
easily mixed with the pseudorandom numbers (1/−1) by the
following passive switch mixer. After mixing, the signal is
integrated with an overlapping window and then sampled by
the ADC in each path. The circuit is built up differentially so
that the system is more robust to supply noise, clock jitter,
and even-order harmonics. The double balanced passive
mixer does not introduce significant noise and distortions.

At each path, the mixer consists of transmission-gate
switches controlled by PN sequences. The PN sequence is
implemented with a linear feedback shift register (LFSR). In
our prototype, the clock frequency is chosen to be 1 MHz,
which is higher than the Nyquist sampling rate. Because
the PN sequences are repeated every 500μs and there are 4
parallel paths, we need 4 independent PN sequences with
a length of 500. An 11-bit LFSR is used to generate a PN
sequence with a length of 2047 and then divided into 4
segments. As a check, the autocorrelation function of the
PN sequences is calculated to make sure that the four PN
sequences are incoherent.

An overlapped time-interleaving charge-domain sam-
pling integrator is chosen for the analog path. The
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integrator schematic is shown in Figure 13, φ1 and φ1 are
two integration switches for the left and right branches,
respectively. φo1 and φo2 are readout switches; φr1 and φr2
are reset switches. By utilizing these six switches combined
with the two integration capacitors C1 and C2, according
to the clock diagram shown in Figure 14, we can realize
a conventional time-interleaving charge-domain integrator
without overlapping. Time interleaving means when the
left branch is integrating while the right is reading out,
and vice versa. By doing this, a complete sampling of the
signal is achieved. In addition to time interleaving, a small
overlapping time is introduced by one more capacitor Cov
and two control switches φ2 and φ2.

As shown in Figure 14, phase1 and phase3 are to realize
the overlapping through charge redistribution and sharing,
and phase2 and phase4 are the readout times for the right
and the left branches, respectively. During phase1, the input
current charges both C1 and Cov while C2 is idle. Since all
capacitors have the same value, the current splits equally by
half into both capacitors. In the succeeding phase, Cov is
switch-connected to C2 and readout together, so that Cov is
integrating for the right branch during phase1. Equivalently,
as shown in the timing window diagram, the window splits
by half during the overlapping time. The key point here is
that both branches are integrating and no data is readout
during window overlapping times.

Note that the overlapping windowing realized using
the circuit in Figure 13 is somewhat different from the
overlapping windowing in Figure 3, as shown in Figure 15.
In Figure 3, the charges accumulated during the current
window period include 100% of the charges from the last Tov
seconds of the previous windowing period but no charges
from the next windowing period. In Figure 13, the charges
accumulated during the current windowing period include
50% of the charges from both the last Tov seconds of the
previous windowing period and the first Tov seconds of the
next windowing period, which is more realistic from the
implementation perspective.

6.4. Data Collection and Signal Reconstruction. For simplic-
ity, we use the inherent ADC of the oscilloscope (Tectronix
TDS 3054 500 MHz, 5 Gs/s) to sample the output of the
integrators. The sampled data is transferred to the PC via
the GBIP port. With the collected samples, the signal is
reconstructed as described in Section 2.

6.5. Dealing with Circuit Nonidealities. While implementing
the prototype, it is inevitable that the system has some
nonidealities such as the delay caused by each component,
the gain variation, and the mismatch among parallel paths.
Considering all the nonideal factors, the actual relationship
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Figure 16: Illustration of the direct training approach to deal with
the circuit imperfections.
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Multi-carrier
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Power supply

One path

Figure 17: Testing setup of the prototype.

between the collected samples y and the coefficients a
becomes

y = Ṽa = (V + δV)a, (15)

where the element at the mN + n row and the s column of Ṽ
is given by

ṼmN+n,s =
∫ mTm+Tc+δt2

mTm+δt1
αe j2π(sΔ f +δ f )t+θ(Φn(t) + δΦn(t))dt.

(16)

Table 1: Testing results of the prototype.

Subcarrier’s
amplitude
(mV)

Subcarrier frequencies of
the input testing signal
(kHz)

Subcarrier frequencies of
the reconstructed signal
(kHz)

0.3 [+61, +121] [+61, +121]

0.3 [+41, +131] [+41, +131]

0.3 [+61, −131] [+61, −131]

0.3 [−51, +63, +111] [−51, +63, +111]

0.2 [+71, −85, +91, −101] [+71, −85, +91, −101]

Here, δt1 and δt2 reflects the timing error on the slicing
window, δ f reflects the frequency offset, α and θ reflects the
gain and phase mismatches, and the δΦn(t) reflects the error
of the random basis which could be attributed to the jitter
and nonzero response time.

Because the actual relationship between y and a is given
by (15), we need to replace V with Ṽ in (1) when estimating
a; otherwise, some extra error will be introduced. In [15], the
authors discussed the impact of some circuit imperfections,
such as the finite settling time of the PN sequences, and the
timing uncertainty, and a background calibration algorithm
based on LMS was proposed to compensate for the error due
to these circuit nonideal factors. Because of the complexity
of the background calibration, here we use a more simple
approach based on direct training to deal with the circuit
nonidealities. The direct training approach is illustrated in
Figure 16. During the training stage, we inject a single-tone
signal one at a time to the prototype and collect the samples
from the 4 parallel paths, so that these samples will fill one
column of the reconstruction matrix Ṽ. After sending 100
single-tone signals, we obtain a complete matrix which will
be used for signal reconstruction.

This pilot-based method is based on the assumption
that the system is linear and time-invariant. Fortunately, our
circuit level design ensures that the input signal swing is
within the linear range of the system, and the microcontroller
ensures that the system has the same initial condition for
every run. Therefore, the linear time-variant assumption is
reasonable. Implementing the background calibration for
circuit imperfection compensation is part of our future work.

6.6. Testing Results. The testing setup for the prototype is
shown in Figure 17. A series of experiments are done to
test the functionality of the system. Table 1 summarizes the
testing results, where + and − stand for the polarity of the
BPSK modulation. Note that we scale the amplitude of each
subcarrier according to the number of tones such that the
amplitude of the multi-carrier signal is within the dynamic
range of the system. From the testing results, the prototype
achieves the design specification.

7. Conclusions

The Parallel Segmented Compressive Sensing (PSCS) front-
end is able to sample and reconstruct analog sparse and
compressive signals at sub-Nqyuist rate. The overlapping
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windowed integration in the PSCS front-end provides a
spurious frequency rejection scheme by setting the lowpass
filter nulls on the spurious frequencies without sacrificing the
sampling rate requirement. A low-speed prototype is built
with off-the-shelf components, which is able to sense sparse
analog signals at sub-Nyquist rate.
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