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Abstract. Characteristics of small amplitude plane waves
within the medium separated by the plane discontinuity into
two half spaces are analysed. The approximation of the
ideal one-fluid magnetohydrodynamics (MHD) is used. The
discontinuities with the nonzero mass flux across them are
mainly examined. These are fast or slow shock waves and
rotational discontinuities. The dispersion equation for MHD
waves within each of half space is obtained in the reference
frame connected with the discontinuity surface. The solution
of this equation permits one to determine the wave vectors
versus the parametercp, which is the phase velocity of sur-
face discontinuity oscillations. This value ofcp is common
for all MHD waves and determined by an incident wave or
by spontaneous oscillations of the discontinuity surface. The
main purpose of the study is a detailed analysis of the dis-
persion equation solution. This analysis let us draw the fol-
lowing conclusions. (I) For a givencp, ahead or behind a
discontinuity at most, one diverging wave can transform to a
surface wave damping when moving away from the discon-
tinuity. The surface wave can be a fast one or, in rare cases,
a slow, magnetoacoustic one. The entropy and Alfvén waves
always remain in a usual homogeneous mode. (II) For cer-
tain values ofcp and parameters of the discontinuity behind
the front of the fast shock wave, there can be four slow mag-
netoacoustic waves, satisfying the dispersion equation, and
none of the fast magnetoacoustic waves. In this case, one
of the four slow magnetoacoustic waves is incident on the
fast shock wave from the side of a compressed medium. It
is shown that its existence does not contradict the conditions
of the evolutionarity of MHD shock waves. The four slow
magnetoacoustic waves, satisfying the dispersion equation,
can also exist from either side of a slow shock wave or ro-
tational discontinuity. (III) The expressions determining the
polarisation of the MHD waves are derived in the reference
frame connected with the discontinuity surface. This form of
presentation is much more convenient in investigating the in-
teraction of small perturbations with MHD discontinuities. It
is shown that the perturbations of the velocity and magnetic
field associated with the surface magnetoacoustic wave have
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the elliptic polarisation. Usually the planes of polarisation
for the perturbations of the velocity and magnetic field are
not coincident with each other.
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1 Introduction

The problem of the interaction of small perturbations with
plane magnetohydrodynamic (MHD) discontinuities through
which there is a mass flux is of great scientific interest. The
discontinuities can be both fast or slow shock waves, as
well as rotational discontinuities. To our knowledge, the
problem was formulated for the first time in 1959 (Kon-
torovich (1959)). But despite its rather long history, it is
still far from a complete solution. In addition to its ba-
sic significance, the problem is also of considerable applied
importance. Here we refer to only one example concern-
ing solar-terrestrial coupling. Numerous fluctuations exist-
ing in the plasma and magnetic field of the solar wind en-
ter into the Earth’s magnetosphere, crossing the bow shock
(which is a fast shock wave), magnetosheath, and magne-
topause. The latter is typically presented either by a rota-
tional or tangential discontinuity, depending on whether the
magnetosphere is open or closed (e.g. Kwok and Lee (1984);
Bauer et al. (2001)).

The problem of the interaction of small perturbations with
plane discontinuity may be conventionally divided into two
closely related problems. First is the theoretical investiga-
tion of the corrugated instability of a discontinuity. Under
certain conditions the amplitude of a perturbation, sponta-
neously arising on the surface of a discontinuity, may start
growing exponentially. Such growth may result in the vio-
lation of the initial conditions of flow. D’yakov (1954) and
Kontorovich (1957) found the conditions of the corrugated
instability of shock waves in the usual (non-magnetic) hy-
drodynamics. They showed that there are two types of insta-
bilities: the absolute one and relative one. Under the absolute
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instability the amplitude of the ripples grows unrestrictively
(certainly, within the linear approximation). Under the rel-
ative instability, the shock surface spontaneously emits an
outcoming sound and entropy-vorticity waves. In this case
the perturbations may exist for an arbitrarily long time with-
out attenuation or amplification. The physical meaning of
this type of instability remained mysterious for a long time.
It became possible to succeed in achieving the progress only
quite recently (Kuznetsov (1989)). Both types of instability
can be realised only with a rather “exotic” shape of the shock
adiabatic curves. This is the reason why the corrugated insta-
bility of hydrodynamic shock waves (to our knowledge) has
not been observed experimentally. Generally, it is extremely
difficult to carry out an analytical investigation of the cor-
rugated instability of MHD discontinuity. The stability of
MHD shock waves was analysed only in a special case of a
parallel shock wave, when the external magnetic field is or-
thogonal to the front of the discontinuity. As shown by Gard-
ner and Kruskal (1964), the conditions of absolute instability
of the fast parallel MHD shock wave and a hydrodynamic
shock wave are coincident. Pimenov (1982) investigated the
possibility of spontaneous emission of MHD waves by the
parallel shock. In particular, he has shown that in a suffi-
ciently strong external magnetic field, the spontaneous emis-
sion of MHD waves by a fast parallel MHD shock wave may
occur even in perfect gas. Lyubchich and Pudovkin (2003)
investigated numerically the relative instability of a shock
wave in perfect gas for the oblique magnetic field. The prob-
lem of absolute instability of a shock wave in the oblique
magnetic field is still to be solved. We could not find articles
analysing the corrugated stability of rotational discontinuity
either.

The second problem is the investigation of the interac-
tion of an MHD discontinuity with an incident wave of
small amplitude. Lee (1982) studied analytically the pas-
sage of Alfv́en waves through a coplanar rotational discon-
tinuity. The chosen model of the coplanar rotational dis-
continuity (the tangential component of the magnetic field
turns by 180◦) strongly simplified the solution of the prob-
lem, but it was extremely idealised. Kwok and Lee (1984)
performed detailed numerical calculations of transformation
coefficients for MHD waves of different types and arbitrary
rotational discontinuity. From their calculations it follows
that sometimes the amplitudes of the refracted and reflected
waves undergo strong amplification that could indicate a pos-
sible destabilising of the rotational discontinuity with re-
spect to spontaneously emanating MHD waves. These re-
sults are often addressed in the explanation of the high level
of turbulence in the magnetosheath, as well as in study-
ing the correlation of fluctuations in the solar wind, magne-
tosheath and the Earth’s magnetosphere (for example, Kessel
et al. (2004)). Kwok and Lee (1984) considered only some of
the possible orientations of the propagation vector of an inci-
dent wave, having limited the consideration by the analysis of
relatively small incident angles. Unfortunately, the correct-
ness of the numerical results of Kwok and Lee (1984) seems
doubtful. From their calculations it follows that an Alfvén or

magnetoacoustic wave incident on a rotational discontinuity
gives rise to all theoretically possible emanating waves, in-
cluding the entropy wave of nonzero amplitude. However, it
contradicts basic physics. Indeed, all thermodynamic quan-
tities, including both pressureP and densityρ, are continu-
ous across a rotational discontinuity. As a consequence, the
sound speedcs should be continuous, too. Besides, it can be
easily shown, that pressure and density variations, travelling
with the MHD waves, do not undergo a jump on a rotational
discontinuity, i.e.δP1=δP2 andδρ1=δρ2. As is known, the
pressure variations are associated only with the magnetoa-
coustic waves (δP=δPmag.w.). The density variations are
associated with both magnetoacoustic waves and the entropy
wave, i.e.δρ=δPmag.w.

/
c2
s+δρe, whereδρe is the amplitude

of the entropy wave. The entropy wave is a wave incident
on a rotational discontinuity in the upstream region (side 1)
and a diverging wave in the downstream region (side 2). As
a result, we obtain two boundary conditions:

δPmag.w.1=δPmag.w.2

δPmag.w.1

c2
s

+δρine1=
δPmag.w.2

c2
s

+δρdive2 ,

from which it immediately follows thatδρine1=δρ
div
e2 . Thus, if

there is an incident entropy wave, it passes through the rota-
tional discontinuity without changing its amplitude, with the
generation of diverging waves of other types, in principle, be-
ing possible. If there is no incident entropy wave, there will
be no emanating entropy wave, that isδρdive2 =0. The results
of Kwok and Lee (1984) are in conflict with this require-
ment. The authors have presented only numerical results.
They did not considering some special cases for which an an-
alytical solution is available. Therefore, it is difficult to spec-
ify where Kwok and Lee (1984) made a mistake. Lubchich
and Pudovkin (1999) investigated the transmission of a fast
magnetoacoustic wave through a rotational discontinuity. In
contrast to the results of Kwok and Lee (1984), it has been
found that the perturbations behind the front lead to a small
amplification. Thereby, for the perturbation of solar-wind
origin, the rotational discontinuity is not a significant barrier.

The investigation of the transformation of MHD waves
on a shock wave is a complex problem because of intricate
computations. Therefore, in its consideration the following
two approaches are used. One consists of stating a gen-
eral scheme of the solution without any particular calcula-
tions (Kontorovich (1959), McKenzie and Westphal (1970)).
The other approach includes using some simplifying assump-
tions, allowing one to find an analytical solution. Some-
times a parallel shock wave is considered. The problem
of the transmission of Alfv́en waves through a shock wave
was solved by McKenzie and Westphal (1969). They con-
sidered a special case when the wave vector of the incident
wave, external magnetic field and normal to the shock lie in
the same plane. In this case there are only two diverging
Alfv én waves whose amplitudes were found. The problem
was solved both for fast and slow shock waves. Scholer
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and Belcher (1971) studied the effect of the finite ampli-
tude Alfvén waves on fast shock waves for the same orien-
tation of vectors. The solution to the problem of the inter-
action of magnetoacoustic and entropy waves with a parallel
shock wave was given by Westphal and McKenzie (1969).
The approximation of a strong shock wave was also used
when ahead of the shock the Mach and Alfvén numbers were
much greater than unity. Hassam (1978) investigated analyt-
ically the incidence of Alfv́en waves with the propagation
vector parallel to the external magnetic field, on a strong
shock wave. Pudovkin and Lyubchich (1989a) have calcu-
lated numerically the coefficients of transformation for arbi-
trarily directed Alfv́en waves, incident upon a strong shock
wave. Nearly everywhere (except for the paper by McKen-
zie and Westphal (1969)) the consideration was restricted by
relatively small incident angles. Thus, in the case of a strong
shock wave the incident angles considered make about 2/3 of
the theoretically possible value.

Generally, the incidence of a wave on a shock results in
arising shock surface oscillations (except for a special ge-
ometry of the problem considered in the paper of McKen-
zie and Westphal (1969)). The boundary conditions should
be met on the perturbed (oscillating) surface of the shock
wave. The characteristics of the medium in the local refer-
ence frame connected with the perturbed shock surface will
differ from the corresponding characteristics in the reference
frame connected with the stationary nonperturbed disconti-
nuity. This difference, caused by transition from one refer-
ence frame to the other, will be proportional to the amplitude
of the surface oscillations. The amplitude of the surface os-
cillations is one of the unknown quantities of the problem,
along with the amplitudes of the waves diverging from the
shock. In the above-mentioned works it is assumed that the
transition between the reference frames is completely deter-
mined by two effects, that is, the additional velocity of the
perturbed shock surface and the change in the direction of
the normal to the perturbed shock surface. Lubchich and Pu-
dovkin (2004) have shown that such a description is incom-
plete and, consequently, gives rise to erroneous results. In
fact, it is necessary to take into account one more effect as-
sociated with the noninertiality of the local reference frame.
The transition into the noninertial frame corresponds to the
emergence of an inertial force field and additional pressure,
applied on a perturbed shock surface. The physical ground
of the inertial force appearance is nonideality of the medium
inside the thin front of a real shock wave. This effect es-
sentially influences the solutions of the problems on incident
wave interaction with a shock wave and on the conditions
of shock stability. Lubchich and Pudovkin (2004) consid-
ered a hydrodynamic problem. But the same effect should
be taken into account in magnetic hydrodynamics, as well.
If the conclusion of Lubchich and Pudovkin (2004) is cor-
rect, then the results of many of the above-mentioned works
need to be revised. The exception is the work of McKenzie
and Westphal (1969), where the shock surface oscillations
do not emerge. The influence of additional pressure on the
passage of the MHD waves through a perpendicular shock

wave for the tangential component of the wave vectors being
perpendicular to the external magnetic field, was studied by
Lubchich and Pudovkin (1998).

The important interest represents the study of the interac-
tion of the turbulence with a shock wave. Zank et al. (2002)
have performed a self-consistent analysis of such an inter-
action by considering the influence of the turbulence on the
mean characteristics of the medium. In particular, the mean
shock speed was found to increase with increasing levels of
upstream turbulence. Correspondingly, the efficiency of the
upstream turbulence amplification by the shock decreased.
The implication of this result is that the energy in upstream
turbulent fluctuations, while being amplified at the shock,
is also being converted into mean flow energy downstream.
Hence, from the self-consistent analysis it follows that the
study of the interaction of an incident perturbation with a
shock wave in the linear approximation will tend to overes-
timate the levels of downstream turbulence. Unfortunately,
the investigation has been limited by a hydrodynamic case,
that is, the influence of a magnetic field was not considered.

From the above information it is clear that in the problem
of the interaction of small perturbations with MHD disconti-
nuities there are still many unsolved important points. Fur-
thermore, some of the obtained solutions presumably need a
revision. To meet this need, it seems useful to analyse in de-
tail the properties of MHD waves in the half space limited by
the front of the MHD discontinuity. Our paper presents such
an analysis.

In the next section the various methods of the determina-
tion of the propagation direction for waves emanating from
MHD discontinuity will be considered. After critical analy-
sis a “well-behaved” method will be chosen.

In Sect. 3 within the chosen method we will analyse the
properties of magnetoacoustic waves. In particular, we will
define how many of the magnetoacoustic waves satisfying
Snell’s law can become the surface waves which damp when
moving away from the discontinuity. A mutual orientation
of wave vectors of all possible modes from the two sides of
a fast shock wave will be investigated in detail.

In Sect. 4 it will be shown that under certain conditions
behind the front of a fast shock wave four homogeneous slow
magnetoacoustic waves satisfying Snell’s law can propagate
and any fast magnetoacoustic waves cannot propagate. We
will state the favourable conditions for the realisation of such
“exotic” cases. Also, it will be analyse as to how such a
situation is related to the conditions of the evolutionarity of
MHD shock waves.

Usually the problems of the interaction of small perturba-
tions with discontinuities are treated in the reference frame
connected to the plane discontinuity. On the contrary, the
properties of MHD waves (their polarisation, dispersion re-
lations, etc.) are determined in the reference frame in which
plasma does not have any mass velocity. This complicates
the solution to the problems. Therefore, in Sect. 5 we will
obtain a set of equations for the amplitudes of the perturba-
tions of speed, magnetic field, density and pressure in the
MHD waves in the reference frame connected to the plane
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discontinuity. By using these equations we will determine
the polarisation of the magnetoacoustic wave when it is a
surface wave.

In the final section we will summarise the results obtained
and discuss some of their implications.

2 The dispersion relation for MHD waves in the
medium with a plane boundary

The equations of one-fluid ideal magnetohydrodynamics are
used to describe the medium. It means that we neglect all
dissipative effects (the viscosity and heat conductivity are in-
finitesimals and electroconductivity is infinitely large). We
assume that the medium is divided by the plane MHD dis-
continuity into two half spaces. The discontinuity can be a
fast or slow shock wave or rotational discontinuity. It means,
that there is a nonzero mass flux through the surface. In this
paper the property of MHD waves will be analysed in each
of the half spaces.

We consider it necessary to keep in mind the general
method of the solution for the problems of the interaction
of small perturbations with MHD discontinuities. We will
do this by choosing the investigation of the transformation of
plane MHD waves on the plane discontinuity, as an example.
This problem is usually investigated by the method of pertur-
bations. The solution is accomplished in several stages.

1. The complete set of differential MHD equations deter-
mines all possible types of linear MHD waves and their
characteristics in both semi-space.

2. The system of MHD boundary conditions, including the
conservation laws of the mass flux, momentum flux,
energy flux, as well as the conditions of the continu-
ity of the normal magnetic field and tangential electric
field, should be satisfied on the discontinuity. The un-
perturbed boundary conditions determine the possible
types of the plane MHD discontinuities and the rela-
tion between the background quantities on both sides
of the discontinuity. The first order perturbations in the
boundary conditions yields the relation of the variations
of various quantities (the magnetic field, fluid velocity,
fluid density, etc.) on two sides of the discontinuity.

3. Variations of all quantities on the two sides of the dis-
continuity are expressed in terms of amplitudes and
propagation angles of the incident wave and all theo-
retically possible emanating waves, including the am-
plitude of fluctuations of discontinuity speed.

4. The propagation angles of diverging waves are related
to the direction of the propagation of an incident wave
through Snell’s law, following from the conditions of
continuity of the wave frequencies (in the reference sys-
tem connected to the unperturbed discontinuity) and
tangential components of the wave vectors. Note that
the conditions of continuity of these two quantities stem

exclusively from the assumed smallness of the ampli-
tudes of all waves and do not depend on a specific set
of equations or a particular task (e.g. Landau and Lif-
shits (1986)).

5. The perturbed boundary conditions are expressed in
terms of the amplitude of an incident wave which is as-
sumed to be given, and the unknown amplitudes of em-
anating waves. After some algebra we obtain a system
of linear non homogeneous equations. Having solved
this system, the amplitudes of all diverging waves can
be obtained.

In this section we consider methods which can be used to
determine the propagation angles of diverging waves depend-
ing on the parametercp, which is the phase velocity of sur-
face discontinuity oscillations. This parameter is set either by
the incident wave or by spontaneously emerging fluctuations
of the discontinuity surface. The reference frame connected
to the unperturbed discontinuity surface is used in the anal-
ysis. TheX-axis is chosen in the downstream direction and
normally to the discontinuity surface. TheY -axis is directed
along the component of the wave vectors tangential to the
discontinuity. TheZ-axis lies in the plane of discontinuity;
the orthogonal right-hand coordinate system is used. In this
coordinate system the propagation vectors of all waves to be
investigated lie in the planeZ=0.

Usually one of the following two methods of determining
the propagation direction for emanating MHD waves, de-
pending on the property of the incident wave, is used, yet
both of them have essential drawbacks. One is based on the
graphic analysis of Friedrichs’ diagram, expressing a depen-
dence of phase velocity and group velocity of MHD waves
on the polar angle between the wave vector and the exter-
nal magnetic field (Kontorovich (1959), McKenzie and West-
phal (1970), Westphal and McKenzie (1969)). The method
has poor accuracy and is inconvenient for use in computa-
tions. Besides, it cannot be applied at a sufficiently large
value of the tangential component of the wave vector when
behind the discontinuity, the emanating fast magnetoacous-
tic wave is a surface wave. The other method is based on the
Doppler effect (Lee (1982), Westphal and McKenzie (1969),
Hassam (1978)). We describe it when it is applied to the
transmission of MHD waves through a fast shock wave. The
conditions of the continuity of the frequencyω and the tan-
gential component of the wave vectorky on the unperturbed
shock may be written in the form

cp≡
ωin

kin· sinλin
=

ωd

kd · sinλd
, (1)

where the subscriptsin andd refer to the incident and di-
verging waves, respectively;λ is the angle between the wave
vector andX-axis. The value ofcp is the same for all
waves. In particular, with such velocity, fluctuations on the
discontinuity surface will propagate. Therefore, we name
this parameter the phase velocity of surface discontinuity
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oscillations or the surface phase velocity. This equation can
be rewritten as

uin+Vx1· cosλin
sinλin

+Vy1=
ud+Vx2· cosλd

sinλd
+Vy2, (2)

where the subscripts 1(2) refer to the quantities ahead (be-
hind) of the discontinuity;V is the unperturbed fluid velocity
andu the phase velocity of the wave. Equation (2) should be
solved for the angle of refractionλd . At this point at least two
difficulties arise. The mathematical one proceeds from a de-
pendence of the phase velocity of diverging magnetoacoustic
waves on the angle between the wave vector and the external
magnetic field; while this angle, in turn, depends on the angle
of refractionλd . Thereby, we obtain a transcendental equa-
tion, which can only be solved numerically, i.e. by iterations.
This is not always convenient, even though the convergence
of iterations is rather rapid (typically not more than ten iter-
ations are required to achieve a sufficiently good accuracy).
The physical difficulty consists in the necessity to initialise
by hand, mostly based on intuition, the signs of the phase ve-
locities of the incident and emanating waves. Based on our
experience we know how easy it is to make a mistake here.
Besides, physical interpretation of Eq. (2) is not so evident.
Therefore, in analysing the transformation of MHD waves on
a discontinuity, there is often an annoying misunderstanding.
From Eq. (2) it is visible that the angles of refractionλd of all
waves diverging from a discontinuity grow with the growth
of the incident angleλin. The refraction angle of the fast
magnetoacoustic wave grows more rapidly. At some incident
angle, the wave vector of this emanating mode becomes par-
allel to the surface of the discontinuity. With further growth
of λin, the wave vector of the fast magnetoacoustic mode be-
comes directed toward the discontinuity. And finally, starting
with some incident angle, Eq. (2) can be satisfied only by a
complexλd . The question arises as to when will the wave
diverge from the discontinuity and how does one interpret a
situation with a complexλd?

When investigating the spontaneous emission of the sound
by a hydrodynamic shock wave, D’yakov (1954) considered
the sound to be diverged from a shock if its wave vector was
directed away from the discontinuity. Kontorovich (1957)
showed that it is necessary to take into account a drag of the
sound by the flow moving through a shock. The sound will
remain an outgoing wave as far as the sumVx2+cs2· cosλd
remains positive. Herecs is the sound speed. Physically,
the situation is absolutely clear. If, for example, you are
moving upstream a strong flow, you will move away from
the object, instead of coming closer to it. With this effect
included, Kontorovich (1957) corrected the conditions ob-
tained by D’yakov (1954) of the spontaneous emission of
the sound by a shock wave. As a result, the above prob-
lem did not arise in “usual” (non-magnetic) hydrodynamics.
But in magnetohydrodynamics the situation is more compli-
cated. In an anisotropic medium, such as the magnetohydro-
dynamic one, the directions of the group and phase velocities
of the MHD waves are typically not coincident. Therefore,
there can be a situation when the phase velocity is directed

toward the discontinuity, while the group velocity is directed
away from it, or vice versa. What does one do in this situa-
tion? For the first time such a question arose in crystal op-
tics. Mandelshtam (1945) showed that the direction of wave
propagation should be determined by the sign of the group
velocity projection to a normal to the surface, since the group
velocity is a physically meaningful characteristic of the wave
propagation. Kontorovich (1959) formulated a similar prin-
ciple for magnetic hydrodynamics. Westphal and McKen-
zie (1969) also took this point into account. They calculated
the coefficients of transmission of MHD waves up to the inci-
dent angle, at which the group velocity of the fast magnetoa-
coustic wave, with the effect of the drift included, is parallel
to the shock surface. They named the corresponding angle of
incidence “a critical angle”. Westphal and McKenzie (1969)
did not consider larger incident angles, though there were no
physical or mathematical reasons for such a restriction. Un-
fortunately, in more recent studies, a misunderstanding con-
cerning the above problem arose again. For example, Has-
sam (1978), when investigating the passage of Alfvén waves
through the fast shock wave, considered only those incident
angles at which the wave vectors of all emanating modes are
directed away from the discontinuity. He believed that even
the real solutions of Eq. (2) at larger incident angles have
no physical meaning. Zhuang and Russell (1982), in inves-
tigating the interaction of MHD waves with a strong MHD
shock wave, discriminated the diverging modes by the sign
of theX-component of the wave vector. Naturally, at those
incident angles for which the wave vector of a refracted fast
magnetoacoustic wave was directed toward the shock, their
approach indicated a number of diverging waves by one less
than that required by the conditions of evolutionarity. On
this basis they made an erroneous conclusion that the fast
shock wave is nonevolutionary against the perturbations inci-
dent upon a discontinuity at big angles. Whang et al. (1987)
performed a similar study for fast shock waves of arbitrary
intensity. They also came to an erroneous conclusion about
non-evolutionarity of shock with respect to big incident an-
gles of MHD waves. We keep in mind that the conditions of
evolutionarity of shock waves have been obtained under the
assumption that perturbations propagate along the normal to
a discontinuity (Akhiezer et al. (1959), Syrovatskii (1959)).
These conditions are

Vx1 > VF1;VF2 > Vx2 > VA2 for fast shock waves,

VA1 > Vx1 > VS1;VS2 > Vx2, for slow shock waves. (3)

HereVF , VA andVS are the phase velocities of a fast mag-
netoacoustic wave, an Alfvén wave and a slow magnetoa-
coustic wave propagating along the normal to a shock. Kon-
torovich (1959) proved that the number of diverging waves
at anycp (1) is the same. Therefore, when conditions (3) are
met, for normally incident perturbations, the shock wave will
remain evolutionary against the perturbations incident at any
angle.

To avoid such errors in the future, we are returning again
to the problem of the determination of diverging angles for
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MHD waves. The total set of MHD equations in each half
spaces consists of the two Maxwell equations, equation of
continuity, Euler equation, entropy equation and equation of
state. These equations are

div B=0,

∂B

∂t
=rot [V ×B] ,

∂ρ

∂t
+div ρ·V =0,

∂V

∂t
+ (V ·∇) ·V =−

1

ρ
·∇P−

1

4·π ·ρ
· [B×rot B] ,

∂S

∂t
+ (V ·∇) S=0,

P=P (ρ, S) . (4)

HereB is the ambient magnetic field,ρ the fluid density,
P the thermal pressure, andS the entropy. It is possible to
specialise the form of the equation of state, using the approx-
imation of perfect gas:

P=ργ · exp

(
S

cV

)
. (5)

HerecV is the specific heat at constant volume;γ the ratio
of the specific heats.

We shall present all quantities entered in Eqs. (4) as

A=A0+δA· exp
(
χ ·x+i·ky ·y−i·ω·t

)
. (6)

HereA0 is the background unperturbed value of quantityA;
δA is its small variation travelling with a plane MHD wave.
The MHD wave has a given frequencyω and tangential at
the unperturbed surface component of the wave vectorky .
The component of the wave vectorχ normal to the surface is
an unknown quantity to be sought. It can be a real quantity
in the case of a simple, homogeneous wave or a complex
quantity in the case of a surface, inhomogeneous wave. As
usual,i is an imaginary unit. We substitute the quantities of
the form Eq. (6) into the set Eq. (4) of the MHD equations.
After linearization we obtain a set of linear equations with
respect to the small variationsδA:

χ ·δVAx+i·ky ·δVAy=0,

−i·ω∗·δVAx=i·ky ·
(
VAy ·δVx−VAx ·δVy

)
,

−i·ω∗·δVAy=−χ ·
(
VAy ·δVx−VAx ·δVy

)
,

−i·ω∗·δVAz=
(
χ ·VAx+i·ky ·VAy

)
·δVz-VAz·(

χ ·δVx+i·ky ·δVy
)
,

−i·ω∗·δρ+ρ·
(
χ ·δVx+i·ky ·δVy

)
=0,

−i·ω∗·δVx=

−
χ ·δP

ρ
−
(
χ ·VAz·δVAz+VAy ·

(
χ ·δVAy−i·ky ·δVAx

))
,

−i·ω∗·δVy=

−
i·ky ·δP

ρ
−
(
i·ky ·VAz·δVAz−VAx ·

(
χ ·δVAy−i·ky ·δVAx

))
,

−i·ω∗·δVz=
(
χ ·VAx+i·ky ·VAy

)
·δVAz,

−i·ω∗·δS=0,

δρ=c−2
s ·δP+

(
∂ρ

∂S

)
P

·δS. (7)

For convenience, we introduce a new quantity
ω∗≡ω+i·χ ·Vx−ky ·Vy ; hereinafter we omit index 0,
denoting unperturbed quantities and a common exponential
factor in perturbed quantities. HereV A≡

B
√

4πρ
is the

Alfv énic speed andδV A≡
δB

√
4πρ

.

We have written the linearized equation of state in a gen-
eral form, without using the approximation of perfect gas. It
is obvious that the first equation in set (7) is a linear combina-
tion of the two following equations. Therefore, it can be ex-
cluded from further consideration. As a result, we have a set
of nine linear equations for nine small variationsδV , δV A,
δP, δρ, andδS. As the differential equations of initial set (4)
were of the first order, the coefficients of the linearized set of
Eqs. (7) are linear functions of the unknown quantityχ . A
nontrivial solution of a set of linear homogeneous equations
exists if its determinant equals zero. Since one of the nine
equations (the linearized equation of state) does not depend
on χ , the determinant can be written as an algebraic equa-
tion of the eighth-order forχ . Such a result was predicted by
Westphal and McKenzie (1969). It is well known that the set
of linearized MHD equations in the fluid’s rest frame breaks
up into two subsets determining Alfvén waves and magne-
toacoustic waves. Therefore, we expect that our algebraic
equation can be presented as a product of several factors, as
well. This was also suggested by Kontorovich (1959). In-
deed, after some algebra that is omitted here, we managed to
write the condition of the determinant of the combined equa-
tions (7) to be zero in the form

χ

i·ky
·

(
χ

i·ky
+
Vy−cp

Vx

)
·

(
χ

i·ky
+

(
Vy+VAy

)
−cp

Vx+VAx

)
·

(
χ

i·ky
+

(
Vy−VAy

)
−cp

Vx−VAx

)
·

(
a0·

(
χ

i·ky

)4

+a1·

(
χ

i·ky

)3

+a2·

(
χ

i·ky

)2

+a3·

(
χ

i·ky

)
+a4

)
=0. (8)

Here the coefficientsa0, a1, a2, a3, anda4 are given by

a0=V
4
x −V 2

x ·

(
c2
s+V

2
A

)
+V 2

Ax ·c
2
s ,

a1=2·

[
Vx ·

(
cp−Vy

)
·

(
c2
s+V

2
A−2·V 2

x

)
+VAx ·VAy ·c

2
s

]
,
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a2=−

(
V 2
x +

(
cp−Vy

)2)
·

(
c2
s+V

2
A

)
+c2

s ·

(
V 2
Ax+V

2
Ay

)
+6·

(
cp−Vy

)2
·V 2
x ,

a3=2·

[
Vx ·

(
cp−Vy

)
·

(
c2
s+V

2
A−2·

(
cp−Vy

)2)
+VAx ·VAy ·c

2
s

]
,

a4=
(
cp−Vy

)4
−
(
cp−Vy

)2
·

(
c2
s+V

2
A

)
+c2

s ·V
2
Ay . (9)

Equation (8), with coefficients Eq. (9) describes the linear
MHD waves from both sides of the plane MHD discontinu-
ity of an arbitrary type. In particular, it can be a tangential
discontinuity. In this case it is necessary to setVx=0. In
analysing the properties of MHD waves ahead (behind) of
the discontinuity, one should take the parameters of the un-
perturbed medium in a corresponding half spaces. In deriv-
ing conditions Eqs. (6) and (7), the equation of state was not
specified. Its particular form influences only the value of the

sound speed in a medium. Thus, we obtaincs=
√
γ ·
P
ρ

in the

case of perfect gas. Though Eqs. (8) and (9) were obtained
for ky 6=0, they can be applied whenky=0, as well. In this
case they describe the usual MHD waves propagating along
the normal to the discontinuity. We have written Eq. (8) for
χ

i·ky
which is ctgλ. The angleλwill be real for homogeneous

MHD waves and complex for surface waves.
Next, we will analyse the solutions of algebraic Eq. (8).

The first rootχ=0 does not represent any interest for the
problem of the interaction of MHD waves with MHD discon-
tinuities. It is easy to see from a substitution into Eq. (7), that
the rootχ=0 describes either the trivial solution (the absence
of perturbations), or one of MHD modes, whose wave vec-
tor is directed along theY -axis. In the latter case the surface
phase velocitycp (in our problem it is an external parameter
setting either the incident wave or “ripples” on the surface of
the discontinuity) will be by coincidence equal to the phase
velocity of any MHD wave propagating (in the sense of the
direction of the wave vector) along theY -axis. It can be both
the Alfvén wave and fast, or a slow magnetoacoustic wave.
But, in spite of this coincidence, this root will not contain
any new information. It will be coincident with one of seven
other roots of Eq. (8).

The second root of Eq. (8) corresponds to the entropy
wave. This root is always real and equal to

ctgλe=
cp−Vy

Vx
. (10)

It is well known that the entropy wave drifts with the flow,
that is, it has a zero frequencyω0 in the fluid’s rest frame.
This wave transfers fluctuations of entropy and associated
fluctuations of density

δρ=

(
∂ρ

∂S

)
P

·δS.

In the case of perfect gas the isobaric derivative ofρ with
respect to entropyS is given by(
∂ρ

∂S

)
P

=−
ρ

γ ·cV
.

Since the entropy wave drifts with the flow it does not emerge
in the problem of the interaction of perturbations with tan-
gential or contact discontinuities. In these cases it cannot
be incident on the discontinuity or emanated from it. For a
shock wave or rotational discontinuity, the entropy wave is
incident from ahead of the discontinuity and diverged from
behind it. In the problem of the interaction of perturbations
with discontinuity, the waves having a positive frequency in
the reference frame, connected with the discontinuity sur-
face, are considered. Then the maximum possible angle of
wave propagation is determined by the conditionω=0. For
the entropy wave it is equal to 90◦, if the flux is normal to the
surface, and it is smaller (larger) than 90◦, if Vy is negative
(positive).

We consider two more roots of Eq. (8). They are also al-
ways real and equal to

ctgλA−=
cp−

(
Vy−VAy

)
Vx−VAx

and ctgλA+=
cp−

(
Vy+VAy

)
Vx+VAx

. (11)

Substituting these roots into the set of Eqs. (7), we can make
sure that they yield the directions of wave vectors of Alfvén
waves. It is known that the vector of velocity fluctuations
associated with the Alfv́en wave is directed along the vector
k×B. HereλA− is the angle of propagation of the back-
ward Alfvén wave, for whichδV A=δV , and λA+ corre-
sponds to the direction of the forward Alfvén wave, for which
δV A=−δV . Hence, it is possible to state that in the medium
separated by a plane discontinuity into two half spaces, the
Alfv én modes never transform into the surface waves. If the
boundary is a rotational discontinuity, that is, in fact, a non-
linear Alfvén wave, one of the roots (11) cannot be deter-
mined for a nonzero frequencyω. Physically, it means that
from each side of a rotational discontinuity there can only be
one Alfvén wave with a given surface phase velocitycp. It
will be a wave propagating in the opposite direction to a ro-
tational discontinuity. Ahead of the discontinuity, the Alfvén
wave will be incident upon the surface and behind the dis-
continuity, it will be diverged from the front. (Note, that
the “undetermined” root (11) corresponds to an infinite X-
component of the wave vector. Here dissipation effects have
to be taken into account. Roikhvarger and Syrovatskii (1974)
have shown that in accounting the dissipation effects from
each side of the rotational discontinuity, there will be one
more dissipative Alfv́en wave which is necessary for consid-
eration at the investigation of the evolutionarity of the rota-
tional discontinuity.)

In the problem of the refraction of MHD waves on a dis-
continuity the conditions relating the angles of propagation
of the Alfvén waves and the entropy wave are more conve-
nient compared to Eq. (11). It can be easily shown that these
conditions are reduced to

ctgλA∓=ctgλe−q∓, (12)

where

q∓=
VAx ·ctgλe+VAy
VAx ∓ Vx

.
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If cp is such that the wave vector of the entropy modeke is
perpendicular to the external magnetic field, thenq∓=0, and
both Alfvén waves are focused across the magnetic fieldB,
too.

Now, it remains to analyse the properties of the roots of
the last factor in Eq. (8). This factor is a polynomial of
the fourth order that determines the angles of propagation
of four magnetoacoustic waves. Note that the same polyno-
mial was earlier obtained in a different way by Zhuang and
Russell (1982). The analysis of this factor will be made in
the next section.

3 The dispersion equation for magnetoacoustic waves in
the medium with a plane boundary

Let’s study the general properties of the roots of the algebraic
equation

F (ϕ) ≡ a0·ϕ
4
+a1·ϕ

3
+a2·ϕ

2
+a3·ϕ+a4=0, (13)

whereϕ=
χ
i·ky

=ctgλ. Hereϕ andλ can take both real and
complex values. The coefficientsa0, a1, a2, a3, anda4 are
defined by conditions Eq. (9) and are always real. The roots
of Eq. (13) set the directions of the wave vectors of four mag-
netoacoustic waves from a chosen side of a discontinuity.

First of all, we note that the coefficienta0 is a quadratic ex-
pression with respect to the quantityV 2

x . The equalitya0=0
is realised only if the quantity|Vx | is equal to the phase ve-
locity of a fast or slow magnetoacoustic mode, whose wave
vector is directed along theX-axis. In this case Eq. (13) will
evidently have only three roots. This can be easily under-
stood, for here we are in the reference frame connected to
the moving wave, in which the frequency of a wave is equal
to zero and, hence, cannot take the value imposed by external
conditions. Fast or slow shock waves of infinitesimal ampli-
tude will be propagating at such speeds. But for any evo-
lutionary discontinuity of nonzero amplitude we havea0 6=0,
and Eq. (13) has four roots. We note that in the medium
ahead of a fast shock wave, behind a slow shock wave, and
from each side of the tangential discontinuity, the inequality
a0>0 holds. In all other cases, the inequalitya0<0 is true.

Generally, an algebraic equation of the fourth order with
real coefficients can have four real roots, or two real and two
complex conjugate roots, or four complex roots. We will
show that in the problem considered the situation with four
complex roots is never realised.

Separately, we analyse the case when the wave vectorke of
the entropy wave, whose direction is determined by Eq. (10),
is perpendicular to the vectorB of the external magnetic
field. In this case, as can be easily proved by a direct substitu-
tion, the quantityϕ=ϕe≡ctgλe is a double root of Eq. (13).
Hence, in this case Eq. (13) will have at least two real roots.
It is interesting to note that forke⊥B the five MHD waves
will be propagating in the coincident direction. They are the
entropy wave, forward and backward Alfvén wave, and for-
ward and backward slow magnetoacoustic wave. All these
waves will have a zero frequency in the fluid’s rest frame,

that is, will simply drift with the moving flow. A similar situ-
ation is realised in the usual hydrodynamics for the propaga-
tion of an entropy-vorticity wave. The fact that under certain
conditions five of the seven MHD waves are propagating in
the coincident direction with an identical phase velocity can
strongly simplify the problem of the interaction of MHD per-
turbations with shock waves. For example, Lubchich and Pu-
dovkin (1998) treated this case and investigated the passage
of MHD waves through a perpendicular shock wave when the
external magnetic field was directed along theZ-axis. Under
such an orientation ofB, the wave vector of any MHD wave
from any side of the shock is perpendicular to the external
magnetic field. It turned out that in this case, it is possible
to obtain analytical expressions for the amplitudes of all di-
verging waves, depending on the type of incident wave, its
direction of propagation, Mach number, and magnitude of
external magnetic field.

Under any other direction ofke, we obtained

F (ϕe)=
c2
s

sin2λe
·
(
VAx ·ctgλe+VAy

)2
>0.

Now let us determine the sign ofF (ϕ) atϕ=ϕA∓≡ctgλA∓.
Substituting Eq. (12) into Eq. (13), we obtain after some tire-
some calculations the quadratic equation for ctgλe

F (ϕA∓)=
V 2
x ·q2

∓

(VAx ∓ Vx)
2
·

{
−V 2

x ·V 2
Aτ ·ctg

2λe+2·Vx ·VAy ·
(
Vx ·VAx ∓ V 2

A

)
·

ctgλe +

[
V 2
x ·

(
V 2
Ay−V

2
A

)
−V 2

A·

(
V 2
Ax+V

2
Ay

)
∓2·Vx ·VAx ·V

2
A

]}
,

whereV 2
Aτ=V

2
Ay+V

2
Az.

The discriminant of the expression in brackets is

Disq=−4·V 2
x ·V 2

A·V 2
Az· (Vx ∓ VAx)

2
≤0.

One can see thatF (ϕA∓) does not change the sign, i.e. for
any type of discontinuity and from any side of it, it is al-
waysF (ϕA∓)≤0. It can be shown that under certain condi-
tions the quantityϕA+ or ϕA− is a simple root of algebraic
Eq. (13). Then they will refer to the magnetoacoustic mode,
whose wave vector is collinear to the external magnetic field,
and the phase velocity in the fluid’s rest frame is equal to
Alfv énic speed. In any case,F (ϕe) andF (ϕA∓) have dif-
ferent signs. Consequently, betweenϕe and, for example,
ϕA+ there is at least one real root of algebraic Eq. (13). Then
Eq. (13) must have one more real root.

We have shown that algebraic Eq. (13) always has at least
two real roots. Consequently, at any valuecp from any side
of any MHD discontinuity, there are at least two homoge-
neous magnetoacoustic waves having a given surface phase
velocity. In the problem of the interaction of perturbations
with the MHD discontinuity there can emerge only one sur-
face wave from each side of the boundary.

To analyse the properties of the roots of Eq. (13) in more
detail, it is necessary to specify the type of MHD disconti-
nuity. For the readers not to become tired, we will restrict



A. A. Lubchich and I. V. Despirak: MHD waves near MHD discontinuities 1897

Table 1. Characteristic values of propagation angles of MHD waves
ahead of a fast shock wave and the corresponding signs of function
F(ϕ).

The angleλ 0◦ λA1 λe λA2 180◦

The sign of F(ϕ) >0 ≤0 ≥ 0 ≤0 >0

the analysis to the fast shock wave. This type of discon-
tinuity is of great importance, for example, in the study of
solar-terrestrial coupling. Let us return to Eq. (12), that de-
termines the angles of propagation of the two Alfvén waves.
From any side of the fast shock wave the quantitiesq+ and
q− evidently have different signs. Hence, the angle of prop-
agation of the entropy waveλe lies between the anglesλA+

andλA−. Determining which of the anglesλA− andλA+ is
smaller, depends on the orientation of the external magnetic
field. Therefore, we shall denoteλA1=min (λA−, λA+) and
λA2=max (λA−, λA+).

As stated above, ahead of the fast shock wave the coef-
ficient a0 is always positive. Then atϕ=+∞, which cor-
responds to the angle of wave propagationλ=0◦, and at
ϕ=−∞, which corresponds to the angle of wave propaga-
tion λ=180◦, the sign ofF (ϕ) will be positive. In Table 1
the characteristic values of the angles of wave propagation
and signs of function F(ϕ) corresponding to them are given.

As stated above, ifF (ϕe)=0, thenke⊥B and the quantity
λA1=λe=λA2 is the double root of Eq. (13). It can be shown
that in this caseF ′ (ϕe)=0 and

F ′′ (ϕe)=
{
−2·V 2

x ·

(
c2
s+V

2
A

)
+2·c2

s ·V
2
Ax

}
·

(
ϕ2
e+1

)
.

Taking into account conditions of evolution (3), it is obvi-
ous thatF ′′ (ϕe)<0 ahead of the fast shock wave. Hence, at
ϕ=ϕe the functionF (ϕ) has a maximum. As a consequence,
Eq. (13) will have one real root in the intervalsϕ<ϕe and
ϕ>ϕe.

If ke·B 6=0, then F (ϕe)>0. If F (λA1)=0, then
F (λA2)<0 and, on the contrary, ifF (λA2)=0, then
F (λA1)<0. If F (λA1)<0 andF (λA2)<0, then the func-
tion F (ϕ) has changed the sign four times.

As a result, we come to the conclusion that ahead of the
fast shock wave there always exist four real roots, corre-
sponding to the four homogeneous magnetoacoustic waves
incident on the discontinuity. Their propagation angles must
lie in the intervals:

– (0◦, λA1), for the backward fast magnetoacoustic wave,

– (λA1, λe), for the backward slow magnetoacoustic wave,

– (λe, λA2), for the forward slow magnetoacoustic wave,

– (λA2, 180◦), for the forward fast magnetoacoustic wave.

The quartic Eq. (13) can be solved analytically, using
Descartes-Euler-Cardano’s algorithm or Ferrari’s algorithm

Table 2. Characteristic values of propagation angles of MHD waves
behind a fast shock wave and the corresponding signs of function
F(ϕ).

The angleλ 0◦ λA1 λe λA2 180◦

The sign of F(ϕ) <0 ≤0 ≥ 0 ≤0 <0

(Korn and Korn (1968)). But in practice it is easier to
use numerical methods. For this case it is useful to spec-
ify the lower limit of the first interval and the upper limit
of the fourth interval, forϕ to always remain finitesi-
mal. Using properties of roots of the algebraic equa-
tion (Korn and Korn (1968)), it is possible to replace 0◦

for arctg (1+g) and 180◦ for 180◦
− arctg (1+g), where

g≡ |a0|
−1

·max (|a1| , |a2| , |a3| , |a4|).
Behind the front of the fast shock wave the coefficienta0

is always negative. Hence, the function F(ϕ) takes negative
values atϕ= ± ∞. The characteristic values of wave prop-
agation angles and corresponding signs of the function F(ϕ)

are given in Table 2. The function changes the sign at least
twice. Therefore, behind the front of the fast shock wave
there are always two real roots, corresponding to two slow
magnetoacoustic waves. Their propagation angles must lie
in the intervals:

- (λA1, λe), for the backward slow magnetoacoustic wave,
- (λe, λA2), for the forward slow magnetoacoustic wave.
Two other roots can be either real quantities or complex-

conjugate quantities. If they are complex, the root with
Reχ<0 refers to a surface magnetoacoustic wave damping
while moving off from the shock. Formally, this wave is con-
sidered to be diverging from the discontinuity. If these two
roots are real, then both of them must lie in one of four in-
tervals: (0◦, λA1), (λA1,λe), (λe, λA2) or (λA2, 180◦). In the
problem of the interaction of MHD waves with a fast shock
wave, these two roots, as a rule, lie in the interval (λA2, 180◦)
and correspond to two fast magnetoacoustic waves. The
greater root corresponds to the wave incident on the shock,
while the smaller one refers to a wave emanating at the dis-
continuity.

The typical form of Snell’s law for a fast shock wave is
shown in Fig. 1. We have set all parameters of the flux in
the uncompressed medium, that are needed:M1=10;θ1=0◦;
ψ1=45◦; α=30◦; β1=1.5; γ=5

/
3. HereM=Vx

/
cs

is the
Mach number;θ is the angle between the plasma flow di-
rection and normal to the shock (ahead of the shock wave
it is equal to zero as a result of the choice of the reference
frame); ψ is the angle between the direction of the exter-
nal magnetic field and theX-axis; α is the angle between
the tangential component of the magnetic field and theY -
axis;β is the ratio of the thermal pressure to magnetic pres-
sure. For simplicity we use the approximation of perfect gas.
The chosen parameters are typical, for example, for the so-
lar wind ahead of the Earth’s bow shock, which is a fast
shock wave. Next, using the algorithm offered by Whang
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Fig. 1. Propagation angles of all theoretically possible MHD waves
(A) and decrement of a surface fast magnetoacoustic wave (B) be-
hind the front of a sufficiently strong, fast shock wave versus the
incident angle of entropy waveλe. The entropy wave propagates in
the uncompressed medium; the incident angle determines the sur-
face phase velocity common for all waves propagating in the com-
pressed medium. Behind the front of the fast shock wave there can
be six diverging modes. They are the forward and backward slow
magnetoacoustic waves (denoted bys1 ands2), forward and back-
ward Alfvén waves (denoted byA1 andA2), entropy wave (de-
noted bye), and fast magnetoacoustic wave (denoted byf 1). Be-
sides, there is an incident fast magnetoacoustic wave (denoted by
f 2) shown with the bold line.

et al. (1987), we have calculated the parameters of flux in
the compressed medium. The following values have been
obtained:M2≈0.47; θ2≈2.5◦; ψ2≈75◦; β2≈22; the density
across the shock grows by a factor of≈3.8, and plasma pres-
sure grows by factor≈119. Behind the shock the plasma
pressure becomes much greater than the magnetic pressure.
It is known (e.g. Hassam (1978)) that in such a medium
the phase velocity of a slow magnetoacoustic wave is nearly
equal to the phase velocity of Alfvén wave. Therefore, as

one can see from Fig. 1, the angles of propagation of for-
ward (backward) slow magnetoacoustic and Alfvén waves
are practically coincident. The group and phase velocities of
the fast magnetoacoustic wave have almost the same direc-
tion, and their values are close to the sound speed. Hence, the
normal component of the group velocity of the fast magne-
toacoustic wave is approximately equal tocs2·cosλf+Vx2.
For the wave diverging from the shock this sum is positive,
while for the incident wave it is negative. For the angle
of propagation of about 118◦ the sum ofVx2 and theX-
component of the group velocity, being the physical speed
of wave propagation, is equal to zero; the wave propagates
along the surface of the shock. We note that at such an angle
of propagation the sum ofVx2 and the normal component of
the phase velocity is approximately equal to 0.04·Vx2. This
value is small, but nevertheless it is nonzero. At largercp
the refracted fast magnetoacoustic wave is a surface wave.
For this wave the real part of the complex angle of refraction

is plotted in Fig. 1. The damping factor
∣∣Reχ

∣∣
k

of the sur-

face wave, wherek=
√
(Im χ)2 +k2

y , is also shown in Fig. 1.
One can see that the surface wave damps rather rapidly when
moving away from the front of shock - approximately by a
factor ofe on a wavelength.

In our numerical calculations we have also found some
rare, exotic cases when the real roots of Eq. (13) lie in the in-
terval (λe, λA2) or even in (λA1, λe). In these cases they cor-
respond to two more slow magnetoacoustic waves, with one
of the slow magnetoacoustic waves being incident on the fast
shock wave from the side of the compressed medium. Kon-
torovich (1959) suggested that behind the front of the fast
shock wave with certain values of the surface phase veloc-
ity cp there can be four slow magnetoacoustic waves, one of
which is incident on the shock, while there is no fast magne-
toacoustic wave. But he did not specify the conditions when
this could be the case. In the following section we will dis-
cuss the conditions necessary to provide such exotic cases. It
will also be shown that the existence under certain conditions
of a slow magnetoacoustic wave incident on the fast shock
wave from the compressed medium by no means contradicts
the conditions (3) of shock waves evolutionarity.

4 Slow magnetoacoustic waves behind the front of a fast
shock wave

Let us remember the Friedrichs diagram form, which ex-
presses the dependence of phase and group velocity of MHD
waves on a polar angle between the wave vector and exter-
nal magnetic field. Its samples at different values of theβ-
parameter are shown in Fig. 2.

We should keep in mind that the phase velocity of magne-
toacoustic waves is equal to

u2
≡

(ω0

k

)2
=

1

2
·

(
V 2
A+c2

s ±

√(
V 2
A+c2

s

)2
−4· (V A·i)2 ·c2

s

)
. (14)
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Fig. 2. Phase (left) and group (right) polar diagrams for MHD
waves in three cases (from top to bottom): the sound speed in the
medium is greater than, equal to or smaller than the Alfvén speed.
The group and phase velocities shown on the diagrams are nor-
malised by the sound speed.

Herei is a unit vector along the wave vectork. The upper
sign before the square root corresponds to a fast wave, while
the lower one refers to a slow wave. Equation (14) defines
the phase velocityu accurate to the sign. Ifu>0 the wave is
the forward one. Otherwise, it is the backward one.

The group velocity of magnetoacoustic waves can be ob-
tained by the differentiation of Eq. (14) over the wave vector
k and written as

V gr≡
∂ω0

∂k
=u·i ∓

c2
s · (V A·i) · (V A·j)

u·

√(
V 2
A+c2

s

)2
−4· (V A·i)2 ·c2

s

·j . (15)

Herej is a unit vector directed along the vector[k× [k×B]] .
As in Eq. (14), the upper sign corresponds to the fast wave,
while the lower sign refers to the slow one. One can see
that the component of the group velocity normal to the wave
front is coincident with the phase velocity. But there is also
a component of the group velocity, which is aligned to the
wave front.

Equations (12)–(13) take a simpler form forβ=1, which
was used, for example, by Kwok and Lee (1984) in the nu-
merical calculations of MHD wave transmission coefficients
through a rotational discontinuity. Unfortunately, atβ=1
plasma has some peculiar properties, making it necessary to
keep an extreme accuracy in the numerical calculations. In
this case, as is clearly seen from Fig. 2, the vector of the
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Fig. 3. Phase polar diagram for slow magnetoacoustic wave (upper
plot) and the group polar diagram for a slow magnetoacoustic wave
and an Alfv́en wave (lower plot). The group velocity of the Alfvén
wave is denoted by the symbol “•”. It is assumed thatVA=0.8·cs .
In the plots all velocities are normalised by the sound speed.

group velocity does not tend to the direction along the ex-
ternal magnetic field for the angle between the wave vector
and the field tending to zero. The angle between the group
velocity and the external magnetic field remains nonzero; it
is equal toarctg

(
1
/

2
)
≈26◦. In this case, a phenomenon

similar to the conic refraction in optics can be observed in
plasma. A beam of magnetoacoustic waves directed along
the magnetic field and incident on a plane boundary will turn
into a cone with a half-angle of≈26◦ (Kadomtsev (1988)).
Alfv én (1981) points out that the topology of magnetic field
in plasma may change radically due to many instabilities de-
veloping whenβ is close to unit.

But here we concentrate on another property of the
Friedrichs diagram. From Fig. 2 it is clearly seen that the
polar lines of group and phase velocity of slow magnetoa-
coustic waves are essentially different. Figure 3 is a close-up
of the part of the group and phase polar line for slow mag-
netoacoustic waves, which is plotted for the angles between
the wave vector and the external magnetic field lying in the
interval from 0◦ to 90◦. Firstly, one can see that the vec-
tors k andV gr lie in different quadrants. It is evident that
the angle between them can be quite large. Secondly, it is
seen that the group polar line has a break, in which the group
velocity is maximum. Figure 4 shows a dependence of the
anglesθph andθgr versus theβ-parameter. Hereθgr is the
angle between the maximum group velocity and the exter-
nal magnetic field;θph is the angle between the wave vec-
tor k, corresponding to this maximum valueVgr max, and
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coustic mode and external magnetic field) at which the group ve-
locity has a maximal value, and the angleθgr (between the maxi-
mal group velocity and external magnetic field) as a function of the
β-parameter, which is shown in the logarithmic scale.

B. At any β the angle betweenVgr max and the direction
of the wave vector corresponding to the maximum group ve-
locity remains almost constant and equal to∼30◦. As fol-
lows from Fig. 3, the maximum group velocity of a slow
magnetoacoustic wave can exceed the Alfvénic speed. And
more than that, even the projection of the group velocity on
the direction of the external magnetic field can be greater
than the Alfv́enic speed. This especially true for the projec-
tions V gr andV A on a vector forming a large angle (close
to 90◦) with the external magnetic field. Figure 5 confirms
these statements. It illustrates the dependence of the max-
imum group velocity of a slow magnetoacoustic wave and
its projection on the direction of the external magnetic field
versusβ. It is seen, that the value of the group velocity is
maximum forβ=1. In this case it exceeds the Alfvénic speed
by the factor of 1.12. The projection of the group velocity
on the external magnetic field exceeds the Alfvénic speed at
β>1. Its value reaches a maximum equal to 1.02 atβ≈1.3.

We have demonstrated that under certain conditions the
physical speed of propagation of slow magnetoacoustic
waves behind the front of a fast shock wave can exceed the
lower limit given by the condition of evolutionarity of shock
waves (3). Hence, it is theoretically possible for a slow mag-
netoacoustic wave to be incident on the fast shock wave from
the side of the compressed medium. It is easy to formulate
the conditions favourable for realisation of such a possibil-
ity. Firstly, theβ-parameter behind the front of a shock wave
should be close to unit. Secondly, it is desirable that the
shock wave was be strong enough. Then the flow velocity
behind the shock will be closer to the lower limit of evolu-
tionarity (3).

1 10
β

0.9

1.0

1.1

V
gr

  / V
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Fig. 5. Maximal group velocity of a slow magnetoacoustic wave
(curveA) and its projection to the external magnetic field (curveB)
versus theβ-parameter, given in the logarithmic scale. The group
velocity is normalised by the Alfv́en speed.

Now we will analyse in detail the refraction of MHD
waves on the fast shock waves that satisfy these condi-
tions. If in front of a shock wave the parameters of the flow
areM1=7.2, θ1=0◦, ψ1=15◦, α=180◦, β1=0.1, andγ=5/3,
then behind it these parameters becomeM2≈0.72,θ2≈39◦,
ψ2≈57◦, β2≈1.08. The density across the shock grows by a
factor of ≈2.9, and thermal pressure grows by a factor of
≈35. Figure 6 shows the angles of propagation of MHD
waves behind the front of such a shock wave versus the inci-
dent angle of the entropy wave that determines the surface
phase velocitycp. For the incident angles of the entropy
wave smaller than≈86◦, Snell’s law has a typical form. For
the incident angle of the entropy wave ranging from 0◦ to
84.2◦ there are seven homogeneous MHD waves (six diverg-
ing waves and one incident wave). We list them in ascend-
ing order of propagation angle: a backward Alfvén wave,
a backward slow magnetoacoustic wave, an entropy wave, a
forward slow magnetoacoustic wave, a forward Alfvén wave,
two forward fast magnetoacoustic waves (diverging from and
incident on the shock). The following peculiarity of the
shock waves can be easily shown: if in front of the shock the
wave vector of the incident entropy, Alfvén or slow magne-
toacoustic wave is orthogonal to the external magnetic field
B1, then behind the shock the wave vector of five diverging
modes (entropy, two Alfv́en and two slow magnetoacoustic
waves) is also orthogonal to the external magnetic fieldB2.
In Fig. 6 we can see it at the incident angle of the entropy
wave of 75◦. At the incident angle of the entropy wave of
about 84.2◦ (point b in Fig. 6) the angles of propagation of
the two fast magnetoacoustic waves become equal to each
other. We note that at pointb the angle of propagation of
fast magnetoacoustic waves slightly exceeds that of the for-
ward Alfvén wave (123.6◦ and 123.0◦, respectively). The
emanating fast magnetoacoustic wave transforms to the sur-
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face wave at pointb. On the segmentbc the refracted fast
magnetoacoustic mode is the surface wave damping off from
the boundary. As far as its source is the front of the shock,
formally the wave remains diverging from the boundary. On
the segmentcd instead of a surface mode there will be two
usual homogeneous waves. There are two more forward slow
magnetoacoustic wavess3 and s4, in addition to the previ-
ously existing forwards2 and backwards1 slow magnetoa-
coustic waves, withs3 being incident on the shock, ands4
diverging from it. Thus, in a certain range of surface phase
velocitiescp there will be four slow magnetoacoustic waves
and no fast waves. Here, there is no contradiction with the
conditions of evolutionarity of a fast shock wave, since the
number of waves diverging from the shock remains constant
and equal to six. At pointd the incident slow magnetoa-
coustic waves3 will be propagating at the same angle as the
previously existing forward slow waves2. It is a point of
transition of the diverging slow magnetoacoustic waves2 to
the surface mode. Finally, on the segmentdg there will be
two diverging homogeneous slow magnetoacoustic waves,s1
ands4, along with the surface slow magnetoacoustic waves2
(formally this wave is diverging from the shock). With all
theoretically possible incident angles of the entropy wave,
behind the front of a fast shock wave there will be six diverg-
ing MHD waves. Therefore, the conditions of evolutionar-
ity will always be met. Here we should note that Eq. (13)
with coefficients Eq. (9) only determines the angles of prop-
agation of magnetoacoustic waves, but does not stipulate the
wave type. The latter can be determined in a different way.
The magnetoacoustic wave propagating at some angleλ can
only be one of the four types (forward fast, backward fast,
forward slow or backward slow magnetoacoustic wave), that
is, it can take only one of four phase velocities determined by
Eq. (14): +uf , −uf , +us , or −us . Substituting all of them
into Snell’s law in form (1), we can determine the true phase
velocity for the wave considered and hence its type. After
that, from Eq. (15) its group velocity can be found. Then we
calculate the projections of the phase and group velocities on
the normal to the shock wave, and, finally, take into account a
drag of the wave by the flow, that is,Vx+Vphx andVx+Vgrx .
The results of the calculations are shown in Fig. 7. It is seen,
that at pointsb, c, andd theX-component of the group veloc-
ity for the two waves (incident and diverging ones) vanishes.
On segmentab there is a fast magnetoacoustic wave incident
on shock, and on the segmentcd there is an incident slow
magnetoacoustic wave. For both of themVx+Vgrx≤0, that
is, the physical speed of wave propagation is directed toward
the shock. The phase velocity of the slow magnetoacoustic
waves is always directed away from the shock, whereas the
direction of phase velocity of the incident fast magnetoacous-
tic wave can be either. In Fig. 7 the phase and group veloc-
ities of the backward slow magnetoacoustic waves1 are not
shown. For itVx2+Vgrx≈1.5·Vx2, andVx2+Vphx≈0.9·Vx2.
In our numerical calculations we have revealed a more sur-

prising situation. In front of a fast shock wave let the parame-
ters of the flow beM1=3.0, θ1=0◦,ψ1=10◦, α=0◦, β1=0.36,
andγ=5/3. Then behind the front of the shock wave we have

0 30 60 90
Incident angle λe (degree)

0

45

90

135

180

Pr
op

ag
at

io
n 

an
gl

e 
(d

eg
re

e)

80 85 90
Incident angle λe (degree)

a

b c

d g

0

45

90

135

180

Pr
op

ag
at

io
n 

an
gl

e 
(d

eg
re

e)

f 2

f 1
A 2

A 1

s 1
e

s 2

s 3
s 4

s 2A 2

A 1

s 1

s 3
s 4

e
f 1

f 2

Fig. 6. Possible form of dependence of propagation angles of all
theoretically possible MHD waves behind the front of the shock
wave on the incident angle of entropy wave. In the top plot the
range of incident angles from 80 up to 90◦ is shown in more detail.

M2≈0.84,θ2≈36◦, ψ2≈48◦, β2≈0.97. The density and the
thermal pressure grow across the fast shock wave by factors
of ≈2.2 and≈5.8, respectively. Figure 8 shows the angles
of propagation of MHD waves behind the front of such a fast
shock wave versus the incident angle of the entropy wave
λe. For this case Fig. 9 shows the normal components of
group and phase velocities of the backward slow magnetoa-
coustic waves versus the angleλe. On the lengthcd there
is one forward and three backward slow magnetoacoustic
waves. One of the backward slow magnetoacoustic waves
(s3) is incident on the shock surface. Here it is remarkable
that the wave vector of the incident wave is directed away
from the shock wave, that is, the angle of refractionλs3<90◦!
In Fig. 9 the velocities of the forward slow magnetoacous-
tic wave s2 are not shown. For itVx2+Vgrx≈1.6·Vx2, and
Vx2+Vphx≈0.9·Vx2.

We obtained the above-mentioned results using the nu-
merical method of analysis. However, the identical results
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Fig. 7. X-components of the phase velocity (the upper plot) and
group velocity (the lower plot) of magnetoacoustic waves as a func-
tion of the incident angle, changing from 80 up to 90◦. All velocities
are normalised by the normal component of the flow velocityVx2
behind the shock wave. Calculations are performed for the waves
having the propagation angles shown in Fig. 6.

can also be obtained with the graphic method offered by
Kontorovich (1959). In Fig. 10 this method is applied for just
the considered parameters of the medium (Figs. 8–9). Here
the phase diagrams for the fast (F), slow (S) magnetoacous-
tic and Alfvén (A) waves behind the front of the shock wave
are shown depending on the angleλ between the wave vec-
tor and shock normal. The phase velocity of all waves with a
given value ofcp must lie on a circle (9-circle in terminol-
ogy of Kontorovich), passing through the extremity of the in-
terval[−Vx2, 0]. Obviously, the centre of the circle is always
at the point with theX-coordinate equal to−Vx2

/
2. Pa-

rametercp (or the incident angle and type of incident wave)
sets theY -coordinate of the centre. The polar angles of the
cross points of the9-circle and phase diagrams are propaga-
tion anglesλ of corresponding waves. If the cross point lies
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Fig. 8. Propagation angle of MHD waves versus the incident angle
of entropy wave (the same as in Fig. 6 but for other characteristics
of the fast shock wave).

in the lower semiplane, the corresponding wave is the back-
ward one (ω0<0). At normal incidence, the9-circle turns to
a straight line, that is, the centre of the circle lies at the point
with Y=+∞. TheY -coordinate of the centre of the circle
monotonously decreases with the growth of the incident an-
gle λe. We perform the constructions for eight incident an-
glesλe, corresponding to characteristic points in Figures 8-9.
PlotsA andB refer to the case of relatively small incident an-
gles, when in the compressed medium there are two fast and
two slow magnetoacoustic waves (the9-circle crosses the
phase diagramsF andS at two points). On the plotC the
9-circle is tangent to the diagram F. This case corresponds
to the point b (Fig. 9) when the refracted wave transforms to
the surface mode. On plotsD (a point inside the segment
bc) andH (point g) the9-circle crosses the diagramS at
two points and does not cross the diagramF . Here there
is a surface wave and two refracted slow magnetoacoustic
waves. On the plotsE andG (pointsc andd) the9-circle
crosses twice and once is tangent to diagramS. Finally, on
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Fig. 9. X-components of the phase velocity and group velocity of
the backward slow magnetoacoustic waves as a function of the inci-
dent angle of the entropy wave. All velocities are normalised by the
normal component of the flow velocityVx2 behind the shock wave.
Calculations are performed for the waves having the propagation
angles shown in Fig. 8.

the diagramF (a point inside the segmentcd) the9-circle
crosses four times the phase diagramS which corresponds to
four slow magnetoacoustic waves. We note that the graphic
method also enables one to distinguish between incident and
diverging waves (see Kontorovich (1959)). This confirms our
conclusion that one of four slow magnetoacoustic waves will
be incident on a shock wave, that is, the conditions of the
evolutionarity will not be violated. The graphic method of
the analysis is more transparent than either the analytical or
numerical method. However, in our opinion, it has poor ac-
curacy and is inconvenient for use in computations.

We have shown that under certain conditions behind the
front of a fast shock wave there can propagate four homoge-
neous slow magnetoacoustic waves having an identical value
of cp, and any fast magnetoacoustic waves cannot propagate.
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Fig. 10. Graphic analysis of refraction of MHD waves on a shock
wave. The polar angles of the cross points of the9-circle and phase
diagrams for the fast (F), slow (S) magnetoacoustic and Alfvén
(A) waves (the corresponding polar lines are shown on the plots)
determine the propagation angles of the waves. Denotations are the
same as in Figures 1, 6 and 8. The centre of theψ-circle is denoted
by the symbol “•” (not shown on the plotA).

It has been demonstrated that it does not at all contradict the
condition of evolutionarity of the fast shock wave (3). Note,
that a physically similar feature can be observed from two
sides of a rotational discontinuity or a slow shock wave. For
these two types of discontinuities it can be realised much eas-
ier than for a fast shock wave.

In the following section we will examine the polarisation
of the surface magnetoacoustic waves.

5 Polarisation of the surface magnetoacoustic waves

We investigate the polarisation of magnetoacoustic waves de-
scribed by dispersion Eq. (13) with coefficients Eq. (9). It is
easy to show that forϕ satisfying Eq. (13) the linearized set
of MHD Eq. (7) will yield the following relations for the am-
plitudes of perturbations in the MHD wave

δVAx=
(
ϕ·VAy−VAx

)
·
(
−cp+ϕ·Vx+Vy

)
·δA,
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δVAy=−ϕ·
(
ϕ·VAy−VAx

)
·
(
−cp+ϕ·Vx+Vy

)
·δA,

δVAz=−

(
ϕ2

+1
)

·VAz·
(
−cp+ϕ·Vx+Vy

)
·δA,

δVx=
[
ϕ·
(
−cp+ϕ·Vx+Vy

)2
−

(
ϕ2

+1
)

·
(
ϕ·VAx+VAy

)
·VAx

]
·δA,

δVy=
[(

−cp+ϕ·Vx+Vy
)2

−

(
ϕ2

+1
)

·
(
ϕ·VAx+VAy

)
·VAy

]
·δA,

δVz=−

(
ϕ2

+1
)

·
(
ϕ·VAx+VAy

)
·VAz·δA,(

−cp+ϕ·Vx+Vy
)
·δρ=−ρ·

(
ϕ·δVx+δVy

)
,

δP=c2
S ·δρ. (16)

Here we have expressed the amplitudes of fluctuations in
the components of the usual (δV ) and the magnetic (δV A)

speeds through the common amplitudeδA. The amplitudes
of density and pressure fluctuations are expressed through
the amplitudes of fluctuations in theX- andY -components
of the velocity.

If ϕ is real, Eqs. (16) define a usual linearly polarised mag-
netoacoustic wave. The amplitudes of the fluctuations of var-
ious values in the wave will be written in the reference frame
connected to the unperturbed discontinuity. In solving the
problems of the interaction of perturbations with a plane dis-
continuity, this presentation is much more convenient com-
pared to the conventional one, in which the amplitudes of
perturbations are given in the fluid’s rest frame (V =0). If ϕ
has a nonzero imaginary part, Eqs. (16) determine the polar-
isation of a surface wave. The perturbations of the velocity
and magnetic field in this wave have an elliptic polarisation,
which is further demonstrated.

Let us write down the perturbationsδV andδV A, deter-
mined by Eqs. (16), in the similar form

Sx= |Sx | ·exp i· (ω·t+αx) ,

Sy=
∣∣Sy∣∣ ·exp i·

(
ω·t+αy

)
,

Sz= |Sz| ·exp i·ω·t. (17)

These expressions are written at a fixed spatial point. The
initial time t0 is chosen in such a way that the phaseαz is
equal to zero. It is clear that the projection ofS (t) on any of
the three perpendicular planesX−Y ,X−Z andY−Z will be
an ellipse. (Here we consider a circle or a line segment to be
a special case of an ellipse.) But what will be the dependence
S (t) in space?

Let n be the unit vector. In the polar coordinates it may be
written as

n = (cosη· sinϑ, sinη· sinϑ, cosϑ) .

Let us define the anglesη andϑ as follows:

η=arctg

(
−

|Sx | ·sinαx∣∣Sy∣∣ ·sinαy

)
,

ϑ=arctg

(
|Sz| ·sinαy

|Sx | ·cosη·sin
(
αx−αy

)) .
The vectorn is time independent and always orthogonal to
the vector of perturbationsS. Therefore, the vectorS always
lies in the same plane. The anglesη andϑ have a simple
physical sense; they define two successive turns of the coor-
dinate system. The first turn is around theZ-axis by the angle
η. After this turn the fluctuations along the newX′-axis and
Z-axis will be in-phase. The second turn is around the new
Y ′-axis by the angleϑ . After these two turns we obtain a new
coordinate system̄XȲ Z̄. TheZ̄-axis will be directed along
the vectorn. Now the vector of perturbationsS (t) lies in the
planeX̄−Ȳ and may be presented as

Sx̄= |Sx̄ | ·exp i·ω·t,

Sȳ=
∣∣Sȳ∣∣ ·exp i·

(
ω·t+αȳ

)
,

Sz̄=0.

It is known that a superposition of two sinusoidal oscillations
shifted in phase and propagating in two mutually perpendicu-
lar directions yields an elliptic polarisation of the total move-
ment. Thereby, we have shown that any vector quantity that
can be presented in the form Eq. (17) has an elliptic polar-
isation. Certainly, this is also true for the perturbations of
velocity and magnetic field in an inhomogeneous plane mag-
netoacoustic wave.

Note that usually the planes of polarisation for velocity
and magnetic field perturbations are not coincident, except
for the case when the external magnetic field has noZ-
component, that is, it lies in the plane of wave propagation.
If Bz 6=0, the angle between the planes of polarisation ofδB

andδV depends onχ and hence on the surface phase veloc-
ity cp.

Let us consider in more detail the properties of the sur-
face fast magnetoacoustic wave on the following two exam-
ples. First, we explore a surface wave behind the front of a
rather strong fast shock wave. In front of the shock the pa-
rameters of flow areM1=10,θ1=0◦, ψ1=45◦, α=30◦, β1=2,
and γ=5/3. Behind the front we haveM2≈0.46, θ2≈2◦,
ψ2≈75◦, andβ2≈30. The density and thermal pressure in-
crease across the fast shock wave by factors of≈3.8 and
≈121, respectively. In the second example, the surface wave
behind the front of a slow shock wave is considered. In
this case ahead of the shock,M1=0.5, and other parame-
ters are the same, as in the first example. Behind the shock
waveM2≈0.44,θ2≈-22◦, ψ2≈35◦, andβ2≈3. The density
across the slow shock wave will increase by a factor of≈1.1,
and plasma pressure will increase by a factor of≈1.2. On
the slow shock wave the magnetic field decreases; therefore,
ψ2<ψ1 andθ2<θ1.

In Fig. 11 we have plotted the polarisation for the pertur-
bations of velocitiesδV A andδV associated with the surface
wave. The calculation results are given in three mutually per-
pendicular planes for both examples. The surface phase ve-
locity cp is set by the entropy wave incident at the angle of
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Fig. 11. Polarisation of perturbationsδV andδVA associated with
the surface magnetoacoustic wave in three mutually perpendicular
planesZ=0, Y=0, andX=0. Here the velocityδV is normalised
by |δV max|, that is, the maximal distance between the centre of
the ellipse and a given point of the ellipse is equal to one. Relation
(16) relates the value ofδV to δVA. The left (right) plots show
the polarisation of perturbations behind the front of a fast (slow)
shock wave. The symbols “•” indicate the initial phases of pertur-
bations. The vectors of polarisation rotate counterclockwise in the
wave damping off from the discontinuity.

70◦. A superposition of two movements yields an elliptic
polarisation ofδV in the surface wave. It is the movement
along an ellipse in the plane of propagationZ=0, which is
similar to the movement of water in a sea wave, and linearly
polarised oscillations along an external magnetic field. The
first component exceeds by far the second one behind the
front of a sufficiently strong fast shock wave. Therefore,
firstly, |δV | � |δV A| and, secondly,δV is polarised nearly
in the planeZ=0. On the contrary,|δV | and|δV A| have the
same order behind the front of a slow shock wave. In Fig. 12
the direction ofδV max versus the angle of incidence of the
entropy wave is shown for both examples. The curves have
a well pronounced jog at the critical incident angle when the
refracted fast magnetoacoustic wave transforms to the sur-
face mode. Behind the front of a sufficiently strong, fast
shock wave, the characteristics of the refracted, fast magne-
toacoustic wave are close to those of the sound wave. In this
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Fig. 12. Components of the unit vector along the vector of maxi-
mal perturbations of velocityδV max (for the surface wave it is the
direction of the principal axis of the polarisation ellipse) versus the
incident angle of the entropy wave setting the valuecp. The left
(right) plots show the direction of the unit vector behind the front of
the fast (slow) shock wave.
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Fig. 13. Ratio of axis lengths for the polarisation ellipse of ve-
locity and magnetic field perturbations, associated with the surface
fast magnetoacoustic wave, versus the incident angle of the entropy
wave setting the valuecp. The left (right) plots show this ratio be-
hind the front of fast (slow) shock wave.

case we haveδVz≈0 for the refracted, fast magnetoacoustic
wave. When such a refracted wave is homogeneous,δV max
is directed almost along the wave vector. For an inhomoge-
neous surface wave,δV max is directed along the main axis of
the polarisation ellipse. The angleε between theX-axis and
the main axis of the ellipse can be calculated by the formula

tg 2ε=
2·Im χ ·ky

|χ |
2
−k2

y

.

At the maximum possible angle of incidence of the entropy
wave, at whichcp=0, the main axis of the polarisation ellipse
coincides with theX-axis. Behind the front of the slow shock
wave the behaviour ofδV max is more complicated.

In Fig. 13 the ratios of the lengths of the small (δmin)

and large (δmax) axes of the ellipse of polarisation for ve-
locity and magnetic field perturbations are shown. In both
cases these ratios can exceed 0.8, that is, at large angles of
incidence of the entropy wave, the polarisation of velocity
and magnetic field perturbations in the surface fast magne-
toacoustic wave will insignificantly differ from the circular
polarisation. The “stretching” of the ellipse is commonly es-



1906 A. A. Lubchich and I. V. Despirak: MHD waves near MHD discontinuities

timated by the value of eccentricitye. It can be easily calcu-
lated by the formula

e=

√√√√1−

δ2
min
δ2
max

.

Note that in the second example the refracted, fast magnetoa-
coustic wave becomes the surface wave already at the angle
of incidence of the entropy mode of about 25◦.

In Figs. 11–13 the results of numerical calculations by
Eq. (16) are illustrated. Certainly, for all characteristics of
the ellipse of polarisation of velocity and magnetic field per-
turbations, including the direction of the main axes, eccen-
tricity, etc., exact analytical expressions can be given. But
unfortunately, they have an extremely bulky form. There-
fore, we do not show them here.

6 Summary and discussion

We have considered the properties of plane MHD waves of
small amplitude in the medium separated by a plane MHD
discontinuity into two half spaces. The angles of propagation
and the polarisation of MHD waves generated by the discon-
tinuity are determined versus the phase velocity of surface
discontinuity oscillations. The surface phase velocity is set
either by an incident wave or spontaneously emerging ripples
on the discontinuity surface. The method of the analysis is
based on the solution of the dispersion equation for the MHD
waves, written in the reference frame, connected with the un-
perturbed surface of the discontinuity. In our opinion, the
proposed technique is more handy compared to other meth-
ods described earlier. The analysis of the obtained dispersion
equation under a given surface phase velocity has shown that
from the chosen side of the front there cannot exist more than
one surface wave generated by discontinuity. If the surface
wave has emerged, it can only be a fast or slow magnetoa-
coustic wave. The perturbations of velocity and magnetic
field, associated with the surface wave, have an elliptic po-
larisation, and the planes of polarisation of velocity and mag-
netic field perturbations, as a rule, are not coincident. It has
been shown that under certain conditions behind the front of
an evolutionary fast shock wave there can be four slow mag-
netoacoustic waves, having identical surface phase velocity
and no fast magnetoacoustic waves.

In our analysis we have used the MHD approximation, i.e.
that of the continuous medium. Therefore, the results ob-
tained refer to the case of collisional plasma. Space plasma
is collisional, for example, in the atmospheres of the Sun and
stars, in particular, in the solar chromosphere and corona.
Thus, our research can be relevant to the analysis of solar
flare generation mechanisms. Though the free path of solar
wind particles is of the order of 1 AU, which, strictly speak-
ing, means that the solar wind is a collisionless plasma, the
MHD approximation is often used in studying the processes
in the solar wind. For example, Wu et al. (2005) have used
this approximation in the analysis of the evolution of slow

shock waves and their interactions with other discontinuities
in the heliosphere. The MHD approximation was utilised in
most of the above-mentioned works by exploring the inter-
action of perturbations with MHD shock waves. The formal
ground for the application of the MHD approximation to the
solar wind is the suggestion that the role of the collisions
is taken by the interaction of the solar wind particles with
small-scale turbulence, which is always present in the inter-
planetary magnetic field. It has to be emphasised, however,
that the use of the MHD approximation for the description
of solar wind plasma rules out of consideration of many phe-
nomena, for which solar wind plasma should be treated as
an essentially collisionless medium and which are observed
in the vicinity of interplanetary shock waves and the Earth’s
bow shock. The detailed analysis of these phenomena can be
found in numerous works (see, for example, the review by
Lembege et al. (2004) and references therein).

We use the one-liquid approach. It applies to waves with
a frequency much less than the proton cyclotron frequency.
Waves with a larger frequency are not the subject of our anal-
ysis. We shall note only that such “high”-frequency waves
are often observed in the solar wind and therefore are in-
tensively investigated by many authors. For example, Agim
et al. (1995) investigated the generation and evolution of a
spectrum of finite amplitude, right-hand elliptically polarised
MHD waves with a frequency near the ion cyclotron fre-
quency in the upstream region of interplanetary shocks. The
waves are excited by an ion beam instability of a backstream-
ing ion beam formed by a specular reflection of a fraction of
the incoming solar wind protons at the shock.

Regarding to the results obtained, two issues are of in-
terest. The first issue concerns the evolutionarity of shock
waves. For the first time the conditions of evolutionarity
(a stability against a decay to several other discontinuities)
of shock waves are obtained for the perturbations propagat-
ing along the normal to the shock (Akhiezer et al. (1959),
Syrovatskii (1959)). The interaction of shock waves with
the perturbations propagating at a certain angle to the front
has been investigated by Kontorovich (1959) and Ander-
son (1963). They came to the conclusion that the shock wave,
which is evolutionary to the perturbations propagating along
the normal to the discontinuity, remains evolutionary for the
perturbations propagating at any theoretically possible angle
to the discontinuity. Later, a number of authors (e.g. Zhuang
and Russell (1982), Whang et al. (1987)) questioned this con-
clusion. They argued that the shock wave satisfying the clas-
sical conditions of evolutionarity (3) turns non-evolutionary
for the large angles of propagation, when the wave vector of
a refracted, fast magnetoacoustic wave is directed toward the
shock. The reason for such a conclusion is that they discrim-
inated the waves, emanating from a shock, by the sign of the
wave vector component normal to the surface. We consider
such an approach to be physically incorrect. The selection
of emanating waves should be performed by the sign of the
normal component of the group velocity. Besides, it is nec-
essary to take into account the drag of the wave by the flow.
Our numerical results have confirmed that within the correct



A. A. Lubchich and I. V. Despirak: MHD waves near MHD discontinuities 1907

framework, the number of waves emanating from the evo-
lutionary (according to (3)) shock wave will be unchanged
for any value of the surface phase velocity or, otherwise, at
any theoretically possible angle of emanation. The group ve-
locity of diverging waves (with the drift included) will be
directed away from the shock for homogeneous plane waves
and parallel to the discontinuity for inhomogeneous (surface)
waves. The number of diverging waves will be preserved,
even in the specific case when for some values of surface
phase speed behind the front of a fast shock wave there are
four slow magnetoacoustic waves and no fast magnetoacous-
tic waves. One of the four slow magnetoacoustic waves in
that case will be incident on the shock, the overall pattern be-
ing consistent with the conditions of evolutionarity (3). The
normal component of the phase velocity of an emanating or
incident wave can be of any sign.

The second issue concerns a possible transformation of re-
fracted magnetoacoustic waves to the surface wave. Usu-
ally, in investigating the transformation of MHD waves on
an MHD discontinuity, the solution of the problem is re-
stricted by the angles of incidence at which all waves di-
verging from the discontinuity are homogeneous (e.g. Kwok
and Lee (1984), Westphal and McKenzie (1969), Has-
sam (1978)). We think this limitation has neither a phys-
ical nor mathematical basis. Its artificial character can be
illustrated by the following example. McKenzie and West-
phal (1969), while investigating the passage of Alfvén waves
through a fast shock wave considered a situation when the ex-
ternal magnetic field, wave vector and normal to the disconti-
nuity, lay in the same plane. In this case the refracted magne-
toacoustic waves did not emerge, and consideration included
all theoretically possible angles of incidence. But if there was
a small angle between the tangential components of wave
vector and external magnetic field, the refracted magnetoa-
coustic waves would appear. Then, if the above-mentioned
limitation were used, it would be necessary to restrict essen-
tially the analysed range of incident angles (e.g. the upper
limit of angles would change from 90◦ to ≈63◦, for a strong
fast shock wave). We argue that no problems emerge with
the consideration of all theoretically possible angles of inci-
dence.

We draw the readers’ attention to an interesting point aris-
ing when a magnetoacoustic wave propagates at a large angle
to a strong fast shock wave from the uncompressed medium.
The incident wave transports the fluctuations of density and
pressure, and has a considerable longitudinal component of
velocity fluctuation. Behind the shock the fast magnetoa-
coustic wave will propagate as a surface wave, damping
rather quickly off from the discontinuity, along with five di-
verging homogeneous waves (two Alfvén waves, two slow
magnetoacoustic waves and an entropy wave). All homoge-
neous waves will have very small phase velocities of their
own and, practically, the perturbations will be drifting with
the flow. The whole wave will represent a transversely po-
larised entropy-vorticity wave, carrying the fluctuations of
magnetic field, velocity, entropy, and density. The pertur-
bations of pressure and temperature in such a wave are ab-

sent. As a result, at some distance from the discontinu-
ity, where the surface wave has already damped, only the
entropy-vorticity wave will be propagating, that is, there will
be an almost total transformation of a mostly longitudinal in-
cident wave to transverse diverging wave.

We have shown theoretically that the surface magne-
toacoustic wave should possess an elliptic polarisation.
The elliptically polarised MHD waves are sometimes ob-
served in experiments. For example, Pudovkin and
Lyubchich (1989b), using the King catalogue (1977), have
shown that the long-period fluctuations of the magnetic field,
accompanied by a rotation of the polarisation vector, some-
times occur in the solar wind in between the flare ejection
and its bow shock.
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