
EARTHSCAPE, A MULTI-PURPOSE INTERACTIVE 3D GLOBE VIEWER FOR

HYBRID DATA VISUALIZATION AND ANALYSIS

A. Sarthou a,*, S. Mas a, M. Jacquin a, N. Moreno a , A. Salamon a

a Exelis Visual Information Solutions, Toulouse, France – (jean-arthur.sarthou, stephane.mas, marc.jacquin, nicolas.moreno,

arnaud.salamon)@exelisinc.com

Commission II, WG II/6

KEY WORDS: 3D Viewer, Globe View, Dynamic Footprint, Touch Screen, Shader Programming, Remote Computation, Full

Motion Video, Hybrid visualization

ABSTRACT:

The hybrid visualization and interaction tool EarthScape is presented here. The software is able to display simultaneously LiDAR

point clouds, draped videos with moving footprint, volume scientific data (using volume rendering, isosurface and slice plane), raster

data such as still satellite images, vector data and 3D models such as buildings or vehicles. The application runs on touch screen

devices such as tablets. The software is based on open source libraries, such as OpenSceneGraph, osgEarth and OpenCV, and shader

programming is used to implement volume rendering of scientific data. The next goal of EarthScape is to perform data analysis using

ENVI Services Engine, a cloud data analysis solution. EarthScape is also designed to be a client of Jagwire which provides

multisource geo-referenced video fluxes. When all these components will be included, EarthScape will be a multi-purpose platform

that will provide at the same time data analysis, hybrid visualization and complex interactions. The software is available on demand

for free at france@exelisvis.com.

1. INTRODUCTION

Visualizing data over a virtual globe is now a common thing

since the first release of Google Earth in 2005. A lot of different

virtual globe viewers exist nowadays, NASA World Wind for

example, and some are devoted to the visualization of scientific

data (meteorological, environmental, geological or climatic

data...) such as SonarScope-3DViewer, created by Altran and

IFREMER, which is dedicated to oceanic visualization. More

focused on GIS data, ArcGIS Pro from ESRI includes various

visualisation and analysis tools. Geosoft has developed (but no

more supports) Dapple which was based on World Wind and

specialized in geological data visualization. EverView is also

based on World Wind and dedicated to geological information

and is used to deal with to biological studies (Romañach 2014).

In (Angleraud 2014), the author presents magHD, a

visualization software who aims at using distributed storage to

deal with massive amount of 3D data. The author emphasises

the advantages of real time manipulation of data since the

interpretation of moving images by the brain allows new

features to be detected by the user. In the situational awareness

domain, Luciad proposes a set of software that allows aircraft

positions and sight of view, FMV videos draped on terrain or

vector information such as buildings and routes to be displayed.

We propose to gather some of these aspects (GIS, scientific

visualization, situational awareness) in EarthScape, a new

hybrid visualization and interaction tool. EarthScape is based on

osgEarth, an open source terrain rendering SDK capable of

reading traditional georeferenced data such as KML files.

Although many operations can be achieved with KML files

(Ballagh 2011), advanced visualization features (volume

rendering, point cloud) are implemented to propose an extensive

visualization tool.

The architecture of the software and its core libraries are

presented first. Then, we describe the different supported

sources of data. In Section 4, the visualization of volume

scientific data using shader programming is presented. Section 5

deals with the touch screen capabilities of the software and

some HMI aspects. In section 6, future connections with process

and data services products of Exelis (ENVI Services Engine and

Jagwire) is discussed. In the last section, conclusions and

perspectives are drawn.

2. SOFTWARE ARCHITECTURE

2.1 Architecture overview

The viewer is principally developed in C++. The

OpenSceneGraph SDK is the core of EarthScape. The main GIS

features are handled with the osgEarth library while the HMI

widgets are managed with Qt. Additional libraries are used for

more specific purposes, such as OpenCV for the management of

the video fluxes. One of the advantages of the open source

approach concerns the security aspects. While an internet

connection can be required to download third-party data such as

raster images, it is mandatory for some users to be sure that

their own data will not be transmitted to anyone. Such a security

is not totally guaranteed (officially or officiously) with closed

source solutions such as Google Earth.

As EarthScape is developed in C++, it cannot be run on a web

browser and is not a light client. The interest of using such a fast

language at the expense of the ease of installation is to allow

heavy computations to be performed by the client. While the

data processing is supposed to be performed by a remote server

using ESE, EarthScape can compute algorithms such as path

finding or physical simulations. A compiled language strategy

also gives a wider choice in third party components (such as

OpenSceneGraph and osgEarth).

2.2 OpenSceneGraph

OpenSceneGraph (http://www.openscenegraph.org) is an open-

source 3D graphics toolkit written in C++ and OpenGL. It

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

487

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194992752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/article/pii/S1364815214002618

simplifies the use of OpenGL and proposes a graph based scene

management.

2.3 osgEarth

osgEarth (http://osgearth.org) is an open source terrain

rendering SDK developed by Pelican Mapping and based on

OpenSceneGraph. It deals with tiled imagery, elevation and

vector data from local disk or remote servers like OGC, WMS

or TMS. As for OpenSceneGraph, osgEarth is a cross-platform

library.

There is almost no technical documentation of osgEarth.

Fortunately the whole source code is available and questions

can be asked to the developers in a user forum. Some parts of

osgEarth are quite tricky. It took for instance a lot of time to be

able to display multiple draped vector layers in the right order

with good performances.

Concerning the tile management, osgEarth completely manages

this process and caches the remote data. However, the tile

update of cache data is quite slow compared to some other

solutions such as Google Earth. It is also possible to implement

specific tile servicing processes.

2.4 OpenCV

OpenCV (http://opencv.org) is an open source computer vision

SDK supported by Willow Garage. Mainly used for robotics

applications, it proposes several tools to handle image and video

acquisitions and processes. It is a cross-platform library. It is

used in EarthScape to read video fluxes.

2.5 HMI

The Qt framework (http://qt-project.org), with its advanced

widgets and its designer tool, is used to implement HMI widgets

and manage the main window (move, resize...) and all widgets

animations. Figure 1 shows the application screen with a

resource list and a scientific data panel opened on a tablet

device. OpenSceneGraph and osgEarth SDK contain classes to

facilitate the integration of a 3D view in a Qt widget.

Figure 1 - EarthScape HMI with Qt

2.6 GLSL

Shaders are programs running on the graphic card and handling

the way each screen pixel is rendered. The shader uses meshes

information, light positions or texture data to compute the color

of each pixel. With OpenGL, custom shaders can be

implemented in GLSL (OpenGL Shading Language), a C-like

programming language. New shaders have been developed for

the current project to handle customized real-time rendering of

volume data.

2.7 GPS sensor

The viewer may retrieve positions from various localization

sources including Windows 8 compliant onboard GPSes and

external (USB or Bluetooth) NMEA compliant GPSes.

The viewer expects a socket based service to request at its own

frequency and returning an XML response containing mainly

Lat/Lon and altitude position and other information like

horizontal and vertical speeds, timestamp or heading if

available. Once the position is known, osgEarth permits to

attach a graphic object to the position and link the camera to a

relative position of this moving object: above, inside, aside,

below.

3. DATA VISUALIZATION

3.1 Earth globe content

The native terrain rendering engine of osgEarth is used to

display realistic earth globe content, including DEM, satellite

imagery and sky effects. Associated GDAL plug-in allows the

connexion to OGC servers (ex: WMS for satellite imagery) and

the import of several geographic files formats (ex: Geotiff for

DEM). Figure 2 shows such a rendering. The osgEarth cache

and tile serving principle allows multithread based pyramidal

loading of data content during a smooth zoom changing

interaction.

3.2 Data management

OpenSceneGraph and osgEarth scene nodes are used to build

graphical content on the globe. The application then manages

the scene as a list of “displayable resources”. Each “displayable

resource” contains a reference to the graphical scene node, plus

additional information dedicated to the interactions with it

(name to be displayed in the HMI, current visibility, default

viewpoint on the data...). The data loading from the local drive

is handled outside the “displayable resource” and is currently

synchronous. Further work will consist in implementing

asynchronous data loading.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

488

Figure 2 - Realistic earth globe visualisation

3.3 Vector data

Vector layers are accessed through the OGR part of GDAL

which supports most of the usual vector formats including

shapefile, MapInfo, ESRI, up to OGC WFS and TFS (Tiled

Feature). Various draping techniques enable taking in account

altitude values if available for on ground positioning. Symbol

representation of vector data, even if not as rich as for some

other map engines, allows decent and effective rendering. The

osgEarth labelling of features has been enhanced and may be

combined with icons on a SQL like queries filtering. Figure 3

shows vector data of buildings associated with DEM and

imagery.

Figure 3 - Buildings draped on DEM

3.4 Database access

The GDAL plugin provides a direct access to

PostGreSQL/PostGIS data tables. Using PostGreSQL/PostGIS

instead of shapefiles for vector data has many advantages like

combining vector data through views and SQL relational

queries using PostGIS vector operators and functions.

Performances are even much better than using shapefiles thanks

to GIST indexing and PostGreSQL binary cursors. And finally,

PostGreSQL/PostGIS might be the best solution for storing

dynamic data as the refresh of vector data source has been

enhanced.

3.5 Full Motion Video

The application can load and display Full Motion Videos

(FMV). Generally acquired by UAVs, FMV files combine

image frames and localisation metadata (MISB format in our

example). For now, the localisation metadata is extracted from

the video file using ENVI and its FMV module, then exported

to ASCII readable file. The application uses OpenCV to load

and browse the video frames, and OpenSceneGraph texture

mechanism to drape them on the terrain. Figure 4 shows a UAV

acquisition localised on the map using the MISB metadata.

Figure 5 shows this same video but with a fake localisation on

the Alps. Concerning the computational cost, this function does

not affect the overall good framerate of the application.

Figure 4 – Geo-referenced UAV acquisition

Figure 5 - Video draping on terrain

3.6 LIDAR data

Geo-referenced LiDAR data is read from binary files generated

by ENVI LiDAR from classical LiDAR formats (LAS). The

resulting point cloud is directly rendered by OpenGL. An

example (the city of Avon, NY, USA) is shown in Figure 6. No

optimisation such as adaptive point display is performed for

now for LiDAR data. For the current example, the 5 millions-

points set is displayed and manipulated in real-time on a usual

laptop computer. Using an open source library such as Point

Cloud Library could be an option to manage LiDAR point sets

of higher weight.

Figure 6 - LiDAR data over geo-referenced images (Avon, NY,

USA)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

489

3.7 Volume Data

Volume data are extracted from NetCDF files using IDL. For

now, only scalar data such as temperature is considered. The

way these data are displayed is described in Section 4.

3.8 Differed time and animations

The application can import trajectory files containing time

stamped 6D poses (time, longitude, latitude, altitude, yaw,

pitch, and roll). Models of standard mesh format can be

imported and animated along the trajectory. This feature allows

the representation of any type of vehicle trajectory. Figure 7

gives an example of a train trajectory representation. Camera

navigation modes have been implemented to enable the

overview of the full trajectory, the focus on the animated item,

or the view from inside the item (pilot view).

Figure 7 - Train model and trajectory

A central component is responsible for maintaining the current

virtual time of the scene. It is updated at each 3D rendering. As

shown in Figure 8, any entity interested in the virtual time

observes this time server and takes its changes into account. For

now, any 3D scene animation and the video files playback are

synchronized like this. This architecture would easily allow the

addition of time triggered items such as a physical simulator, or

HMIs to display mobile metadata. The application proposes a

media player widget which triggers play, pause and jumps on

the virtual time server. The user can thus navigate in the virtual

time.

4. VOLUME RENDERING

4.1 Shader programming with GLSL

GLSL, the default OpenGL shading language, is used in

EarthScape to create ad hoc shaders. There are different kinds

of shaders taking place at different levels of the graphical

pipeline. In the present work, two kinds of custom shaders are

created. The first one is the vertex shader. It runs once for each

vertex of the 3D scene and determines the on-screen position of

the vertex. The second kind of shader is the fragment shader

which is run once for each pixel of the screen. It computes the

color of the pixel according to various data such as lights

positions or surfaces properties.

The shaders are compiled and run by the GPU of the graphic

card instead of the CPU. Data from the main program managed

by the CPU to be used with shaders have first to be transferred

from the RAM or the hard-drive to the graphic card memory.

One of the main advantages of the shader approach is that each

shader instance (which computes a pixel color or a vertex

position) is executed by one GPU core. As many GPU cores

(tens to thousands depending on the graphic card) are present on

a single GPU, using shaders offers a simple and efficient way to

perform parallel computing. Shaders give an easy access to a

great parallel computational power so visualization and

extraction algorithms can be implemented directly on shaders.

In EarthScape, isosurfaces, slices or dense rendering of 3D

volumes are computed using the GPU and the volume data in

the graphic card memory. Such visualization methods are

efficient and necessary when navigating through volume data as

the analysis of volume information on screen is not as trivial as

for 2D data.

OpenSceneGraph allows to easily assign a specific shader for

each 3D geometry. Our home-made shaders are used on box

geometries containing volume data while the standard

OpenSceneGraph shader is used for the other geometries.

Figure 8 - Time management architecture

Media player

Virtual

time server

controls

Video

player

observes

observes

3D scene animations

Any item interested in time change

(ex : physics simulator, metadata

display HMI…)

observes

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

490

4.2 Managing scientific data

When a scientific data set has to be displayed, a range of

scientific values is generally associated with a color ramp. For

this purpose, a function Fsc has to be defined for each scientific

value Vs to translate it to a displayed color data Vc.

As OpenGL and GLSL provide a fast and easy access to the

texture memory of the graphic card, the data to display is stored

as a 2D or 3D texture. Textures are encoded in RGBA format,

and each channel can store an integer or a float value which

offers a limited range of values. This range can be smaller than

the range of the scientific data to display. A first solution

consists in computing the color Vc = Fsc(Vs) of each value of the

scientific data set on the CPU and then to store the new color

dataset in the texture memory. However, it means that all Vc

have to be computed from Vs on the CPU. In case of real-time

modification of Fsc, this procedure could be required to be

performed for each frame. As new data set has to be transferred

to the GPU, this method is not optimal in term of performances.

Another approach used here is to transfer the function Fsc and

the scientific data to the GPU and to compute Vc = Fsc(Vs) on it

at each frame. To be stored in texture memory (which provides

a limited type of data), each scientific scalar value of the

scientific dataset is converted to a vector of four 8-bit integers

to be stored in a RGBA texture. The maximum Maxs and

minimum Mins values of the scientific data set are considered

and each scalar value between Mins and Maxs is mapped

between [0, 0, 0, 0] and [255, 255, 255, 255].

4.3 Volume rendering

The volume of data can be visualized as a translucent block

coloured by the data. The rendering is performed with a volume

ray-casting algorithm (Kruger, 2003). The data is contained in a

box, and we consider a pinhole camera model. The camera is

located at point C. We consider a virtual grid between the

camera and the data to render. Each element of the grid is a

pixel of the screen. Rays are cast from C through the center of

each pixel of the grid. Some rays hit the volume box and goes

through it step by step (small steps increase the rendering

quality but also the computational time), passing through many

voxels and accumulating information. For each of these rays,

the corresponding pixels are coloured according to the

information gathered along the ray. Figure 12 shows such a

rendering of temperature data.

4.4 Isosurface rendering

We consider the isovalue α that defines the isosurface. For each

ray progressing inside the volume data box (corresponding to

one pixel of the screen), the value of the scientific data α n at the

location of the step number n of the ray is checked and

compared to αn-1, the data value at the previous step. If αn< α <

αn-1 or αn-1< α < αn, then the ray has crossed the isosurface.

Then, the resulting opacity of the corresponding pixel on the

screen is set to 1. The computation of the color of the pixel is

performed according to the light sources positions and

intensities, and to the local isosurface normal. This latter is

obtained by calculating the normalized gradient of the volume

data. For the present work, a Phong shading (ambient, diffuse

and specular lights are considered) is used (Phong, 1975). The

Figure 9 shows an isosurface rendering for a volume data.

The classic way to render an isosurface is to compute on the

CPU the mesh of the isosurface from the data set and to send it

to the GPU to display it. Compared to the present algorithm,

this approach has two drawbacks. The creation of the isosurface

mesh requires a quite complex algorithm, and in case of real-

time modification of the isovalue, a new mesh of the isosurface

has to be generated and transferred many times to the GPU.

In the present method, no isosurface mesh is generated and each

pixel computes its color from the raw volume data set and the

lights properties only. This method is fast and allows real-time

update of the displayed isosurface when the user changes the

isovalue. It is a good demonstration of the shader capability to

do more than simple display operations.

Figure 9 – Isosurface rendering of volume data

4.5 Slice plane rendering

Let us consider 𝑎 ∈ 0,1 the relative position of the plane in the

box along a given axis. For each ray traversing the box, its

relative positions in the considered axis pn is compared to its

position pn-1 at the previous step. If pn<a< pn-1 or pn-1<a< pn, the

ray has crossed the slice plane, so the color of the pixel can be

determined by interpolating the data between pn-1 and pn. A

rendering example is shown in Figure 10. As for the iso-surface

algorithm, the present shader algorithm is very simple to

implement once the ray-tracing method of the volume rendering

algorithm is available. It also allows real-time interaction of the

user on the slice planes positions.

Figure 10 – Rendering of slice planes of volume data

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

491

4.6 Geo-referenced volume data rendering

The ray-casting algorithms for volume rendering are generally

used on boxes as it simplifies the rendering algorithm. In the

case of georeferenced data (e.g. the air temperature), the

information is available in a significant range of latitude,

longitude and altitude. Hence, the data is present in a volume

that cannot be approximated by a box. It is possible to include

the scientific data in a bigger box that contains it (Li 2013) but

some part of the box has no use and it generates unnecessary

calculations and memory use. In (Liang 2014), Liang et .al use a

ray-casting algorithm on a curved box by converting the

position of each step of each ray from Cartesian to the unit

curvilinear local frame of the curved box. The Figure 11 shows

the shape of a curved bow used as base volume for volume

rendering. This method is used in EarthScape.

Figure 11 - Curved box used for volume rendering

Figure 12 - Volume rendering of air temperature values over

North America

4.7 Performances

The volume rendering is the most resource demanding part of

EarthScape. The computational power required to render a

frame with a volume data first depends on the on-screen size of

the data. The second parameter which has a direct influence is

the discretization step of the ray. A smaller step induces more

visual quality by producing a more smoothed rendering

(otherwise the volume seems to be a stack of layers instead of a

real volume) but also requires more steps and increases the

computational cost of the shader. For a good compromise

between speed and quality, the number of steps for the rays is

set to 100. With this configuration on a computer with an i7-

2700QM CPU with a 2.40 GHz clock and a nVidia Quadro

1000M, a framerate of 20 frames per second is obtained in HD

(1920×1080) resolution.

5. HMI AND TOUCH SCREEN CAPABILITIES

5.1 HMI widgets

osgEarth proposes classes dedicated to HMI prototyping such as

containers, horizontal/vertical boxes, images, frames, labels and

buttons. Those widgets have been initially used for Head-Up

Display HMI in the application. The advantage was that it

required no additional HMI library, and that widgets could be

handled with the animation engine of OpenSceneGraph.

However, it quickly appeared that those widgets are quite basic

and troublesome with touch screen interactions. Indeed, touch

filters had to be implemented to dissociate real to fake touch

events. Qt library was thus benchmarked. The result is that Qt

widgets are not subject to parasitic touch events and that Qt

designer offers a gentle way to build more complex HMIs.

Hence, Qt is now used in EarthScape.

5.2 Touch interactions with the globe

The application also offers touch screen interactions with the

globe. The osgEarth native earth manipulator was used for

standard navigation around the globe. This manipulator

proposes several goodies such as node tethering (to keep focus

on a moving node), or automatic displacements (to reach a

chosen viewpoint with a smooth animation). Touch interactions

were also implemented to perform specific actions on the globe

(move or rotate projected textures, add annotations on the

globe).

Touch screen interaction can eventually be problematic with

osgEarth. In the current version of EarthScape, some patches

that filter the user actions have been added to the touch screen

management to tackle those issues. Some development teams

which use Qt and osgEarth are also using a third-party library

such as Gesture Works to perform touch interactions.

6. CONNEXION TO ENVI SERVICES ENGINE AND

JAGWIRE

6.1 ENVI Services Engine

We could qualify EarthScape as a semi-light client (or semi-

heavy). It is not a web client and it does not analyse data. To

perform data analysis, we are currently working at connecting

EarthScape to ENVI Services Engine (ESE) (Jacquin, 2015).

The principle is to select an area on the globe and to use ESE to

require an analysis (a task) performed by a remote server. ESE

tasks can include IDL, ENVI or ENVI LiDAR functionalities.

ESE exposes tasks capabilities to the client through JSON

format. It appears to be simple and efficient for parsing and

converting tasks input parameters in order to include them in

EarthScape widgets. ESE tasks results are also exposed as

JSON to the client. Whenever results are tabular, vector or

raster data, they may be served with the help of a map engine

providing OGC standard services like WFS, WCS or WMS.

GeoServer or Mapserver may be considered to offer the

compliant services to integrate the effective result into

EarthScape.

6.2 Jagwire

Jagwire, developed by Exelis, can be considered as a new

catalog for storing any kind of geographic data extended to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

492

FMV (Full Motion Video) and WAMI (Wide Area Motion

Imagery) assets as well as LiDAR data or still imagery. Jagwire

proposes simple dedicated viewers for each type of data but

provides Web interfaces fluxes to access assets from any client.

Using the FMV and WAMI capabilities of EarthScape, our aim

is to be a client of Jagwire to display multiple FMV with real-

time footprint evolution.

7. CONCLUSIONS AND PERSPECTIVES

A global visualization and interaction tool has been presented.

EarthScape can deal with many different data types at a same

time. Vector and raster display of geo-referenced data of

multiple formats is provided by the OpenSceneGraph and

osgEarth libraries. Dedicated shaders have been developed to

display scientific data allowing volume, isosurface and slice

plane visualizations. It shows the usefulness of shaders to easily

perform a lot of operations such as feature extractions.

EarthScape allows users to perform multiple interactions with

the data and the computational power of the heavy-client

approach will permit to implement complex algorithms such as

interactive physical simulation or path finding. For Exelis, one

of the goals of EarthScape is to have a visualization and data

gathering platform from which custom applications will be

developed.

Future development on visualization will be devoted to include

the display of the sensor footprint from the position and attitude

of the sensor. It will probably be performed on GPU by a

dedicated shader as the computation of the intersection between

the terrain and the sensor sight needs a lot of resources to be

computed in real-time. The next step will be to perform data

processing by sending requests to a remote ESE. Concerning

Jagwire, the aim is to use EarthScape as a heavy-client capable

of processing Jagwire provided data using ESE. The connection

with ESE will be a very important asset as it will opens

EarthScape to a virtually infinite number of data analysis

processes. It will be necessary to develop new visualization

tools to handle as many ESE outputs as possible.

A mid-term objective will also be to add more data formats

including NetCDF, LiDAR .las, and Jpeg2000 formats.

With all these components, EarthScape will be a multi-purpose

platform to analyse, merge and visualise hybrid data and

perform complex interactions in a unified environment.

The current binary of the software is available on demand for

free at france@exelisvis.com.

REFERENCES

Angleraud, C., 2014. magHD: a new approach to multi-

dimensional data storage, analysis, display and exploitation.

IOP Conf. Ser.: Earth Environ. Sci. 20, 012035.

Ballagh, L., Raup, B., Duerr, R., Khalsa, S., J., Helm, C.,

Fowler, D., Gupte, A., 2011. Representing scientific data sets in

KML: Methods and challenges. Computers & Geosciences 37,

pp. 57–64.

Jacquin, M., 2015. Geoanalytics on-demande paradigm shift

ENVI services engine. ISPRS Archives GeoBigData – ISPRS

Geospatial Week 2015.

Kruger, J., Westermann, R., 2003. Acceleration techniques for

GPU-based volume rendering. In: Proceedings of the 14th IEEE

Visualization 2003 (VIS'03),Washington, DC, USA, pp. 287–

292.

Li, J., Jiang, Y., Yang, C., Huang, Q, M., 2013. Visualizing

3D/4D environmental data using many-core graphics processing

units (GPUs) and multi-core central processing units (CPUs).

Computers & Geosciences, 59, pp. 78–89.

Liang, J., Gong, J., Li, W., Ibrahim, A. N., 2014. Visualizing

3D atmospheric data with spherical volume texture on virtual

globes. Computers & Geosciences, 64, pp. 81–91.

Phong, B., T., 1975. Illumination for computer generated

pictures. Communications of ACM 18, 6, pp. 311–317

Romañacha, S., McKelvya, M., Conzelmannb, C., Suirb, K.,

2014. A visualization tool to support decision making in

environmental and biological planning. Environmental

Modelling & Software 62, pp. 227–229.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-487-2015

493

http://www.sciencedirect.com/science/article/pii/S0098300413001556
http://www.sciencedirect.com/science/article/pii/S0098300413001556
http://www.sciencedirect.com/science/article/pii/S0098300413001556
http://www.sciencedirect.com/science/article/pii/S0098300413001556
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618
http://www.sciencedirect.com/science/article/pii/S1364815214002618

