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Abstract. We have studied how the presence of collisions
affects the behavior of instabilities triggered by a combina-
tion of shears and parallel currents in the ionosphere under a
variety of ion to electron temperature ratios. To this goal we
have numerically solved a kinetic dispersion relation, using
a relaxation model to describe the effects of ion and electron
collisions. We have compared our solutions to expressions
derived in a fluid limit which applied only to large electron to
ion temperature ratios. We have limited our study to thresh-
old conditions for the current density and the shears. We
have studied how the threshold varies as a function of the
wave-vector angle direction and as a function of frequency.
As expected, we have found that for low frequencies and/or
elevated ion to electron temperature ratios, the kinetic disper-
sion relation has to be used to evaluate the threshold condi-
tions. We have also found that ion velocity shears can sig-
nificantly lower the field-aligned threshold current needed
to trigger the instability, especially for wave-vectors close to
the perpendicular to the magnetic field. However the current
density and shear requirements remain significantly higher
than if collisions are neglected. Therefore, for ionospheric
F-region applications, the effect of collisions should be in-
cluded in the calculation of instabilities associated with hori-
zontal shears in the vertical flow. Furthermore, in many situ-
ations of interest the kinetic solutions should be used instead
of the fluid limit, in spite of the fact that the latter can be
shown to produce qualitatively valid solutions.
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1 Introduction

As the spatial resolution of ionospheric and magnetospheric
measurements has increased over time to reveal sharp density
and velocity structures, there has been considerable interest
in recent years in studying the possibility of destabilizing
space plasmas with velocity shears. There has, in particular,
been both direct and indirect evidence for sharp horizontal
structures in field-aligned currents (Maggs and Davis, 1968;
Marklund et al., 1982; Cerisier et al., 1987; Berthelier et al.,
1988; Earle et al., 1989; Trondsen and Cogger, 1997; Noël,
1999; Noël et al., 2000, 2005; Rother et al., 2007). Simi-
larly, field-aligned ion drifts of the order of km/s, have also
been uncovered over narrow horizontal ranges at high lati-
tudes (Liu and Lu, 2004; Ganguli et al., 1994). The two phe-
nomena, intense bursts of field-aligned currents, and large
localized ion upflows, may in fact be colocated since type-
2 thermal ion upflows (TIU) have been shown to be on the
edge of auroral arcs, where narrow but intense parallel cur-
rent densities also exist (e.g.Wahlund et al., 1992; Forme,
1999). The collocation may well not be accidental since a
field-aligned electric field and the presence of some remnant
high frequency turbulence seems to be the only way to en-
hance the vertical bulk motion of the ions (Kagan and St.-
Maurice, 2005).

The kinds of observations that we just described have cre-
ated a renewed interest in the role played by horizontal shears
in field-aligned flows in the excitation of plasma waves in
ionospheric and magnetospheric plasmas. Thus, in an earlier
theoretical study on the subject, following an original idea
by D’Angelo (1965), Basu and Coppi(1989) suggested, us-
ing fluid theory, that in the presence of collisions, horizontal
shears in the field-aligned ion velocity could produce very
low frequency modes in the frame of reference of a moving
F-region plasma at an angle very close to perpendicularity to
the magnetic field (by low frequency we mean hereω�kCs,
whereω is the frequency of the wave in the moving frame,k

is the wave-number, andCs is the ion-acoustic speed).
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Later,Gavrishchaka et al.(1998) generalized theBasu and
Coppi (1989) work to higher frequencies and arbitrary an-
gles of the wave-vector to the magnetic field. However, they
neglected collisions in the process. Nevertheless, they found
that, in the absence of collisions and finite Larmor radius cor-
rections, they could rather easily excite ion-acoustic waves in
the presence of horizontal shears in vertical plasma drifts.
Overall, they concluded that both the current-driven elec-
trostatic ion-acoustic mode (CDEIA) and the current driven
electrostatic ion cyclotron mode (CDEIC) could be excited
with parallel drifts significantly below the critical drift for
the homogenous CDEIC and CDEIA. They also found that
the threshold current was insensitive to the temperature ratio
τ=Ti/Te and furthermore concluded that infinitesimal shears
could destabilize waves.

The Gavrishchaka et al.(1998) work was later extended
in a series of papers.Gavrishchaka et al.(1999) explored
the weak and strong shear limits of the earlier paper to con-
clude that for weak shears the minimum field-aligned cur-
rents were indeed much smaller than the critical current for
both the CDEIA and CDEIC instabilities. For the strong
shear limit, no field aligned current was required at all to
destabilize ion-acoustic modes. This work was then extended
by Scime et al.(2002) to include thermal anisotropy and
by Spangler et al.(2002) who considered the effect of ion
and electron temperature anisotropies. None of these ex-
tensions of the original study, however, included collisions,
which raises the issue of their applicability to ionospheric
situations. To this goal,St.-Maurice et al.(2006) provided
an extension of the originalGavrishchaka et al.(1998) work
in which they added collisions. However, the dispersion re-
lation contained so many parameters that they limited their
study to a quasi-fluid limit that considered large ion argu-
ments and small electron arguments. This limit, which con-
tained both collisional and finite Larmor radius effects, was
then compared to previous studies, from the initial study of
Kindel and Kennel(1971) to the current convective work
of Ossakow and Chaturvedi(1979), the work ofBasu and
Coppi(1989) and of course the results ofGavrishchaka et al.
(1998). Within the fluid limit (requiring, in particular, that
Te�Ti), it was found that collisions and Larmor radius cor-
rections both acted to modify the threshold conditions in
the regimes explored byBasu and Coppi(1989) andGavr-
ishchaka et al.(1998). In particular, collisions usually meant
that the plasma could no longer become unstable to infinitesi-
mal shears. In addition,St.-Maurice et al.(2006) found a new
mode with a cyclotron flavor at intermediate aspect angles. In
terms of specific numbers, overall, in the absence of shears
they got ion acoustic modes for vertical drifts of the order
of 10–100Cs, which were similar to the numbers obtained
by Kindel and Kennel(1971). However, shears always intro-
duced a near zero current mode forω/kCs<1; for moderate
shears (Si=V ′

di/�i<0.1), the generalization looked similar
to the Basu and Coppi(1989) expression with modes at a
small fraction ofkCs.

In the present paper, we want to continue to explore the
St.-Maurice et al.(2006) solutions by solving the full kinetic
dispersion relation. We use their fluid solutions as a starting
point because they can be and have been studied in detail in
terms of physical processes that could be tracked; this type
of study is not so easy to do with the kinetic solution. As
our starting point, we therefore compare fluid and kinetic so-
lutions under moderate drifts and large electron temperatures
Te. We then proceed to systematically move away from these
restrictions and we study how the threshold changes. Using
this type of approach allows us to keep track of the evolution
of a mode by beginning with its quasi-fluid behavior while at
the same time tracking more easily its physical origin.

Our paper is organized as follows: in Sect. 2 we present the
generalized dispersion relation derived bySt.-Maurice et al.
(2006). In Sect. 3 we compare the results using the fluid-
like dispersion relation presented previously bySt.-Maurice
et al. (2006) with those obtained using the general kinetic
dispersion relation. Finally, we explore the kinetic dispersion
relation for modes that can be excited by vertical ion drifts
under appropriate F-region conditions.

2 The generalized kinetic dispersion relation

A kinetic dispersion relation for electrostatic current and
shear driven instabilities in a collisional plasma has been pre-
sented bySt.-Maurice et al.(2006). The model assumed that
there was a vertical drift in the thermal electrons and/or ions
and that the drift had a horizontal gradient in the x-direction
(i.e. a shear) in the plane perpendicular to the magnetic field.
In this paper, we only present the generalized kinetic disper-
sion relation itself and refer the reader toSt.-Maurice et al.
(2006) for the details of the derivation.

TheSt.-Maurice et al.(2006) dispersion relation for elec-
trostatic modes is written as follows

Hi(k, ω)

1 + Ui(k, ω)
+

He(k, ω)

1 + Ue(k, ω)
+ k2λ2

di = 0 (1)

where theHj(k, ω) function is known as the jth component of
the susceptibility,k is the wavenumber andλdi is the Debye
length for the ions.

The expression for the susceptiblity of the ions can be writ-
ten as follows (Perron, 2004; St.-Maurice et al., 2006)
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while the susceptibility for the electrons can be written as

He=
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(3)

where$=ω−kzVdi, V ′

di,e=dVdi,e/dx is the ion/electron ve-
locity shear,λdi is the Debye length for the ions,�i,e is the
ion, electron gyrofrequency,Vdi,e is the ion/electron drift ve-
locity along the magnetic field line andvti,e=

√
Ti,e/mi,e is

the thermal velocity of the ions/electrons (using eV units for
Ti,e), νi,e is the ion/electron momentum transfer collision fre-

quency and,ρi=

√
Ti/mi�

2
i is the Larmor radius for the ions.

To get the last term forHe in Eq. (3) we have used the low
frequency limitω��e or equivalentlyρ2

e→0.
The function0n(b) is given by

0n(b) = In(b)e−b (4)

whereIn(b) is the modified Bessel function. A similar con-
tribution is associated with the shear termV ′

di in Eq. (2) in
association with0∗

n. In comparison with Eq. (4),0∗
n contains

a finite Larmor radius correction. It is given by

0∗
n(b) =

[
(1 − b)In(b) + bI ′

n(b)
]
e−b (5)

whereb=k2
yρ

2
L andρL=

√
T/m�2 is the Larmor radius.

The functionsUj(k, ω) in Eq. (1) take the form (seePer-
ron, 2004; St.-Maurice et al., 2006)
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Equations (2–3) and (6–7) can be now put into Eq. (1) and
the roots of the resulting dispersion relation can be stud-
ied. In their study,St.-Maurice et al.(2006) limited them-
selves to fluid-like mode solutions by considering large ion
and small electron arguments only in Eq. (1). In the present
paper, we will study the solutions for the full kinetic solu-
tion threshold conditions, i.e., we seek solutions for which
$ is strictly real ($=ωR). We proceed as inSt.-Maurice
et al.(2006) by assuming thatωR/kCs and�i/kCs are given
and we solve Eq. (1) for what the shear and drift parameter(
Si=V ′

di/�i=kzζi/ky

)
and(1Vd/Cs= (Vde−Vdi) /Cs) need

to be for different values of the angleθ between the wavevec-
tor and the magnetic field.

3 Results

In this section we study the threshold conditions for insta-
bility using the full kinetic dispersion relation Eq. (1) for a

variety of input parameters. We start by comparing the re-
sults obtained from the fluid dispersion relation (presented in
St.-Maurice et al., 2006) with those obtained using Eq. (1).
We show that under the appropriate input parameters, the
quasi-fluid results are identical to those obtained from the ki-
netic dispersion relation. This requires large enough values
of ωR/kCs.

For the second part of our study, we examine how the tem-
perature ratioTi/Te affects the threshold conditions. To that
goal we use the generalized kinetic dispersion relation so as
to be able to increase the ratio to values of order 1, which
is outside the range for which the quasi-fluid expressions are
valid.

The final part of our study is concerned with the effects of
collisions on the threshold conditions. For temperature ratios
of order 1, we examine the effect on the solution of a change
in the electron to ion collision frequency ratio as well as the
effect of the ion to cyclotron frequency ratio. This allows for
a study of different possible ionospheric regimes.

3.1 Comparing the fluid dispersion relation and the
generalized kinetic dispersion relation under small
Ti/Te ratios

The quasi-fluid expressions that were presented inSt.-
Maurice et al.(2006) were based on large ion arguments and
small electron arguments, which is equivalent, basically, to
having a smallTi/Te ratio. We therefore start our exploration
with a comparison between the quasi-fluid solution and the
kinetic results under vanishingly small values ofTi/Te. This
has the advantage of grounding our study on the somewhat
simpler (and easier to understand) fluid solutions, before em-
barking into more general cases that cannot directly be com-
pared to fluid modes.

In the upper panel of Fig.1, we present the threshold con-
ditions as a function of the magnitude of the relative drift
|1Vd/Cs= (Vdi−Vde) /Cs| and of the ion shearSi=V ′

di/�i .
The results are computed using Eqs. (A1–A5) ofSt.-Maurice
et al. (2006). We use as input�i/kCs=2.0, νe/νi=10.0,
νi/�i=0.01 andTi/Te=10−6. Each curve represents the
solution or threshold values(1Vd/Cs, Si) as the angle,
θ=arctan

(
kz/ky

)
is swept from 0◦ to 90◦ for ωR/kCs=0.02,

0.1, 0.5, 0.9 and 1.01. The y-axis for both panels in Fig.1
represents the threshold values of the ion shear,Si , while
the x-axis represents the corresponding values of the rela-
tive drift, 1Vd/Cs. Each point on the solution curves corre-
sponds to a specific angleθ , between the wavevector and the
magnetic field.

The results presented in the upper panel of Fig.1 are iden-
tical to those presented inSt.-Maurice et al.(2006) (their
Fig. 4) except for the trace corresponding to the lowest value
of ωR/kCs namely,ωR/kCs=0.02. When the complete fluid
dispersion relation is used, as is the case here, we observe
the existence of an additional solution branch for near zero
shears and relative drifts between∼1.5Cs and ∼1000Cs
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Fig. 1. Threshold conditions obtained from the fluid-like dispersion relation using Eqs. (A1–A5) ofSt.-Maurice et al.(2006) (top panel)
and using the full kinetic dispersion relation Eq. (1) (lower panel). Results are presented forωR/kCs=0.02 (dot-line), 0.1 (dashed line),
0.5 (dotted line), 0.9 (dash-dotted line) and 1.01 (solid line) for the collisional case using�i/ (kCs) =2, Ti/Te=10−6, νi/�i=0.01 and
νe/νi=10.0. Red curves in the bottom panel are solutions for which the relative drift never changes signs (crosses zero) as the wave-vector
angles are swept from 0 to 90 degrees.

and a shear variation,Si , varying between 0 and 0.19. The
change in the low frequency solution comes from a contri-
bution from the relative drift, through1Vd/Cs, in Eq. (A.2)
in St.-Maurice et al.(2006). In their study,St.-Maurice et al.
(2006) had neglected this term when computing the thresh-
old conditions. In the present study, we have retained all

terms, including the normally small1Vd/Cs contribution.
Clearly, this contribution is indeed only present at the lowest
frequencies. This is evident from the fact that at higher fre-
quencies, all curves are identical with and without the addi-
tional1Vd/Cs term. Altogether, this agrees, in the end, with
a statement bySt.-Maurice et al.(2006) who wrote that it
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would be best to solve the full fluid dispersion relation when
ωR<0.1kCs.

The lower panel of Fig.1 shows plots of the threshold con-
ditions that were obtained using the generalized kinetic dis-
persion relation Eq. (1) for the same input parameters used
with the fluid dispersion relation in the upper panel. The red
curves shown in the lower panel of Fig.1 come from thresh-
old conditions for which the relative drift never changes sign
(with 1Vd>0 in all cases). As a result, no deep minimum can
be seen in the magnitude of relative drift on our logarithmic
scale, since the relative drift does not go through zero (see
the red curves in the lower panel of Fig.2). The red traces
correspond to what we will call the “upper branch” solutions
of the kinetic dispersion relation. The importance of the ex-
istence of this type of solutions is discussed in more detail
later below.

By comparing the two panels in Fig. 1, we observe that for
large values ofωR/kCs the kinetic and fluid dispersion rela-
tions give identical results for the threshold conditions. The
only exceptions are the traces corresponding to the two low-
est values ofωR/kCs, namely,ωR/kCs=0.02 and 0.1 when
the relative1Vd/Cs is larger than∼50. However, this repre-
sents a high drift (large current density) regime, which is of
less interest to the present work.

We can get another view of the low frequency differences
between the solutions from the full fluid dispersion relation
used here and the low1Vd approximation solution used in
St.-Maurice et al.(2006) by comparing the upper panel of
Fig. 2 with their Fig. 5, both of which show how the magni-
tude of the relative drift changes as a function of the wave-
vector angleθ . Notice that once again, our present fluid re-
sults are shown in the upper panel of Fig.2 while the kinetic
results are shown in the lower panel.

When the upper panel of Fig.2 is compared to Fig. 5 of
St.-Maurice et al.(2006) the most important difference is
the existence of a localized minimum in the relative drift for
ωR/kCs=0.02 at θ∼0.09◦ when the1Vd term is retained
in the computation. The localized minimum in the trace for
ωR/kCs=0.02 in our computation does not appear in Fig. 5
of St.-Maurice et al.(2006). However, all the other curves,
which correspond to larger values ofωR/kCs, are in very
good agreement with those fromSt.-Maurice et al.(2006).

It should be noted that at the angle where the magnitude
of the relative drift is a minimum (specifically, 0.09◦ for the
ωR/kCs=0.02 case), the relative drift changes sign from pos-
itive on the left hand side of the minimum to negative on the
right hand side of the minimum. The presence of this min-
imum continues the trend established at larger frequencies
for a minimum with sign reversal, that goes to increasingly
small values ofθ as the frequency goes down. In addition to
this change of sign through a passage through zero, we no-
tice a cusp in theωR/kCs=0.02 curve near∼1.5◦. Again,
this cusp extends a similar trend seen at higher frequencies.
At that cusp, both the shear and the relative drift change their
signs. This time, however, the reversal in the sign of1Vd is

not done with a passage through 0, but rather through a singu-
larity. While this occurs, we note that the shear changes sign
from positive to negative, thereby indicating that the origin
of the singularity in1Vd is related to the change in sign of
the shear.

When considering the lower panel of Fig.2 we first no-
tice that the kinetic results actually contain two “branches”
of solutions to Eq. (1) for each frequencyωR/kCs. The exis-
tence of the two branches is consistent with results obtained
by Perron(2004), who undertook a morphological study of
the kinetic solutions by plotting the magnitude of Eq. (1) as a
function of shear(Si) and relative drift(1Vd/Cs) for a given
wavevector angle(θ). Perron(2004) showed that for any
given angle there were actually two solutions. One of the so-
lutions coincides with a large positive relative drift for which
we have coined the term “upper branch”, while the second
solution coincides with smaller relative drifts which change
signs and have been labeled here as the “lower branch” so-
lutions. As stated earlier, in order to better differentiate be-
tween the two branches in a graphical sense, we have traced
the “upper branches” in red and the “lower branches” in
black. This color scheme has been used throughout the paper.

In the lower panel of Fig.2 we observe, first of all, that for
large values ofωR/kCs the positions obtained in the min-
ima of the magnitude of1Vd (sign reversals) using the ki-
netic dispersion relation are usually in excellent agreement
with those found using the fluid dispersion relation (upper
panel) as well as with those presented bySt.-Maurice et al.
(2006) in their Fig. 5. The only exceptions are seen in the
traces corresponding to the two lowest frequencies, namely,
ωR/kCs=0.02 and 0.1. For both of these traces, the min-
ima have been shifted towards the left, that is, to smaller
wave-vector angles for the kinetic case compared to the fluid
case. For example, forωR/kCs=0.02, the minimum is at
∼0.09◦ for the fluid case while it is closer to 0.02◦ for the
kinetic case. In addition, it should be noted that all of the
upper branches, shown in red, correspond to positive drifts,
1Vd/Cs>0. For the lower branches, shown in black, positive
drifts, 1Vd/Cs>0, are found on the left of the minima while
negative drifts,1Vd/Cs<0, are found on the right of each ab-
solute values minima shown in Fig.2. Interestingly enough,
the angles at which the black traces (lower branch) intercept
the red traces (upper branch) for any given frequency always
coincide with the location of the cusp (singularity in1Vd)
that appear in the fluid case. The singularity found in the
fluid case is therefore an artifact and is replaced in the ki-
netic dispersion relation by a crossover between two families
of solutions.

We can, in the end, summarize our comparison of solu-
tions under lowTi/Te conditions as follows: first, we have
to be aware of the fact that at low frequencies, there is
a non-negligible contribution from1Vd that only matters
at the lower frequencies but nevertheless allows the fluid
modes to continue to have a sign reversal in1Vd at a well
defined angle, which is close to perpendicularity at small
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Fig. 2. Relative drift as a function of wavevector angle for the cases described in Fig.1. The angle is 0◦ when the angle is perpendicular to
B and 90◦ when parallel to it. The line scheme is the same as in Fig.1.

frequencies. The small1Vd contribution was not consid-
ered bySt.-Maurice et al.(2006). Only frequencies such that
ωR/kCs<0.1 are affected by this correction. Secondly, we
find that the kinetic solution has two branches of solutions.
The branch that corresponds to smaller values of1Vd and
undergoes a sign reversal at a particular wave-vector angle is
in excellent agreement with the quasi-fluid solutions in the
region of the reversal. One exception occurs, once again at
smaller frequencies, where the angle obtained from the ki-

netic solution is detectably smaller than the angle from fluid
theory (this stated, however, both angles are very close to
perpendicularity to the magnetic field anyway). At wave-
vector angles that are greater than the angle for1Vd reversal,
there is a cross-over between the two kinetic solutions. The
cross-over occurs at a point where the fluid solutions hit an
artificial singularity in1Vd. At angles that are beyond the
cross over point the fluid solutions move from agreeing with
the lower kinetic branch to agreeing with the upper branch
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kinetic solution. However, all these features involve ratios
|1Vd/Cs| of order 100 or more, at least for the situations
that we have considered. Since we are interested mostly in
threshold associated with relatively low ratios of|1Vd/Cs|,
we can conclude that the fluid solutions are valid where it
counts the most, namely, in regions where the relative drifts
reach their lowest values. At small values ofTi/Te we can
therefore use the fluid results with confidence, at least when
the frequency is large enough, which in our case corresponds
to ωR/kCs>0.1.

3.2 Kinetic results for larger values ofTi/Te

In Fig. 3 we present the threshold solutions to Eq. (1) as the
temperature ratioτ=Ti/Te increases from 0.01 (top panel)
to 1.0 (bottom panel). We have used the same input values
as in Fig.1 for the other parameters. As the temperature ra-
tio τ increases, Fig.3 clearly shows that the threshold curves
begin to deviate significantly from those that were presented
in Fig. 1 of the previous section: the red traces or the “up-
per branch” solutions begin to move towards the right, i.e.,
towards larger relative drifts for all values ofωR/kCs asτ

increases from 0.01 to 1.0. On the other hand, the black
traces or “lower branch” solutions remain relatively station-
ary while the temperature ratio increases. In that sense, the
“lower branch” solutions are relatively insensitive to the tem-
perature ratioτ .

We remind the reader that all of the “upper branch” solu-
tions shown in red in Fig.3 are associated with strictly pos-
itive values of the relative drift1Vd. The “lower branch”
solutions, shown in black, exhibit increases inSi with |1Vd|

and are associated with values of1Vd that are relatively
small in magnitude and change signs at some value of the
angle of the wave-vector.

An easy conclusion that can be drawn from Fig.3 is that
as the temperature ratio increases, the shears required for
plasma destabilization can be quite small near zero frequen-
cies while the relative drift requirement can remain relatively
modest in these cases. This can be seen by the nearly hor-
izontal black traces forωR=0.1kCs and 0.02kCs nearSi≈0
for all the temperature ratios presented. In addition, much as
was the case for small temperature ratios, the traces in Fig.3
demonstrate that the threshold requirements on the magni-
tude of Vd are small to negligible only for a very narrow
range of anglesθ . This observation is, however, easier to
make if we use Fig.4, which shows how the relative drift
changes with the angle of the wavevector. As with Fig.3, the
temperature ratioτ increases from 0.01 in the top left panel
to 1.0 in the lower right panel.

We also observe from Fig.4 that asτ increases, the “up-
per branch” solutions (red traces) systematically move up-
ward towards larger values of the relative drift. The “lower
branch” solutions on the other hand, stay relatively station-
ary with increasing temperature ratiosτ . As the black traces
in Fig. 4 clearly demonstrate, the threshold condition on the

magnitude of the relative drift are only lowered for very nar-
row ranges of the angleθ for any given frequency. This is
shown in Fig.4 through deep minima in the traces of the rel-
ative drift as a function of angle. The relative drift1Vd is
negative on the right side of all the absolute values minima
shown in Fig.4 while 1Vd is positive on the left side of the
minima.

As τ increases, the threshold lowering can be considered
to be a resonant condition since the angular requirement on
the direction of the wavevector is so specific. For example,
whenωR=0.9kCs the relative drift can be quite modest when
the angle is of the order of 15–20◦ but the requirement on the
shear is that is has to be larger than 1.0 (see Fig.5). On the
other hand, whenωR=0.02kCs andτ=1.0, the relative drift
has a minimum value atθ∼0.03◦ corresponding to a shear on
the order of 0.002–0.003 (see bottom right panel of Fig.5).

As just alluded to, Fig.5 shows how the shear changes as
a function of angle for the near zeroVd cases described in
Figs.3 and4. In this figure we have only plotted the “lower
branch” solutions because the “upper branch” solutions are
for much larger relative drifts. The first thing to notice is that
the traces do not vary much withτ except for a small system-
atic shift of all traces towards the left or equivalently, toward
smaller angles asτ increases. Another point to keep in mind
is that, at least for the cases studied here, the plasma is un-
stable to “small” shears (|Si |<0.05) only when the angle of
the wave-vector is within 1 degree of perpendicularity to the
magnetic field. We are led to conclude that the most unstable
situations whenTi/Te is greater than 0.1 are those for which
the modes are very nearly perpendicular to the magnetic field
and approach zero frequency. These results are highly rem-
iniscent of theBasu and Coppi(1989) work. For situations
where the wave-vector deviates measurably from perpendic-
ularity while maintaining a small drift requirement, we find
that the shears have to be of the order of 0.2. This, however,
cannot be considered to be an “infinitesimal” shear. In that
case, on the other hand, the frequency could be of orderkCs.

3.3 Effects associated with changing collision
frequencies

We have examined the effect of collisions on threshold con-
ditions using the kinetic dispersion relation Eq. (1). We
have first examined the role played by the ratioνe/νi on
the threshold conditions. Using the reasonable assumption
that the collision frequency in the BGK model is representa-
tive of the momentum transfer collision frequency, and using
electron-ion collisions and ion-neutral collisions for F-region
applications, the ratioνe/νi then becomes proportional to
(ne/nO) T

−3/2
e /

√
(Ti+Tn) for a background atomic oxygen

atmosphere, wherenO is the atomic oxygen density (Schunk
and Nagy, 2000). Thus, a study of the effect ofνe/νi in the F-
region context becomes equivalent to studying the influence
of the plasma density and electron temperature.
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Fig. 3. Threshold conditions obtained using the kinetic dispersion relation Eq. (1) for Ti/Te=0.01 top panel,Ti/Te=0.1 second panel,
Ti/Te=0.5 third panel andTi/Te=1.0 bottom panel. The red traces correspond to the upper branches solutions of the threshold conditions
that are shown in Fig.4. The line scheme is the same as in Fig.1.

The results of our collision frequency ratio study are
shown in Fig.6 where the top panel shows how the thresh-
old condition changes with shearSi and the absolute value
of the relative drift|1Vd/Cs| whenτ=1.0, νi/�i=0.01 and
νe/νi=100. We have used the same frequency range as in

Figs. 1–5. Likewise, in similar fashion to previous figures,
the lower left panel of Fig.6 shows how the absolute value
of the relative drift changes withθ while the lower right panel
shows how the absolute value of the shear changes as a func-
tion of aspect angle.
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Fig. 4. Relative drift as a function of wavevector angle for the case described in Fig.3. The angle is 0◦ when the angle is perpendicular toB
and 90◦ when parallel to it. The line scheme is the same as in Fig.1.

When we compare the top panel of Fig.6 with the bot-
tom panel of Fig.3, we observe very little differences be-
tween the figures. The same thing can be said of the com-
parison between the lower left panel of Fig.6 with the lower
right panel of Fig.4. The only differences are that when the
value of νe/νi is increased, the minima forωR/kCs=0.02
and 0.1 move towards the right or to larger aspect angles
while the minima forωR/kCs>0.1 remain relatively station-
ary. For example, whenνe/νi=10.0 andτ=1.0 the mini-
mum in the relative drift forωR=0.02 is located atθ∼0.03◦

which corresponds to a shear ofSi∼0.002. Whenνe/νi is
increased to 100.0 while keeping all the other parameters
the same, the minimum in the relative drift forωR=0.02
is located atθ∼0.1◦ corresponding to a shear magnitude
|Si |∼0.005−0.006. From these results we can conclude that
changingνe/νi by one order of magnitude from 10 to 100
does not significantly affect the solutions, at least for our
choice of the other parameters.

Finally, in order to more clearly illustrate the impact of the
collision frequency on the threshold conditions in the kinetic
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Fig. 5. Velocity shear as a function of wavevector angle for the case described in Fig.3. The angle is 0◦ when the angle is perpendicular to
B and 90◦ when parallel to it. The line scheme is the same as in Fig.1.

regime, we have also decreased the ion collision frequency
by one order of magnitude for the caseτ=0.1, while main-
taining all other variables the same. The results of the cal-
culations are shown in Fig.7, using the same format as in
Fig. 6. Figure7 confirms the trends that could be inferred al-
ready in the fluid limit, in theSt.-Maurice et al.(2006) study.
First of all, the small frequency ion shear driven instabil-
ity modes associated with the “lower branch” solutions be-
come more difficult to excite, in that they all require stronger
to much stronger shears to be created under the constraint

|1VD|�Cs . This can be seen by the fact that in Fig.7
we now see theωR=0.1kCs modes excited with weak rel-
ative drifts if the shears are of the order of 0.1; meanwhile,
the higher frequency modes have not yet gone through the
resonance whenSi=1. This contrasts with Fig.3 where
the required shears were much smaller at all frequencies.
These results are consistent with the analysis presented by
St.-Maurice et al.(2006) which showed that the shear modes
can only be excited in the presence of collisions in the fluid
regime.
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Fig. 6. Threshold conditions forνe/νi=100.0 andτ=1.0 using the generalized kinetic dispersion relation. The top panel shows the shear
Si versus the relative drift1Vd/Cs. The bottom left panel shows the relative drift as a function of angle. The bottom right panel shows the
velocity shear as a function of angle. The line scheme is the same as in Fig.1.

The second feature that we can notice from Fig.7 is that,
for a given value ofωR/kCs the “upper branch” modes are,
by contrast to the small frequency ion shear driven modes,
easier to excite in terms of|1VD|/Cs . This is particularly
true for shears near zero or negative. Again, we stress that
these results are entirely consistent with the analysis pre-
sented bySt.-Maurice et al.(2006) who contrasted a zero col-
lision frequency case to the caseνe/νi=10 andνi/�i=0.01
that we have also used here as our benchmark.

4 Discussion and conclusions

We have seen that, much like in the fluid limit considered
by St.-Maurice et al.(2006), there are two classes of solu-
tions: the first one is found at small frequencies, with nearly
perpendicular wave-vectors that are very sensitive to shears
(lower branch solutions). The second one deals with frequen-
cies much closer tokCs, and the modes have more substantial
deviations from perpendicularity, greater sensitivity to drifts
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Fig. 7. Same as Fig.6, but forνi/�i=0.001,νe/νi = 10.0 andτ = 0.1.

and less sensitivity to shears. Based on the analysis presented
in St.-Maurice et al.(2006) it is clear that the first class is
essentially the small frequency ion shear driven instability
analyzed first byBasu and Coppi(1989). The second class
is more closely related to the streaming instability discussed
initially by Kindel and Kennel(1971) in that it is much less
sensitive to shears than the first.

In the present work we have explored the kinetic solution
to the dispersion relation, meaning that we were not limited
to smallTi/Te ratios, among other things. We have found
that the temperature ratio did not produce any surprise. Thus,

just like for the fluid case, forνi/�i of order 0.01, the easi-
est modes to excite still had low frequencies (ωR�kCs) and
were within one degree of perpendicularity to the magnetic
field. Such modes require relatively small current densities
(relative drifts less than the ion acoustic speed) and shears
|Si |=|V ′

di/�i | that can be as small as 10−3. We have found
that these modes did not depend strongly on the ratioTi/Te
or on the ratioνe/νi . They are nevertheless somewhat easier
to excite with smaller values ofTi/Te.

We have found that modes with relative drifts less than the
ion-acoustic speed and frequencies of the order ofkCs can
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nevertheless be excited if the shears are increased. For what
we have called the “lower branch” solutions, we have found
that deviations from perpendicularity that could be as large
as 10◦ or more can happen in this case, provided the shear
parameter|Si | reaches a value of the order of 0.2. These,
however, are not the kinds of infinitesimal shears that were
discussed in the collision-free work ofGavrishchaka et al.
(1998), and such shears seem unlikely: for instance, with
1 km/s peak ion drifts along the magnetic field and O+ ions,
|Si |=0.2 would imply a horizontal shear scale of the order of
20 m. In view of various observations of ion outflows in what
appear to be intense current regions (Kagan and St.-Maurice,
2005) and of the simulations performed byNoël et al.(2000,
2005), this scale would appear to be smaller than what might
be possible by roughly one order of magnitude. However, if
even relatively modest parallel current densities are allowed
to flow, with Vde of the order of, say, 5Cs to 10Cs, the re-
quirement for the shears does go down, as seen in Figs. 1 and
3 and some of our other panels. We could therefore expect
modes with frequencies of the order of 0.5kCs and wave-
vectors at an angle 5◦ to 10◦ away from perpendicularity to
the magnetic field to be excited in “type-2” ion outflow re-
gions, where intense parallel currents also appear to be ob-
served, this near the edges of auroral arcs.

The above may have practical applications to radar obser-
vations of irregularities in the vicinity of intense parallel cur-
rent regions near the edge of arcs. However, we should note
that the excited modes that we have discussed thus far are
nearly perpendicular to the magnetic field and favor lower
frequencies. The excited modes would therefore be seen as
essentially field-aligned and drifting with the plasma. Radars
in the SuperDARN network are particularly well suited to
catch these kinds of echoes. Horizontally narrow regions of
ion outflow might, for these radars, therefore be seen as local-
ized regions of strong radar echoes in the vicinity of intense
velocity shears (where parallel current densities and possi-
bly type-2 ion outflows are most likely to be found). Still, it
has also been suggested that strong ion acoustic echoes oc-
casionally observed with incoherent scatter radars along the
magnetic field direction (or close to it) in the F-region are
produced by localized intense parallel current densities (see
Sedgemore-Schelthess and St.-Maurice, 2001, for a review).
The interest of the present work is to see if in the presence
of ion outflows and associated shears we could obtain a de-
crease in the threshold conditions for this kind of observation
geometry. In our figures this geometry coincides to solutions
with large anglesθ , all of which belong to the “upper branch”
of our solutions. These solutions are, however, largely inde-
pendent of the shears for our collisional solutions. As a spe-
cific example, consider the upper branch trace forωR=kCs in
Fig. 3 in the second panel from the top: the shears only play
a minor role in changing the threshold value while Fig. 4
indicates that for this family of solutions the angles are all
fairly closely aligned with the magnetic field direction. In
other words, in our solutions, the factor that most clearly fa-

cilitates the trigger of an instability is the temperature ratio
Ti/Te: the lower this ratio is, the easier it is to trigger an in-
stability. While there is nothing new to this result, we wish
to simply emphasize here that shears do not play a significant
role in lowering the threshold for this geometry, at least for
the cases that we have studied here.

Finally, while we have focussed here on F-region applica-
tions, we should stress that our study should also be relevant
to laboratory studies of shear-driven instabilities. In particu-
lar, Agrimson et al.(2001) demonstrated that shears clearly
played a role in decreasing the threshold speed conditions in
terms of|1Vd|. Although the authors did not give enough
information about the collision frequencies in their system,
we note that their shear parameterSi was of order−1. As
seen by a comparison between the top panel of Fig. 7 and
the second panel from the top in Fig. 3, the threshold speeds
in the regionSi→−1 are rather sensitive to the collision fre-
quency for what we’ve called here the “upper branch” modes.
This stated, is should be clear from the comparison between
Fig. 7 and Fig. 3 that for sufficiently small values ofνi/�i
the shears should indeed play a major role in significantly
lowering the threshold speed.

In summary, while we can confirm that shears play an
important role in lowering the threshold relative drift, col-
lisions act to strongly favor the excitation of low frequency
modes with wave-vectors very nearly perpendicular to the
magnetic field. Collisions also strongly hinder the produc-
tion by shears of modes with frequencies of the order ofkCs.
Such modes remain nevertheless possible in the ionosphere
in view of the fact that strong ion outflow regions appear to
coexist with regions of fairly intense parallel current den-
sities at high latitudes. However, it would appear that the
shears are relatively small so that these modes should be fa-
voring wave-vectors that are rather close to perpendicularity
to the magnetic field; at least for the calculations that we have
carried out, the shears have very little impact on the thresh-
old conditions of modes with wave-vectors closely aligned
with the magnetic field direction for conditions that would
be expected in the F-region ionosphere.
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Noël, J.-M. A., St.-Maurice, J.-P., and Blelly, P.-L.: The effect of E-
region wave heating on electrodynamical structures, Ann. Geo-
phys., 23, 2081–2094, 2005,
http://www.ann-geophys.net/23/2081/2005/.

Ossakow, S. L. and Chaturvedi, P. K.: Current convective instability
in the diffuse aurora, Geophys. Res. Lett., 6, 332–334, 1979.

Perron, P. J. G.: Shear and current driven electrostatic instability
in a collisional ionosphere, Master’s thesis, The Royal Military
College of Canada, P.O. Box 17000 Station Forces, Kingston,
ON K7K 7B4, 2004.

Rother, M., Schlegel, K., and Lühr, H.: CHAMP observation of
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