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Fault diagnosis technology plays a vital role in the variety of critical engineering applications. Fuzzy approach is widely employed
to cope with decision-making problems because it is in the simplest and most used form. This paper proposed a new similarity
measure of generalized trapezoidal fuzzy numbers used for fault diagnosis. The presented similarity measure combines concepts
of the geometric distance, the center of gravity point, the perimeter, and the area of the generalized trapezoidal fuzzy numbers for
calculating the degree of similarity between generalized trapezoidal fuzzy numbers. This method is proposed to deal with both
standardized and nonstandardized generalized trapezoidal fuzzy numbers. Some properties of the proposed similarity measure
have been proved, and 12 sets of generalized fuzzy numbers have been used to compare the calculation results of the proposed
similarity measures with the existing similarity measures. Comparison results indicate that the proposed similarity measure can
overcome the drawbacks of existing similarity measures. Finally, a fault diagnosis experiment is carried out in laboratory based on
multifunctional flexible rotor experiment bench. Experimental results demonstrate that the proposed similarity measure is more
effective than other methods in terms of rotor fault diagnosis.

1. Introduction

Fault diagnosis technology has gained attention from
researchers for its various applications [1–3]. To date, a
large number of valuable approaches have been proposed for
dealing with fault analysis issues, such as fuzzy theories [4, 5],
expert system [6], wavelet analysis [7, 8], data fusion [9, 10],
and neural network [11, 12]. Particularly, fuzzy approach is
most successfully applied in fault diagnosis because it is in
the simplest andmost used form [13]. Using the fuzzy theories
during the decision-making process, it is necessary to develop
suitable technology to measure fuzzy similarity. Ranking
the fuzzy numbers plays an important role in decision-
making uncertain environment. Many methods [4, 14–20]
have been presented for handing fuzzy multiple attributes
decision-making problems. But they are only designed for
standardized fuzzy numbers, that is, ̃𝐴 = (𝑎
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distance, the perimeter, and the area of the generalized
trapezoidal fuzzy numbers for calculating the degree of
similarity between nonstandardized generalized trapezoidal
fuzzy numbers. But we find that the result of Wen and
Zhou’s method is unreasonable. Even thoughWen and Zhou
use exponential distance 𝑒−|𝑥
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0.37 though coincidence of the area is large and the perimeter
and area of generalized trapezoidal fuzzy numbers are almost
same.

Based onWen and Zhou’s method, this paper proposed a
new similarity measure combines concepts of the geometric
distance, the center of gravity point, the perimeter and the
area of generalized trapezoidal fuzzy numbers for calculating
the degree of similarity between generalized trapezoidal
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fuzzy numbers. Some properties of the proposed similarity
measure have been proved, and 12 sets of generalized fuzzy
numbers have been used to compare the calculation results of
the proposed similarity measures with the existing similarity
measures. Comparison results indicate that the proposed
similarity measure can overcome the drawbacks of the exist-
ing similarity measures. Finally, a fault diagnosis experiment
is carried out in laboratory based on multifunctional flexible
rotor experiment bench to demonstrate the proposed sim-
ilarity measure. Based on the proposed similarity measure,
we present a new fuzzy fault diagnosis algorithm for dealing
with rotor fault diagnosis problem, where the values of the
evaluating items are represented by generalized trapezoidal
fuzzy numbers. The proposed method provides us a useful
way for handling fault diagnosis problem, and experimental
results demonstrate that the proposed similarity measure is
more effective than other methods in terms of rotor fault
diagnosis.

The rest of this paper is organized as follows. In Section 2,
we briefly review basic concepts of generalized fuzzy num-
bers. In Section 3, we briefly review some existing similarity
measures of fuzzy numbers. In Section 4, we present a new
similarity measure between nonstandardized generalized
trapezoidal fuzzy numbers. In Section 5, we make a com-
parison of the calculation results of the proposed similarity
measure with existing similarity measures. In Section 6, we
apply the proposed similarity measure to deal with rotor
fault diagnosis problem. The conclusions are discussed in
Section 7.

2. Basic Concepts of Generalized Fuzzy
Numbers

In this section, we review basic concepts of generalized fuzzy
numbers from Chen [22]. Chen represented generalized
trapezoidal fuzzy number ̃𝐴 = (𝑎
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Figure 1: A generalized trapezoidal fuzzy number.

3. Existing Similarity Measure between
Fuzzy Numbers

In this section, some works have to be done to review some
existing similarity measures between fuzzy numbers from
Chen [14], Lee [15], S.-J. Chen and S.-M. Chen [4], Wei and
Chen [20], and Wen et al. [21]. Consider two trapezoidal
fuzzy numbers ̃𝐴 and ̃
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3.1. Chen’s SimilarityMeasures between FuzzyNumbers. Chen
[14] presented a distance-based similarity measure between
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The larger the value of 𝑆(̃𝐴, ̃𝐵), the more similarity between
the fuzzy numbers ̃𝐴 and ̃𝐵.

3.2. Lee’s Similarity Measures between Fuzzy Numbers. Lee
[15] presented a similarity measure between two trapezoidal
fuzzy numbers ̃𝐴 and ̃
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3.3. Chen and Chen’s Similarity Measures between Fuzzy
Numbers. Chen’s and Lee’s similarity measures cannot deal
with generalized fuzzy numbers. In order to solve this
problem, S.-J. Chen and S.-M. Chen [4] presented a similarity
measure between two generalized trapezoidal fuzzy numbers
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3.4. Wei and Chen’s Similarity Measures between Fuzzy
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by geometric distance ∑4
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and the perimeter and area of generalized trapezoidal fuzzy
numbers are almost the same.Therefore, it is necessary to put
forward a new similarity measure to solve the existing defects
of Wen and Zhou’s similarity measure.

4. A New Similarity Measure between
Generalized Trapezoidal Fuzzy Numbers

In this section, a new method is presented to calculate
the degree of similarity between generalized fuzzy numbers
based on Wen and Zhou’s method. The proposed method
combines concepts of the geometric distance, the center of
gravity point, the perimeter, and the area of the generalized
trapezoidal fuzzy numbers for calculating the degree of simi-
larity 𝑆(̃𝐴, ̃𝐵) between ̃𝐴 and ̃𝐵, where ̃𝐴 = (𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
; 𝑤

𝐴
),

̃

𝐵 = (𝑏

1
, 𝑏

2
, 𝑏

3
, 𝑏

4
; 𝑤

𝐵
), 0 ≤ 𝑎

1
≤ 𝑎

2
≤ 𝑎

3
≤ 𝑎

4
, 0 ≤ 𝑏

1
≤

𝑏

2
≤ 𝑏

3
≤ 𝑏

4
, 0 ≤ 𝑤

𝐴
≤ 1, and 0 ≤ 𝑤

𝐵
≤ 1. The proposed

method not only can deal with standardized fuzzy numbers
but also can deal with nonstandardized fuzzy numbers. In
order to deal with nonstandardized fuzzy numbers, nor-
malization process is used to transform it into standardized
fuzzy numbers which helps to avoid obtaining unreasonable
negative result 𝑆(̃𝐴, ̃𝐵) < 0. Normalization process is shown
as follows:

𝑎



1
=

𝑎

1
−min (𝑎

1
, 𝑏

1
)

max (𝑎
4
, 𝑏

4
) −min (𝑎

1
, 𝑏

1
)

,

𝑎



2
=

𝑎

2
−min (𝑎

1
, 𝑏

1
)

max (𝑎
4
, 𝑏

4
) −min (𝑎

1
, 𝑏

1
)

,

𝑎



3
=

𝑎

3
−min (𝑎

1
, 𝑏

1
)

max (𝑎
4
, 𝑏

4
) −min (𝑎

1
, 𝑏

1
)

,

𝑎



4
=

𝑎

4
−min (𝑎

1
, 𝑏

1
)

max (𝑎
4
, 𝑏

4
) −min (𝑎

1
, 𝑏

1
)

.

(13)

Then, the new standardized fuzzy number ̃𝐴 can be got,
where ̃𝐴 = (𝑎

1
, 𝑎



2
, 𝑎



3
, 𝑎



4
; 𝑤

𝐴
) and 0 ≤ 𝑎

1
≤ 𝑎



2
≤ 𝑎



3
≤ 𝑎



4
≤ 1.

The new standardized fuzzy number̃𝐵 can be got in the same
way, where ̃𝐵 = (𝑏



1
, 𝑏



2
, 𝑏



3
, 𝑏



4
; 𝑤

𝐵
) and 0 ≤ 𝑏



1
≤ 𝑏



2
≤ 𝑏



3
≤

𝑏



4
≤ 1. The degree of similarity 𝑆(̃𝐴, ̃𝐵) between ̃

𝐴 and ̃

𝐵 is
calculated as follows:

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑆 (

̃

𝐴


,

̃

𝐵


) = [1 −

∑

4

𝑖=1











𝑎



𝑖
− 𝑏



𝑖











4

]

(1−|𝑥
∗

̃

𝐴


−𝑥
∗

̃

𝐵


|)

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 (̃𝐵))
.

(14)

The normalization process is unworkable when the general-
ized trapezoidal fuzzy numbers ̃𝐴 and ̃

𝐵 are real numbers
at the same time, where ̃

𝐴 = (𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
; 𝑤

𝐴
), ̃𝐵 =

(𝑏

1
, 𝑏

2
, 𝑏

3
, 𝑏

4
; 𝑤

𝐵
), 𝑎
1
= 𝑎

2
= 𝑎

3
= 𝑎

4
, 𝑏
1
= 𝑏

2
= 𝑏

3
= 𝑏

4
,

0 ≤ 𝑤

𝐴
≤ 1, and 0 ≤ 𝑤

𝐵
≤ 1. In order to deal with

this problem, the geometric distance should be transformed
into exponential distance. The degree of similarity 𝑆(̃𝐴, ̃𝐵)
between ̃𝐴 and ̃𝐵 is calculated as follows:

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑒

−|(∑
4

𝑖=1
|𝑎
𝑖
−𝑏
𝑖
|/4)×(1−|𝑥

∗

̃
𝐴

−𝑥
∗

𝐵

|)|

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))
,

(15)

where 𝑆(̃𝐴, ̃𝐵) ∈ [0, 1], and the larger the value of 𝑆(̃𝐴, ̃𝐵), the
more similarity between the fuzzy numbers ̃𝐴 and ̃𝐵.

4.1. Properties of the New Similarity Measure. We can verify
the following properties of the new similarity measure.

Property 1. 𝑆(̃𝐴, ̃𝐵) ∈ [0, 1].

Proof. When the generalized trapezoidal fuzzy numbers ̃𝐴
and ̃𝐵 are not real numbers at the same time, and because (1−
(∑

4

𝑖=1
|𝑎



𝑖
−𝑏



𝑖
|/4)) ∈ [0, 1], (1−|𝑥∗

̃
𝐴

−𝑥

∗

̃
𝐵

|) ∈ [0, 1], min(𝑃(̃𝐴),

𝑃(

̃

𝐵


)) ≤ max(𝑃(̃𝐴), 𝑃(̃𝐵)), and min(𝑎(̃𝐴), 𝑎(̃𝐵)) ≤

max(𝑎(̃𝐴), 𝑎(̃𝐵)), we can obtain 𝑆(̃𝐴, ̃𝐵) ∈ [0, 1].
When the generalized trapezoidal fuzzy numbers ̃

𝐴

and ̃

𝐵 are real numbers at the same time, and because
𝑒

−|(∑
4

𝑖=1
|𝑎
𝑖
−𝑏
𝑖
|/4)×(1−|𝑥

∗

̃
𝐴

−𝑥
∗

𝐵

|)|
∈ [0, 1], min(𝑃(̃𝐴), 𝑃( ̃𝐵)) ≤

max(𝑃(̃𝐴), 𝑃( ̃𝐵)), and min(𝑎(̃𝐴), 𝑎( ̃𝐵)) ≤ max(𝑎(̃𝐴), 𝑎( ̃𝐵)),
we can obtain 𝑆(̃𝐴, ̃𝐵) ∈ [0, 1].

The proof is completed.

Property 2. Two generalized trapezoidal fuzzy numbers ̃𝐴
and ̃𝐵 are identical if and only if 𝑆(̃𝐴, ̃𝐵) = 1.

Proof. When the generalized trapezoidal fuzzy numbers ̃𝐴
and ̃𝐵 are not real numbers at the same time, if ̃𝐴 and ̃𝐵 are
identical, then 𝑎

1
= 𝑏

1
, 𝑎
2
= 𝑏

2
, 𝑎
3
= 𝑏

3
, 𝑎
4
= 𝑏

4
and 𝑤

𝐴
= 𝑤

𝐵
.

Thus, 𝑎
1
= 𝑏



1
, 𝑎
2
= 𝑏



2
, 𝑎
3
= 𝑏



3
, 𝑎
4
= 𝑏



4
, min(𝑃(̃𝐴), 𝑃(̃𝐵)) =

max(𝑃(̃𝐴), 𝑃(̃𝐵)), min(𝑎(̃𝐴), 𝑎(̃𝐵)) = max(𝑎(̃𝐴), 𝑎(̃𝐵)),
and 𝑥∗

̃
𝐴

= 𝑥

∗

̃
𝐵

. The degree of similarity 𝑆(̃𝐴, ̃𝐵) between ̃

𝐴

and ̃𝐵 is calculated as follows:

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑆 (

̃

𝐴


,

̃

𝐵


) = [1 −

∑

4

𝑖=1











𝑎



𝑖
− 𝑏



𝑖











4

]

(1−|𝑥
∗

̃

𝐴


−𝑥
∗

̃

𝐵


|)

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

= (1 − 0)

1
× 1 = 1.

(16)
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When the generalized trapezoidal fuzzy numbers ̃𝐴 and ̃𝐵 are
real numbers at the same time, if ̃𝐴 and ̃𝐵 are identical, thus,
𝑎

1
= 𝑎

2
= 𝑎

3
= 𝑎

4
= 𝑏

1
= 𝑏

2
= 𝑏

3
= 𝑏

4
, min(𝑃(̃𝐴), 𝑃( ̃𝐵)) =

max(𝑃(̃𝐴), 𝑃( ̃𝐵)), min(𝑎(̃𝐴), 𝑎( ̃𝐵)) = max(𝑎(̃𝐴), 𝑎( ̃𝐵)), and
𝑥

∗

𝐴
= 𝑥

∗

𝐵
. The degree of similarity S(̃𝐴, ̃𝐵) between ̃

𝐴 and ̃

𝐵

is calculated as follows:

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑒

−|(∑
4

𝑖=1
|𝑎
𝑖
−𝑏
𝑖
|/4)×(1−|𝑥

∗

̃
𝐴

−𝑥
∗

𝐵

|)|

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))

= 𝑒

−|0 × 1|
= 1.

(17)

When the generalized trapezoidal fuzzy numbers ̃𝐴 and ̃𝐵 are
not real numbers at the same time, if 𝑆(̃𝐴, ̃𝐵) = 𝑆(̃𝐴, ̃𝐵) = 1,
then

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑆 (

̃

𝐴


,

̃

𝐵


) = [1 −

∑

4

𝑖=1











𝑎



𝑖
− 𝑏



𝑖











4

]

(1−|𝑥
∗

̃

𝐴


−𝑥
∗

̃

𝐵


|)

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵))+min (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵))+max (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

= 1.

(18)

It implies that 𝑎
1
= 𝑏



1
, 𝑎
2
= 𝑏



2
, 𝑎
3
= 𝑏



3
, 𝑎
4
= 𝑏



4
,

min(𝑃(̃𝐴), 𝑃(̃𝐵)) = max(𝑃(̃𝐴), 𝑃(̃𝐵)), min(𝑎(̃𝐴), 𝑎(̃𝐵)) =
max(𝑎(̃𝐴), 𝑎(̃𝐵)), and 𝑥∗

̃
𝐴

= 𝑥

∗

̃
𝐵

. Therefore, 𝑎

1
= 𝑏

1
, 𝑎

2
=

𝑏

2
, 𝑎

3
= 𝑏

3
, 𝑎

4
= 𝑏

4
, and 𝑤

𝐴
= 𝑤

𝐵
, the generalized trapezoi-

dal fuzzy numbers ̃𝐴 and ̃𝐵 are identical.
When the generalized trapezoidal fuzzy numbers ̃𝐴 and ̃𝐵

are real numbers at the same time, if 𝑆(̃𝐴, ̃𝐵) = 𝑆(̃𝐴, ̃𝐵) = 1,
then

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑒

−|(∑
4

𝑖=1
|𝑎
𝑖
−𝑏
𝑖
|/4)×(1−|𝑥

∗

̃
𝐴

−𝑥
∗

𝐵

|)|

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))
= 1.

(19)

It implies that 𝑎
1
= 𝑏

1
, 𝑎
2
= 𝑏

2
, 𝑎
3
= 𝑏

3
, 𝑎
4
= 𝑏

4
,

min(𝑃(̃𝐴), 𝑃( ̃𝐵)) = max(𝑃(̃𝐴), 𝑃( ̃𝐵)), min(𝑎(̃𝐴), 𝑎( ̃𝐵)) =

max(𝑎(̃𝐴), 𝑎( ̃𝐵)), and 𝑥∗
𝐴
= 𝑥

∗

𝐵
. Therefore, 𝑎

1
= 𝑏

1
, 𝑎

2
=

𝑏

2
, 𝑎

3
= 𝑏

3
, 𝑎

4
= 𝑏

4
, and 𝑤

𝐴
= 𝑤

𝐵
, the generalized trapezoidal

fuzzy numbers ̃𝐴 and ̃𝐵 are identical.
The proof is completed.

Property 3. 𝑆(̃𝐴, ̃𝐵) = 𝑆( ̃𝐵, ̃𝐴).

Proof. When the generalized trapezoidal fuzzy numbers ̃𝐴
and ̃𝐵 are not real numbers at the same time,

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑆 (

̃

𝐴


,

̃

𝐵


) = [1 −

∑

4

𝑖=1











𝑎



𝑖
− 𝑏



𝑖











4

]

(1−|𝑥
∗

̃

𝐴


−𝑥
∗

̃

𝐵


|)

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 (̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 (̃𝐵))
,

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑆 (

̃

𝐵


,

̃

𝐴


) = [1 −

∑

4

𝑖=1











𝑏



𝑖
− 𝑎



𝑖











4

]

(1−|𝑥
∗

̃

𝐵


−𝑥
∗

̃

𝐴


|)

×

min (𝑃 (̃𝐵) , 𝑃 (̃𝐴)) +min (𝑎 (̃𝐵) , 𝑎 (̃𝐴))

max (𝑃 (̃𝐵) , 𝑃 (̃𝐴)) +max (𝑎 (̃𝐵) , 𝑎 (̃𝐴))
.

(20)

Because∑4
𝑖=1
|𝑎



𝑖
−𝑏



𝑖
| = ∑

4

𝑖=1
|𝑏



𝑖
−𝑎



𝑖
|, based on (12), we can ob-

tain that min(𝑃(̃𝐴), 𝑃(̃𝐵)) =min(𝑃(̃𝐵), 𝑃(̃𝐴)), max(𝑃(̃𝐴),
𝑃(

̃

𝐵


)) = max(𝑃(̃𝐵), 𝑃(̃𝐴)), min(𝑎(̃𝐴), 𝑎(̃𝐵)) = min(𝑎(̃𝐵),

𝑎(

̃

𝐴


)), max(𝑎(̃𝐴), 𝑎(̃𝐵)) = max(𝑎(̃𝐵), 𝑎(̃𝐴)), and |𝑥∗

̃
𝐴

−

𝑥

∗

̃
𝐵

| = |𝑥

∗

̃
𝐵

− 𝑥

∗

̃
𝐴


|. Therefore, 𝑆(̃𝐴, ̃𝐵) = 𝑆( ̃𝐵, ̃𝐴).
When the generalized trapezoidal fuzzy numbers ̃𝐴 and

̃

𝐵 are real numbers at the same time,

𝑆 (

̃

𝐴,

̃

𝐵) = 𝑒

−|(∑
4

𝑖=1
|𝑎
𝑖
−𝑏
𝑖
|/4)×(1−|𝑥

∗

̃
𝐴

−𝑥
∗

𝐵

|)|

×

min (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +min (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))

max (𝑃 (̃𝐴) , 𝑃 (̃𝐵)) +max (𝑎 (̃𝐴) , 𝑎 ( ̃𝐵))
,

𝑆 (

̃

𝐵,

̃

𝐴) = 𝑒

−|(∑
4

𝑖=1
|𝑏
𝑖
−𝑎
𝑖
|/4)×(1−|𝑥

∗

𝐵

−𝑥
∗

̃
𝐴

|)|

×

min (𝑃 (̃𝐵) , 𝑃 (̃𝐴)) +min (𝑎 ( ̃𝐵) , 𝑎 (̃𝐴))

max (𝑃 (̃𝐵) , 𝑃 (̃𝐴)) +max (𝑎 ( ̃𝐵) , 𝑎 (̃𝐴))
.

(21)

Because∑4
𝑖=1
|𝑎

𝑖
−𝑏

𝑖
| = ∑

4

𝑖=1
|𝑏

𝑖
− 𝑎

𝑖
|, based on (12), we can ob-

tain that min(𝑃(̃𝐴), 𝑃( ̃𝐵)) = min(𝑃( ̃𝐵), 𝑃(̃𝐴)), max(𝑃(̃𝐴),
𝑃(

̃

𝐵)) = max(𝑃( ̃𝐵), 𝑃(̃𝐴)), min(𝑎(̃𝐴), 𝑎( ̃𝐵)) = min(𝑎( ̃𝐵),
𝑎(

̃

𝐴)), max(𝑎(̃𝐴), 𝑎( ̃𝐵)) = max(𝑎( ̃𝐵), 𝑎(̃𝐴)), and |𝑥∗
𝐴
− 𝑥

∗

𝐵
| =

|𝑥

∗

𝐵
−𝑥

∗

𝐴
|. Therefore, 𝑆(̃𝐴, ̃𝐵) = 𝑆(̃𝐵, ̃𝐴).

The proof is completed.

5. The Comparison of the Similarity Measures

In this section, the proposed similarity measure is compared
with five existing methods (Chen’s method, Lee’s method,
Chen and Chen’s method, Wei and Chen’s method, and
Wen and Zhou’s method) using 12 sets of generalized fuzzy
numbers shown in Figure 2. Set 1 to set 8 are 8 sets of
standardized generalized fuzzy numbers, and set 9 to set 12
are 4 sets of nonstandardized generalized fuzzy numbers.
Table 1 compares the calculation results of all six similarity
measures.
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Figure 2: 12 sets of generalized fuzzy numbers.

Some drawbacks of the existing similarity measures are
shown in Table 1, which are described as follows.

(1) Set 1 and set 2 of Figure 2 are clearly two different sets
of generalized fuzzy numbers. The fuzzy numbers ̃𝐴
and ̃

𝐵 in set 2 are more similar than set 1. However,
according to Table 1, Chen’s method obtains the same
degree of similarity 𝑆(̃𝐴, ̃𝐵) for set 1 and set 2, which
is an incorrect result.

(2) Set 3 in Figure 2 clearly indicates that the generalized
fuzzy numbers ̃𝐴 and ̃

𝐵 are not the same, that is,
𝑆(

̃

𝐴,

̃

𝐵) ̸= 1. However, according to Table 1, Chen’s
Method and Lee’smethod obtain the incorrect results,
that is, 𝑆(̃𝐴, ̃𝐵) = 1.

(3) Set 4 and set 5 of Figure 2 are clearly two different
sets of generalized fuzzy numbers.The fuzzy numbers
̃

𝐴 and ̃

𝐵 in set 5 are more similar than set 4.
However, according to Table 1, Chen’s method and
Chen and Chen’s method obtain the same degree
of similarity 𝑆(̃𝐴, ̃𝐵) for set 4 and set 5, which are
incorrect results. Furthermore, Lee’s method obtains
an incorrect result, in which the degree of similarity
𝑆(

̃

𝐴,

̃

𝐵) for set 4 is higher than that of set 5.

(4) Set 6 in Figure 2 clearly indicates that the generalized
fuzzy numbers ̃𝐴 and ̃

𝐵 are not the same, that is,
𝑆(

̃

𝐴,

̃

𝐵) ̸= 1. However, according to Table 1, Chen’s
method and Lee’smethod obtain the incorrect results,
that is, 𝑆(̃𝐴, ̃𝐵) = 1.
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Table 1: The comparison of the calculation results of the proposed similarity measure and the existing similarity measures.

Sets Chen’s method Lee’s method Chen and Chen’s method Wei and Chen’s method Wen and Zhou’s method The proposed method
Set 1 0.7000 0.4965 0.4200 0.6820 0.7018 0.6567
Set 2 0.7000 0.5000 0.4900 0.7000 0.7408 0.7071
Set 3 1 1 0.8000 0.8248 0.8324 0.8763
Set 4 0.7000 0.3675 0.4900 0.6222 0.5875 0.4743
Set 5 0.7000 0.2500 0.4900 0.7000 0.7408 0.7071
Set 6 1 1 0.7000 0.7209 0.7291 0.8218
Set 7 0.9500 0.6464 0.9048 0.6215 0.6061 0.2810
Set 8 1 # 0.5000 0.5000 0.5000 0.5000
Set 9 −2 0.5000 4 −2 0.0498 0.7071
Set 10 −4 0.9180 22.6667 −3.3481 0.0011 0.8736
Set 11 −4 0.9412 22.6667 −3.5314 0.0011 0.9079
Set 12 −1 0 1 −1 0.1353 0.1353
Note: “#” means that the similarity measure cannot calculate the degree of similarity between two generalized fuzzy numbers.
“bold” means incorrect results.

Table 2: The result of 40 generalized trapezoidal fuzzy numbers ̃𝐹
𝑖𝑗
.

Fault feature parameters Rotor unbalance Rotor misalignment
Generalized trapezoidal fuzzy number Generalized trapezoidal fuzzy number

1𝑋

̃

𝑋

11
(0.1485, 0.1517, 0.1770, 0.2006; 1) ̃

𝑌

11
(0.1567, 0.1600, 0.1793, 0.1834; 1)

̃

𝑋

12
(0.1518, 0.1523, 0.1669, 0.1820; 1) ̃

𝑌

12
(0.1644, 0.1698, 0.1787, 0.1809; 1)

̃

𝑋

13
(0.1629, 0.1635, 0.1653, 0.1656; 1) ̃

𝑌

13
(0.1625, 0.1794, 0.2069, 0.2038; 1)

̃

𝑋

14
(0.1606, 0.1611, 0.1622, 0.1630; 1) ̃

𝑌

14
(0.1841, 0.1878, 0.1948, 0.1958; 1)

̃

𝑋

15
(0.1576, 0.1588, 0.1607, 0.1615; 1) ̃

𝑌

15
(0.1736, 0.1773, 0.1835, 0.1857; 1)

2𝑋

̃

𝑋

21
(0.1210, 0.1426, 0.1651, 0.1665; 1) ̃

𝑌

21
(0.3071, 0.3158, 0.3375, 0.3466; 1)

̃

𝑋

22
(0.1343, 0.1457, 0.1560, 0.1563; 1) ̃

𝑌

22
(0.3079, 0.3196, 0.3361, 0.3388; 1)

̃

𝑋

23
(0.1420, 0.1444, 0.1491, 0.1534; 1) ̃

𝑌

23
(0.3095, 0.3269, 0.3499, 0.3507; 1)

̃

𝑋

24
(0.1438, 0.1452, 0.1486, 0.1512; 1) ̃

𝑌

24
(0.3215, 0.3287, 0.3413, 0.3510; 1)

̃

𝑋

25
(0.1382, 0.1402, 0.1453, 0.1488; 1) ̃

𝑌

25
(0.3132, 0.3145, 0.3228, 0.3291; 1)

3𝑋

̃

𝑋

31
(0.0899, 0.1065, 0.1261, 0.1296; 1) ̃

𝑌

31
(0.2338, 0.2522, 0.3022, 0.3218; 1)

̃

𝑋

32
(0.1044, 0.1074, 0.1116, 0.1131; 1) ̃

𝑌

32
(0.2485, 0.2631, 0.2820, 0.2919; 1)

̃

𝑋

33
(0.0990, 0.1026, 0.1101, 0.1150; 1) ̃

𝑌

33
(0.1865, 0.1878, 0.2556, 0.2991; 1)

̃

𝑋

34
(0.1059, 0.1095, 0.1138, 0.1158; 1) ̃

𝑌

34
(0.2022, 0.2078, 0.2185, 0.2250; 1)

̃

𝑋

35
(0.1137, 0.1166, 0.1199, 0.1211; 1) ̃

𝑌

35
(0.2031, 0.2120, 0.2390, 0.2595; 1)

Displacement

̃

𝑋

41
(4.1820, 4.1933, 4.4181, 4.6660; 1) ̃

𝑌

41
(4.7450, 4.7943, 5.1707, 5.3920; 1)

̃

𝑋

42
(4.3740, 4.3917, 4.4369, 4.4650; 1) ̃

𝑌

42
(4.3910, 4.4618, 4.7070, 4.8610; 1)

̃

𝑋

43
(4.3190, 4.3452, 4.3799, 4.3890; 1) ̃

𝑌

43
(4.0940, 4.0343, 4.8373, 5.2340; 1)

̃

𝑋

44
(4.2800, 4.2889, 4.3387, 4.4000; 1) ̃

𝑌

44
(4.6650, 4.7705, 5.0505, 5.1510; 1)

̃

𝑋

45
(4.2870, 4.2962, 4.3662, 4.4620; 1) ̃

𝑌

45
(4.4510, 4.4953, 4.6309, 4.6770; 1)

(5) Set 4 and set 5 of Figure 2 are clearly two different sets
of generalized fuzzy numbers. The fuzzy numbers ̃𝐴
and ̃

𝐵 in set 5 are more similar than set 4. However,
according toTable 1, Chen andChen’smethod obtains
an incorrect result, in which the degree of similarity
𝑆(

̃

𝐴,

̃

𝐵) for set 7 is higher than that of set 6.

(6) Set 8 in Figure 2 clearly indicates that the degree
of similarity between two real values cannot be
calculated by Lee’s method because the denominator

‖𝑈‖ = max(𝑈) − min(𝑈) = 0, which results in the
incorrect result 𝑆(̃𝐴, ̃𝐵) = ∞. Furthermore, set 8 in
Figure 2 clearly indicates that the generalized fuzzy
numbers ̃𝐴 and ̃𝐵 are not the same, that is, 𝑆(̃𝐴, ̃𝐵) ̸= 1.
However, Chen’smethod obtains the incorrect results,
that is, 𝑆(̃𝐴, ̃𝐵) = 1.

(7) Set 9 in Figure 2 clearly indicates that Chen’s method,
Chen andChen’s method andWei and Chen’smethod
cannot deal with nonstandardized fuzzy numbers,
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Table 3: The fault template of rotor fault feature.

Fault feature Fault feature parameters Generalized trapezoidal fuzzy numbers

Rotor unbalance 𝑋

1𝑋 ̃

𝑋

1
= (0.1563, 0.1575, 0.1664, 0.1745; 1)

2𝑋 ̃

𝑋

2
= (0.1359, 0.1436, 0.1528, 0.1552; 1)

3𝑋 ̃

𝑋

3
= (0.1026, 0.1085, 0.1163, 0.1189; 1)

Displacement ̃

𝑋

4
= (4.2884, 4.3031, 4.3880, 4.4764; 1)

Rotor misalignment 𝑌

1𝑋 ̃

𝑌

1
= (0.1683, 0.1749, 0.1886, 0.1899; 1)

2𝑋 ̃

𝑌

2
= (0.3118, 0.3211, 0.3375, 0.3432; 1)

3𝑋 ̃

𝑌

3
= (0.2148, 0.2246, 0.2595, 0.2795; 1)

Displacement ̃

𝑌

4
= (4.4692, 4.5112, 4.8793, 5.0630; 1)

Table 4: The diagnosing rotor fault feature.

Fault feature parameters Generalized trapezoidal fuzzy numbers
1𝑋 ̃

𝐴

1
= (0.1515, 0.1550, 0.1743, 0.1784; 1)

2𝑋 ̃

𝐴

2
= (0.3221, 0.3308, 0.3525, 0.3611; 1)

3𝑋 ̃

𝐴

3
= (0.1338, 0.1522, 0.2021, 0.2214; 1)

Displacement ̃

𝐴

4
= (4.2450, 4.2943, 4.6707, 4.8910; 1)

which all give the incorrect result, that is, 𝑆(̃𝐴, ̃𝐵) ∉
[0, 1]. Moreover, set 9 has the same degree of similar-
ity 𝑆(̃𝐴, ̃𝐵) as set 2, because the geometric distance,
the center of gravity point, the perimeter, and the
area of the generalized trapezoidal fuzzy numbers of
the generalized trapezoidal fuzzy numbers in set 9
should be equal to those in set 2 after normalization
process. However, Wen and Zhou’s Method obtains
an incorrect result, in which the degree of similarity
𝑆(

̃

𝐴,

̃

𝐵) for set 9 is particularly lower than that of set
2.

(8) Set 10 and set 11 of Figure 2 clearly indicates that
Chen’s method, Chen and Chen’s Method and Wei
andChen’smethod cannot deal with nonstandardized
fuzzy numbers, which all give the incorrect result,
that is, 𝑆(̃𝐴, ̃𝐵) ∉ [0, 1]. Moreover, set 10 and
set 11 of Figure 2 are clearly two different sets of
nonstandardized generalized fuzzy numbers. Non-
standardized generalized fuzzy numbers ̃𝐴 and ̃

𝐵 in
set 11 aremore similar than set 10. However, according
to Table 1, Wen and Zhou’s method obtains the same
degrees of similarity 𝑆(̃𝐴, ̃𝐵) for set 10 and set 11.
Finally, set 10 and set 11 in Figure 2 clearly indicates
that nonstandardized fuzzy numbers ̃

𝐴 and ̃

𝐵 are
approximately similar, that is, 𝑆(̃𝐴, ̃𝐵) > 0.5. But Wen
and Zhou’s method obtains the incorrect results, that
is, 𝑆(̃𝐴, ̃𝐵) ≪ 0.5.

(9) Set 12 in Figure 2 clearly indicates that Chen’smethod,
Lee’s method, and Wei and Chen’s method cannot
deal with nonstandardized fuzzy numbers, which all
give the incorrect result, that is, 𝑆(̃𝐴, ̃𝐵) ∉ [0, 1].
Moreover, set 12 in Figure 2 clearly indicates that
nonstandardized generalized fuzzy numbers ̃𝐴 and ̃𝐵
are not same, that is, 𝑆(̃𝐴, ̃𝐵) ̸= 1. However, Chen and

Chen’s method obtains the incorrect results, that is,
𝑆(

̃

𝐴,

̃

𝐵) = 1.

From Table 1 and Figure 2, it clearly indicates that the
proposed similarity measure can overcome the drawbacks of
the existing similarity measures.

6. Rotor Fault Diagnosis Based on the
Proposed Similarity Measure

In this section, the proposed similarity measure is used to
deal with the rotor fault diagnosis problem. The major cause
of machine vibration is rotor unbalance and misalignment,
which leads to additional dynamic load and to accelerate
machine deterioration [23].The proposed similarity measure
is a very helpful method in diagnosing the rotor unbalance
and misalignment to avoid any failures or damages that may
arise.

The proposed similarity measure will be verified by
fault diagnosis experiments on multifunctional flexible rotor
experiment bench. The vibration acceleration and vibration
displacement sensors are, respectively, installed on support-
ing rotor bases to collect vibration signals by data collector.
Experimental procedures involve following main steps.

6.1. Determine the Rotor Fault Diagnosis Set. Rotor unbalance
and misalignment are two major rotor fault features. We
determine the rotor fault diagnosis set as 𝐹 = {𝑋, 𝑌}, where
𝑋 = rotor unbalance and 𝑌 = rotor misalignment.

6.2. Structure the Fault Template of Rotor Fault Feature. Rotor
speed is 1500 rpm, and we choose 1𝑋, 2𝑋, and 3𝑋 amplitude
frequency response (fundamental frequency is 25Hz) and
average amplitude of vibration displacement as four types
of rotor fault feature parameters. In order to structure the
fault template of rotor fault feature, we adopt experimental
statistics method to simulate rotor fault operation mode and
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Table 5: Rotor fault diagnosis result of Wen and Zhou’s method.

Fault feature parameters The degree of similarity Rotor fault diagnosis result
Rotor unbalance 𝑋 Rotor misalignment 𝑌

1𝑋 𝑆 (

̃

𝐴

1
,

̃

𝑋

1
) = 0.9853 𝑆 (

̃

𝐴

1
,

̃

𝑌

1
) = 0.9769 Rotor unbalance

2𝑋 𝑆 (

̃

𝐴

2
,

̃

𝑋

2
) = 0.8038 𝑆 (

̃

𝐴

2
,

̃

𝑌

2
) = 0.9776 Rotor misalignment

3𝑋 𝑆 (

̃

𝐴

3
,

̃

𝑋

3
) = 0.8638 𝑆 (

̃

𝐴

3
,

̃

𝑌

3
) = 0.9105 Rotor misalignment

Displacement 𝑆 (

̃

𝐴

4
,

̃

𝑋

4
) = 0.5756 𝑆 (

̃

𝐴

4
,

̃

𝑌

4
) = 0.7930 Rotor misalignment

Table 6: Rotor fault diagnosis result of the proposed method.

Fault feature parameters The degree of similarity Rotor fault diagnosis result
Rotor unbalance 𝑋 Rotor misalignment 𝑌

1𝑋 𝑆 (

̃

𝐴

1
,

̃

𝑋

1
) = 0.6404 𝑆 (

̃

𝐴

1
,

̃

𝑌

1
) = 0.6512 Rotor misalignment

2𝑋 𝑆 (

̃

𝐴

2
,

̃

𝑋

2
) = 0.6961 𝑆 (

̃

𝐴

2
,

̃

𝑌

2
) = 0.7145 Rotor misalignment

3𝑋 𝑆 (

̃

𝐴

3
,

̃

𝑋

3
) = 0.4282 𝑆 (

̃

𝐴

3
,

̃

𝑌

3
) = 0.6350 Rotor misalignment

Displacement 𝑆 (

̃

𝐴

4
,

̃

𝑋

4
) = 0.4617 𝑆 (

̃

𝐴

4
,

̃

𝑌

4
) = 0.7797 Rotor misalignment

collect five sets of data for each type of rotor fault feature
parameter. Every set of data consists of 40 observations. Let
𝐹

𝑖𝑗
= [𝑓
𝑗,1
,𝑓
𝑗,2
, . . . , 𝑓

𝑗,40
] indicate the 40 observations of the 𝑗

set of data within 16s, where 𝐹 = {𝑋, 𝑌} represent two rotor
fault features, respectively, 𝑖 = 1, 2, 3, 4 represent four types of
rotor fault feature parameters, respectively, and 𝑗 = 1, 2, 3, 4, 5
represent the set number of the collected data.The arithmetic
average𝑀

𝑗
and mean deviation 𝜎

𝑗
of the 𝑗 set of data can be

got as follows:

𝑀

𝑗
=

(𝑓

𝑗,1
+ 𝑓

𝑗,2
+ ⋅ ⋅ ⋅ + 𝑓

𝑗,40
)

40

,

𝜎

𝑗
=

√

((𝑓

𝑗,1
−𝑀

𝑗
)

2

+ (𝑓

𝑗,2
−𝑀

𝑗
)

2

+ ⋅ ⋅ ⋅ + (𝑓

𝑗,40
−𝑀

𝑗
)

2

)

40

.

(22)

Then, the generalized trapezoidal fuzzy number ̃

𝐹

𝑖𝑗
=

(𝑓

1
, 𝑓

2
, 𝑓

3
, 𝑓

4
, 𝑤

𝐹
) can be constructed based on these col-

lected data as follows:

𝑓

1
= min (𝑓

𝑗,𝑘
) ,

𝑓

2
= 𝑀

𝑗
− 𝜎

𝑗
,

𝑓

3
= 𝑀

𝑗
+ 𝜎

𝑗
,

𝑓

4
= max (𝑓

𝑗,𝑘
) ,

𝑤

𝐹
= 1.

(23)

We can obtain 40 generalized trapezoidal fuzzy numbers ̃𝐹
𝑖𝑗
,

where ̃𝐹
𝑖𝑗
= {

̃

𝑋

𝑖𝑗
,

̃

𝑌

𝑖𝑗
}, 𝑖 = 1, 2, 3, 4 and 𝑗 = 1, 2, 3, 4, 5.

The result of 40 generalized trapezoidal fuzzy numbers ̃𝐹
𝑖𝑗
is

shown in Table 2.

The generalized trapezoidal fuzzy number for each fault
feature parameter can be got as follows:

̃

𝐹

𝑖
=

∑

5

𝑗=1
̃

𝐹

𝑖𝑗

5

.

(24)

The result of generalized trapezoidal fuzzy numbers for the
fault template is shown in Table 3.

6.3. Structure the Diagnosing Rotor Fault Feature. We let
multifunctional flexible rotor experiment bench bed run
in rotor misalignment mode 𝑌 and collect data for each
parameter of rotor fault feature. The generalized trapezoidal
fuzzy numbers ̃𝐴

𝑖
of diagnosing rotor fault feature can be

obtained through the collected data. The result is shown in
Table 4.

6.4. Calculate the Degree of Similarity between Fuzzy Numbers
̃

𝐴

𝑖
and Each Fault Feature Parameter. In the following,

Wen and Zhou’s and the proposed methods are used to
deal with the rotor fault diagnosis problem, respectively.
Based on (11) and (14), the degree of similarity between
generalized trapezoidal fuzzy numbers ̃

𝐴

𝑖
and each fault

feature parameter shown in Table 3 can be calculated. The
calculating rotor fault diagnosis results of Wen and Zhou’s
and the proposed methods are shown in Tables 5 and 6,
respectively.

From Table 5, we obtain 𝑆(̃𝐴
1
,

̃

𝑋

1
) > 𝑆(

̃

𝐴

1
,

̃

𝑌

1
), 𝑆(̃𝐴

2
,

̃

𝑋

2
) < 𝑆(

̃

𝐴

2
,

̃

𝑌

2
), 𝑆(̃𝐴

3
,

̃

𝑋

3
) < 𝑆(

̃

𝐴

3
,

̃

𝑌

3
), and 𝑆(̃𝐴

4
,

̃

𝑋

4
) <

𝑆(

̃

𝐴

4
,

̃

𝑌

4
). It means that the rotor fault diagnosis result for

1𝑋 fault feature parameter is rotor unbalance and the result
for the other three types of rotor fault feature parameters
are rotor misalignment. Thus, it is unable to determine fault
feature from the rotor fault diagnosis result of Wen and
Zhou’smethod. Comparingwith the result ofWen andZhou’s
method, the rotor fault diagnosis results of the proposed
method for four types of rotor fault feature parameters are
all rotor misalignment. The rotor fault diagnosis result of
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the proposed method coincides with the fault feature of
multifunctional flexible rotor experiment bench. Therefore,
experimental results demonstrate that the proposed similar-
ity measure is more effective than Wen and Zhou’s methods
in terms of rotor fault diagnosis.

7. Conclusions

This paper presents a new similarity measure used for fault
diagnosis technology, which can deal with both standardized
and nonstandardized generalized trapezoidal fuzzy numbers.
It combines concepts of the geometric distance, the center
of gravity point, the perimeter, and the area of generalized
trapezoidal fuzzy numbers for calculating the degree of
similarity 𝑆(̃𝐴, ̃𝐵) between ̃

𝐴 and ̃

𝐵. Some properties of the
proposed similarity measure have been proved, and 12 sets
of generalized fuzzy numbers have been used to compare the
calculation results of the proposed similarity measures with
the existing similarity measures. From Table 1 and Figure 2,
it clearly indicates that the proposed similarity method can
overcome the drawbacks of existing similarity measures.
Finally, a rotor fault diagnosis example has been given to show
the proposed similarity measure.
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