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Least squares support vector machine (LS-SVM) is a powerful tool for pattern classification and regression estimation. However,
LS-SVM is sensitive to large noises and outliers since it employs the squared loss function. To solve the problem, in this paper,
we propose an absolute deviation loss function to reduce the effects of outliers and derive a robust regression model termed as
least absolute deviation support vector regression (LAD-SVR). The proposed loss function is not differentiable. We approximate
it by constructing a smooth function and develop a Newton algorithm to solve the robust model. Numerical experiments on both
artificial datasets and benchmark datasets demonstrate the robustness and effectiveness of the proposed method.

1. Introduction

Support vector machine (SVM), introduced by Vapnik [1]
and Cristianini and Taylor [2], has been gaining more and
more popularity over the past decades as a modern machine
learning approach, which has strong theoretical foundation
and successes in many real-world applications. However, its
training computational load is great, that is, 𝑂(𝑁

3
), where

𝑁 is the total size of training samples. In order to reduce
the computational effort, many accelerating algorithms have
been proposed. Traditionally, SVM is trained by means of
decomposition techniques such as SMO [3, 4], chunking [5],
SVMlight [6], and LIBSVM [7], which solve the dual problems
by optimizing a small subset of the variables during the
iteration procedure.Another kind of accelerating algorithm is
the least squares SVM introduced by Suykens andVandewalle
[8] which replaces inequality constraints with equality ones,
requiring to solve a linear system of equations and results in
an extremely fast training speed.

LS-SVM obtains good performance on various classifi-
cation and regression estimation problems. In LS-SVR, it is
optimal when the error variables follow a Gaussian distribu-
tion because it tries to minimize the sum of squared errors
(SSE) of training samples [9]. However, datasets subject to
heavy-tailed errors or outliers are commonly encountered in
various applications and the solution of LS-SVR may suffer

from lack of robustness. In recent years, much effort has been
made to increase the robustness of LS-SVR. The commonly
used approach adopts the weight setting strategies to reduce
the influence of outliers [9–13]. In these LS-SVR methods,
different weight factors are put on the error variables such
that the less important samples or outliers have smaller
weights. Another approach improves LS-SVR’s performances
bymeans of outlier elimination [14–17]. Essentially, LS-SVR is
sensitive to outliers since it employs the squared loss function
which overemphasizes the impact of outliers.

In this paper, we focus on the situation in which the
heavy-tailed errors or outliers are found in the targets. In
such a situation, it is well known that the traditional least
squares (LS) may fail to produce a reliable regressor, and the
least absolute deviation (LAD) can be very useful [18–20].
Therefore, we exploit the absolute deviation loss function to
reduce the effects of outliers and derive a robust regression
model termed as least absolute deviation SVR (LAD-SVR).
Due to the fact that the absolute deviation loss function is
not differentiable, the classical optimization method cannot
be used directly to solve the LAD-SVR. Recently, some
algorithms in the primal space for training SVM have been
proposed due to their effective computation. Moreover, it is
pointed out that the primal domain methods are superior
to the dual domain methods when the goal is to find an
approximate solution [21, 22]. Therefore, we approximate
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LAD-SVR by constructing a smooth function and develop a
Newton algorithm to solve the robust model in the primal
space. Numerical experiments on both artificial datasets and
benchmark datasets reveal the efficiency of the proposed
method.

The paper is organized as follows. In Section 2, we briefly
introduce classical LS-SVR and LS-SVR in the primal space.
In Section 3, we propose an absolute deviation loss function
and derive LAD-SVR. A Newton algorithm for LAD-SVR
is given in Section 4. Section 5 performs experiments on
artificial datasets and benchmark datasets to investigate the
effectiveness of LAD-SVR. In Section 6, some remarkable
conclusions are given.

2. Least Squares Support Vector Regression

2.1. Classical LS-SVR. In this section, we concisely present
the basic principles of LS-SVR. For more details, the reader
can refer to [8, 9]. Consider a regression problem with a
training dataset {(𝑥

𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
, where 𝑥

𝑖
∈ 𝑅
𝑚 is the input

variable and 𝑦
𝑖

∈ 𝑅 is the corresponding target. To derive a
nonlinear regressor, LS-SVR can be obtained through solving
the following optimization problem:

min
𝑤,𝑏,𝜉𝑖

1

2
‖𝑤‖
2

+
𝐶

2

𝑛

∑

𝑖=1

𝜉
2

𝑖

s.t. 𝑦
𝑖
= 𝑤
⊤

𝜙 (𝑥
𝑖
) + 𝑏 + 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑛,

(1)

where 𝜉
𝑖
represents the error variables, 𝑤 represents the

model complexity, 𝜙(⋅) is a nonlinear mapping which maps
the input data into a high-dimensional feature space, and
𝐶 > 0 is the regularization parameter that balances the
model complexity and empirical risk. To solve (1), we need to
introduce Lagrangianmultipliers and construct a Lagrangian
function. Utilizing the Karush-Kuhn-Tucker (KKT) condi-
tions, we get the dual optimization problem

[

[

0 𝑒
⊤

𝑒 𝐾 +
1

𝐶
𝐼
𝑛

]

]

[
𝑏

𝛼
] = [

0

y] , (2)

where 𝑒 = (1, 1, . . . , 1)
⊤, y = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)
⊤, 𝐼
𝑛
denotes 𝑛×𝑛

identity matrix, 𝐾 = (𝐾
𝑖𝑗
)
𝑛×𝑛

is the kernel matrix with 𝐾
𝑖𝑗

=

𝑘(𝑥
𝑖
, 𝑥
𝑗
) = 𝜙(𝑥

𝑖
)
⊤

𝜙(𝑥
𝑗
), and 𝑘(⋅, ⋅) is the kernel function. By

solving (2), the regressor can be gained as

𝑓 (𝑥) = 𝑤
⊤

𝜙 (𝑥) + 𝑏 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑘 (𝑥
𝑖
, 𝑥) + 𝑏. (3)

2.2. LS-SVR in the Primal Space. In this section, we describe
LS-SVR solved in the primal space following the growing
interest in training SVMs in the primal space in the last
few years [21, 22]. Primal optimization of an SVM has
strong similarities with the dual strategy [21] and can be
implemented by the widely popular optimization techniques.
The optimization problem of LS-SVR (1) can be described as

min
w,𝑏

1

2
‖w‖
2

+
𝐶

2

𝑛

∑

𝑖=1

𝑙
1

(𝑦
𝑖
− 𝑓 (𝑥

𝑖
)) , (4)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

4

3.5

3

2.5

2

1.5

1

0.5

0

r

l1(r)

l2(r)

l3(r)

Figure 1: Squared loss function 𝑙
1
(𝑟), absolute deviation loss

function 𝑙
2
(𝑟), and smooth approximation function 𝑙

3
(𝑟) with ℎ =

0.3.

where 𝑙
1
(𝑟) = 𝑟

2 with 𝑟 = 𝑦 − 𝑓(𝑥), and is a squared loss
function, as shown in Figure 1. In the reproducing kernel
Hilbert spaceH, we rewrite the optimization problem (4) as

min
𝑓

1

2

𝑓


2

H
+

𝐶

2

𝑛

∑

𝑖=1

𝑙
1

(𝑦
𝑖
− 𝑓 (𝑥

𝑖
)) . (5)

For the sake of simplicity, we can drop the bias 𝑏 without
loss of generalization performance of SVR [21]. According to
[21], the optimal function for (5) can be expressed as a linear
combination of the kernel functions centering the training
samples:

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑘 (𝑥, 𝑥

𝑖
) . (6)

Substituting (6) into (5), we have

min
𝛼

1

2
𝛼
⊤

𝐾𝛼 +
𝐶

2

𝑛

∑

𝑖=1

𝑙
1

(𝑦
𝑖
− 𝐾
𝑖
𝛼) , (7)

where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)
⊤ and 𝐾

𝑖
is the 𝑖th row of kernel

matrix 𝐾.

3. Least Absolute Deviation SVR

Asmentioned, LS-SVR is sensitive to outliers and noises with
the squared loss function 𝑙

1
(𝑟) = 𝑟

2. When there exist outliers
which are far away from the rest of samples, large errors will
dominate SSE and the decision hyperplane of LS-SVR will
severely deviate from the original position deteriorating the
performance of LS-SVR.

In this section, we propose an absolute deviation loss
function 𝑙

2
(𝑟) = |𝑟| to reduce the influence of outliers. This
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phenomenon is graphically depicted in Figure 1, which shows
the squared loss function 𝑙

1
(𝑟) = 𝑟

2 and the absolute deviation
one 𝑙
2
(𝑟) = |𝑟|, respectively. From the figure, the exaggerative

effect of 𝑙
1
(𝑟) = 𝑟

2 at points with large errors, as compared
with 𝑙

2
(𝑟) = |𝑟|, is evident.

The robust LAD-SVR model can be constructed as

min
𝛼

1

2
𝛼
⊤

𝐾𝛼 + 𝐶

𝑛

∑

𝑖=1

𝑙
2

(𝑦
𝑖
− 𝐾
𝑖
𝛼) . (8)

However, 𝑙
2
(𝑟) is not differentiable, and the associated opti-

mization problem is difficult to be solved. Inspired by the
Huber loss function [23], we propose the following loss
function:

𝑙
3

(𝑟) =
{

{

{

|𝑟| , if |𝑟| > ℎ,

𝑟
2

2ℎ
+

ℎ

2
, otherwise,

(9)

where ℎ > 0 is the Huber parameter, and its shape is shown
in Figure 1. It is verified that 𝑙

3
(𝑟) is differentiable. For ℎ →

0, 𝑙
3
(𝑟) approaches 𝑙

2
(𝑟). Replacing 𝑙

2
(𝑟) with 𝑙

3
(𝑟) in (8), we

obtain

min
𝛼

L (𝛼) =
1

2
𝛼
⊤

𝐾𝛼 + 𝐶

𝑛

∑

𝑖=1

𝑙
3

(𝑦
𝑖
− 𝐾
𝑖
𝛼) . (10)

4. Newton Algorithm for LAD-SVR

Noticing that the objective function L(𝛼) of (10) is contin-
uous and differentiable, (10) can be easily solved by Newton
algorithm. At the 𝑡th iteration, we divide the training samples
into two groups according to |𝑟

𝑡

𝑖
| ≤ ℎ and |𝑟

𝑡

𝑖
| > ℎ. Let

𝑆
1

= {𝑖 | |𝑟
𝑡

𝑖
| ≤ ℎ} denote the index set of samples lying in the

quadratic part of 𝑙
3
(𝑟) and 𝑆

2
= {𝑖 | |𝑟

𝑡

𝑖
| > ℎ} the index set of

samples lying in the linear part of 𝑙
3
(𝑟). |𝑆

1
| and |𝑆

2
| represent

the number of samples in 𝑆
1
and 𝑆

2
; that is, |𝑆

1
| + |𝑆
2
| = 𝑛.

For the sake of clarity, we suppose that the two groups are
arranged in the order of 𝑆

1
and 𝑆

2
. Furthermore, we define

𝑛 × 𝑛 diagonal matrices 𝐼
1
and 𝐼
2
, where 𝐼

1
has the first |𝑆

1
|

entries being 1 and the others 0, and 𝐼
2
has the entries from

|𝑆
1
|+1 to |𝑆

1
|+|𝑆
2
| being 1 and the others 0.Then, we develop

a Newton algorithm for (10). The gradient is

∇L (𝛼
𝑡
) = 𝐾 (𝐼

𝑛
+

𝐶

ℎ
𝐼
1
𝐾)𝛼
𝑡
− 𝐾 [

𝐶

ℎ
𝐼
1
y + 𝐶𝐼

2
s] , (11)

where y = (𝑦
1
, . . . , 𝑦

𝑛
)
⊤ and s = (𝑠

1
, . . . , 𝑠

𝑛
)
⊤ with 𝑠

𝑖
=

sgn(𝑟
𝑖
). The Hessian matrix at the 𝑡th iteration is

𝐻
𝑡

= 𝐾 (𝐼
𝑛

+
𝐶

ℎ
𝐼
1
𝐾) . (12)

The Newton step at the (𝑡 + 1)th iteration is

𝛼
𝑡+1

= 𝛼
𝑡
− (𝐻
𝑡
)
−1

∇L (𝛼
𝑡
)

= (𝐼
𝑛

+
𝐶

ℎ
𝐼
1
𝐾)

−1

(
𝐶

ℎ
𝐼
1
y + 𝐶𝐼

2
s) .

(13)

Denote𝐴 = (𝐼
|𝑆1|

+(𝐶/ℎ)𝐾
𝑆1 ,𝑆1

)
−1.The inverse of 𝐼

𝑛
+(𝐶/ℎ)𝐼

1
𝐾

can be calculated as follows:

(𝐼
𝑛

+
𝐶

ℎ
𝐼
1
𝐾)

−1

= (
𝐴 −

𝐶

ℎ
𝐴𝐾
𝑆1 ,𝑆2

𝑂 𝐼
|𝑆2|

) . (14)

The computational complexity of 𝐴
−1 is 𝑂((|𝑆

1
|)
3
). Substitut-

ing (14) into (13), we obtain

𝛼
𝑡+1

= 𝐶 (

𝐴

ℎ
[y
|𝑆1|

− 𝐶𝐾
𝑆1 ,𝑆2

s
|𝑆2|

]

s
|𝑆2|

) = (

𝛼
𝑡+1

𝑆1

𝛼
𝑡+1

𝑆2

) . (15)

Having updated 𝛼𝑡+1, we get the corresponding regressor

𝑓
𝑡+1

(𝑥) =

𝑛

∑

𝑖=1

𝛼
𝑡+1

𝑖
𝑘 (𝑥
𝑖
, 𝑥) . (16)

The flowchart of implementing LAD-SVR is depicted as
follows.

Algorithm 1. LAD-SVR (Newton algorithm for LAD-SVR
with absolute deviation loss function).

Input: training set 𝑇 = {𝑥
𝑖
, 𝑦
𝑖
}
𝑛

𝑖=1
, kernel matrix 𝐾, and a

small real number 𝜌 > 0.

(1) Let 𝛼0 ∈ 𝑅
𝑛 and calculate 𝑟

0

𝑖
= 𝑦
𝑖
− 𝐾
𝑖
𝛼
0
, 𝑖 = 1, . . . , 𝑛.

Divide training set into two groups according to |𝑟
0

𝑖
|.

Set 𝑡 = 0.
(2) Rearrange the groups in the order of 𝑆

1
and 𝑆
2
; adjust

𝐾 and y correspondingly. Solve ∇L(𝛼
𝑡
) by (11). If

‖∇L(𝛼
𝑡
)‖ ≤ 𝜌, stop; or else, go to the next step.

(3) Calculate 𝛼𝑡+1 by (15) and 𝑓
𝑡+1

(𝑥) by (16).
(4) Divide training set into two groups according to

|𝑟
𝑡+1

𝑖
| = |𝑦

𝑖
− 𝐾
𝑖
𝛼
𝑡+1

|. Let 𝑡 = 𝑡 + 1, and go to step
(2).

5. Experiments

In order to test the effectiveness of the proposed LAD-SVR,
we conduct experiments on several datasets, including six
artificial datasets and nine benchmark datasets, and compare
it with LS-SVR.Gaussian kernel is selected as the kernel func-
tion in the experiments. All the experiments are implemented
on Intel Pentium IV 3.00GHz PC with 2GB of RAM using
Matlab 7.0 under Microsoft Windows XP. The linear system
of equations in LS-SVR is realized by Matlab operation “\”.
Parameters selection is a crucial issue for modeling with
the kernel methods, because improper parameters, such as
the regularization parameter 𝐶 and kernel parameter 𝜎, will
severely affect the generalization performance of SVR. Grid
search [2] is a simple and direct method, which conducts an
exhaustive search on the parameters space with the validation
minimized. In this paper, we employ grid search for searching
their optimal parameters such that they can achieve best
performance on the test samples.

To evaluate the performances of the algorithms, we adopt
the following four popular regression estimation criterions:
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Table 1: Experiment results on 𝑦 = sin(3𝑥)/(3𝑥).

Noise Algorithm RMSE MAE SSE/SST SSR/SST

Type I LS-SVR 0.0863 0.0676 0.0720 1.0761
LAD-SVR 0.0455 0.0364 0.0209 1.0082

Type II LS-SVR 0.0979 0.0795 0.0944 0.9374
LAD-SVR 0.0727 0.0607 0.0527 1.0224

Type III LS-SVR 0.0828 0.0665 0.0664 1.1137
LAD-SVR 0.0278 0.0223 0.0078 1.0044

Type IV LS-SVR 0.0899 0.0707 0.0772 0.9488
LAD-SVR 0.0544 0.0439 0.0291 1.0003

Type V LS-SVR 0.2120 0.1749 0.4268 0.7142
LAD-SVR 0.1861 0.1554 0.3372 0.7291

Type VI LS-SVR 0.1796 0.1498 0.3112 0.9709
LAD-SVR 0.1738 0.1391 0.2928 0.8993

root mean square error (RMSE) [24], mean absolute error
(MAE), ratio between the sum squared error SSE and the
sum squared deviation testing samples SST (SSE/SST) [25],
and ratio between interpretable sum deviation SSR and SST
(SSR/SST) [25]. These criterions are defined as follows.

(1) RMSE = √(1/𝑚) ∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦
𝑖
)
2.

(2) MAE = (1/𝑚) ∑
𝑚

𝑖=1
|𝑦
𝑖
− 𝑦
𝑖
|.

(3) SSE/SST = ∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦
𝑖
)
2
/ ∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦)
2.

(4) SSR/SST = ∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦)
2
/ ∑
𝑚

𝑖=1
(𝑦
𝑖
− 𝑦)
2,

where 𝑚 is the number of testing samples, 𝑦
𝑖
denotes the tar-

get,𝑦
𝑖
is the corresponding prediction, and𝑦 = (1/𝑚) ∑

𝑚

𝑖=1
𝑦
𝑖
.

RMSE is commonly used as the deviation measurement
between the real and predicted values. It represents the fitting
precision.The smaller RMSE is, the better fitting performance
is. However, when noises are also used as testing samples,
too small value of RMSE probably means overfitting of the
regressor. MAE is also a popular deviation measurement
between the real and predicted values. In most cases, small
SSE/SST indicates good agreement between estimations and
real values. Obtaining smaller SSE/SST usually accompanies
an increase in SSR/SST.However, the extremely small value of
SSE/SST is in fact not good, for it probably means overfitting
of the regressor. Therefore, a good estimator should strike
balance between SSE/SST and SSR/SST.

5.1. Experiments on Artificial Datasets. In artificial experi-
ments, we generate the artificial datasets {(𝑥

𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
by the

following Sinc function which is widely used in regression
estimation [17, 24]. Consider

Type I: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑁 (0, 0.15

2
) .

Type II: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑁 (0, 0.3

2
) .

Type III: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑈 [−0.15, 0.15] .

Type IV: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑈 [−0.3, 0.3] .

Type V: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑇 (4) .

Type VI: 𝑦
𝑖
=
sin (3𝑥

𝑖
)

3𝑥
𝑖

+ 𝛾
𝑖
, 𝑥
𝑖
∈ [−4, 4] ,

𝛾
𝑖
∼ 𝑇 (8) ,

(17)

where𝑁(0, 𝑑
2
) represents theGaussian random variable with

zero means and variance 𝑑
2, 𝑈[𝑎, 𝑏] denotes the uniformly

random variable in [𝑎, 𝑏], and 𝑇(𝑐) depicts the student
random variable with freedom degree 𝑐.

In order to avoid biased comparisons, for each kind of
noises, we randomly generate ten independent groups of
noisy samples which, respectively, consist of 350 training
samples and 500 test samples. For each training dataset, we
randomly choose 1/5 samples and add large noise on their
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Figure 2: Experiment results on 𝑦 = sin(3𝑥)/(3𝑥) with noise of Type I(a), II(b), . . ., VI(f).

targets to simulate outliers.The testing samples are uniformly
from the objective Sinc function without any noise. Table 1
shows the average accuracies of LS-SVR and LAD-SVR with
ten independent runs. From Table 1, we can see that LAD-
SVR has advantages over LS-SVR for all types of noises in
terms of RMSE, MAE, and SSE/SST. Hence, LAD-SVR is
robust to noises and outliers. Moreover, LAD-SVR derives
larger SSR/SST value for three types of noises (types II, IV,
and V). From Figure 2, we can see that the LAD-SVR follows
the actual data more closely than LS-SVR for most of the
test samples. The main reason is that LAD-SVR employs an
absolute deviation loss function which reduces the penalty
of outliers in the training process. The histograms of LS-
SVR and LAD-SVR for distribution of the error variables

𝜉
𝑖
for these different types of noises are shown in Figure 3.

We notice that the histograms of LAD-SVR for all types of
noises are closer to Gaussian distribution, compared with
LS-SVR. Therefore, our proposed LAD-SVR derives better
approximation than LS-SVR.

5.2. Experiments on Benchmark Datasets. In this section, we
test nine benchmark datasets to further illustrate the effec-
tiveness of the LAD-SVR, including Pyrimidines (Pyrim),
Triazines, AutoMPG, Boston Housing (BH) and Servo from
UCI datasets [26], Bodyfat, Pollution, Concrete Compres-
sive Strength (Concrete) from StatLib database (Available
from http://lib.stat.cmu.edu/datasets/), and Machine CPU
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Figure 3: Histograms of distribution of the error variables 𝜉
𝑖
for noise of Type I ((a) LS-SVR (Left), LAD-SVR (Right)), II(b), . . ., VI(f).

(MCPU) from the web page (http://www.dcc.fc.up.pt/∼
ltorgo/Regression/DataSets.html), which are widely used
in evaluating various regression algorithms. The detailed
descriptions of datasets are presented in Table 2, where #train

and #test denote the number of training and testing samples,
respectively. In experiments, each dataset is randomly split
into training and testing samples. For each training dataset,
we randomly choose 1/5 samples and add large noise on their
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Table 2: Experiment results on Benchmark datasets.

Number Dataset Algorithm RMSE MAE SSE/SST SSR/SST Time (s) Iter #train #test

1 Bodyfat LS-SVR 0.0075 0.0056 0.1868 0.7799 0.0854 / 200 52
(252 × 14) LAD-SVR 0.0026 0.0012 0.0277 0.9686 0.0988 4.4 200 52

2 Pyrim LS-SVR 0.1056 0.0649 0.5925 0.5729 0.0137 / 50 24
(74 × 27) LAD-SVR 0.1047 0.0641 0.5832 0.5342 0.0385 9.8 50 24

3 Pollution LS-SVR 39.8592 31.0642 0.5358 0.8910 0.0083 / 40 20
(60 × 16) LAD-SVR 36.1070 28.2570 0.4379 0.7312 0.0202 5 40 20

4 Triazines LS-SVR 0.1481 0.1126 0.9295 0.3356 0.0759 / 150 36
(186 × 60) LAD-SVR 0.1415 0.1066 0.8420 0.3026 0.0958 6 150 36

5 MCPU LS-SVR 53.6345 27.5341 0.1567 0.9485 0.0509 / 150 59
(209 × 6) LAD-SVR 50.2263 26.5241 0.1364 0.9666 0.0883 5.4 150 59

6 AutoMPG LS-SVR 2.8980 2.1601 0.1308 0.8421 0.2916 / 300 92
(392 × 7) LAD-SVR 2.6630 1.9208 0.1102 0.8502 0.3815 6.4 300 92

7 BH LS-SVR 4.3860 3.2163 0.2402 0.8563 0.2993 / 300 206
(506 × 13) LAD-SVR 3.6304 2.5349 0.1648 0.8593 0.4971 8.8 300 206

8 Servo LS-SVR 0.7054 0.4194 0.2126 0.8353 0.0342 / 100 67
(167 × 4) LAD-SVR 0.6830 0.3767 0.2010 0.8147 0.0561 4.9 100 67

9 Concrete LS-SVR 7.0293 5.1977 0.1740 0.9005 1.1719 / 500 530
(1030 × 8) LAD-SVR 6.8708 5.0748 0.1662 0.8936 2.0737 8.7 500 530

targets to simulate outliers. Similar to the experiments on
artificial datasets, the testing datasets are not added any noise
on their targets. All the regression methods are repeated ten
times with different partition of training and testing dataset.

Table 2 displays the testing results of LS-SVR and the
proposed LAD-SVR. We observe that the three criterions
(RMSE, MAE, and SSE/SST) of LAD-SVR are obviously
better than LS-SVR on all datasets, which shows that the
robust algorithm achieves better generalization performance
and has good stability as well. Moreover, our LAD-SVR
algorithm outperforms LS-SVR. For instance, LAD-SVR
obtains the smaller RMSE,MAE, and SSE/SST on the Bodyfat
dataset; meanwhile, it keeps larger SSR/SST than LS-SVR.
The proposed algorithm derives the similar results on the
MCPU, AutoMPG, and BH datasets.

To obtain the final regressor of LAD-SVR, the resultant
model is implemented in the primal space by classical New-
ton algorithm iteratively. The number of iterations (Iter) and
the running time (Time) including the training and testing
time are listed in Table 2. Iter shows the average number of
iterations of ten independent runs. Compared with LS-SVR,
LAD-SVR requires more running time. The main reason is
that the running time of LAD-SVR is affected by the selection
approach of the starting point 𝛼

0, the value of |𝑆
1
|, and the

number of iterations. In the experiments, the starting point𝛼
0

is derived by LS-SVR on a small number of training samples.
It can be observed that the average number of iterations
does not exceed 10, which implies that LAD-SVR is suitable
enough for medium and large scale problems. We notice
that LAD-SVR does not burden the running time severely.
A worse case is that the maximum ratio of their speeds is
no more than 3 times on Pyrim dataset. These experimental
results conclude that the proposed LAD-SVR is effective in
dealing with robust regression problems.

6. Conclusion

In this paper, we propose LAD-SVR, a novel robust least
squares support vector regression algorithm on dataset with
outliers. Compared with the classical LS-SVR which is based
on squared loss function, LAD-SVR employs an absolute
deviation loss function to reduce the influence of outliers.
To solve the resultant model, we smooth the proposed loss
function by a Huber loss function and develop a Newton
algorithm. Experimental results on both artificial datasets
and benchmark datasets confirm that LAD-SVR owns better
robustness compared with LS-SVR. However, LAD-SVR still
loses sparseness as LS-SVR. In the future, we plan to develop
more efficient LAD-SVR to improve the sparseness and
robustness.
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