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A high impedance fault (HIF) normally occurs when an overhead power line physically breaks and falls to the ground. Such faults
are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection.
Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life.This
paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line.
A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented.
The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are
presented which support the foundation and accuracy of the proposed model.

1. Introduction

High impedance faults are those that do not produce enough
current to be detected in a reliable way by conventional
devices such as relays [1]. HIF detection and localization in
electrical power systems has been traditionally a challenge for
protection engineers. This is due to the nature of this kind
of faults, basically their variability and relatively low-current
levels compared to substation load currents. Furthermore,
arcing accompanies HIF, resulting in fire hazard, damage
to electrical devices, and risk to human life. Under these
circumstances, conventional protection relays are unable to
detect and locate such faults. Though many HIFs do not
involve ground at all (phase-to-phase faults due to leaning
trees), phase-to-ground faults are of paramount interest
because of their relevance for public safety.

This has long been recognized by the industry and
since the early 70s, several methods have been proposed in
the literature for HIF detection. They are based on exam-
ining different characteristics of currents and voltages in
the time, frequency, and time-frequency domains. Some of
these techniques are the staged fault test [2], low frequency
spectrum [3], Kalman filtering [4], neural networks [5],
neural networks and wavelet [6], expert systems [7], and

more recently the application of harmonics analysis [8, 9], the
wavelet transform [10–12], and the correlation function [13].

For HIF fault localization, techniques such as numeri-
cal algorithms [14], nonlinear frequency analysis [15], and
recently, time domain studies [16] have been proposed.
However, the authors consider that a complete solution to the
problem of HIF detection and localization can be achieved
only by a deep understanding of the interaction between the
HIF and the transmission line.

In this paper, a new model to analyze the interaction
between a lossless transmission line and the electric arc
associated during a HIF is proposed. The transmission line
is represented by the nondissipative and nondispersive wave
equation and the electric arc is modelled by a Mayr-Cassie
type equation. The novelty and the mathematical challenge
of this problem consist in the joint solution of a linear
partial differential equation, which is the wave equation,
and an essentially nonlinear ordinary differential equation
for the arc model. The nonlinearity of the arc phenomenon
yields a general impossibility of considering the electric arc
effect as load impedance in the analytic form. An elegant
solution to this problem is proposed by showing that for
a wide class of periodic voltages the arc phenomenon can
be represented like impedance which depends on voltage
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frequency. As a result, the problem becomes formally linear
and can be solved analytically. Thus, the nonlinearity of the
phenomenon is “hidden” in the impedance dependence on
the wave frequency.

The authors expect to make a contribution to the under-
standing of the complex phenomenon of HIFs interacting
with a power transmission line. The analysis and results
presented along the paper also laid the ground for the
development of future techniques for HIF detection and
localization on power and distribution lines.

2. High Impedance Fault Model

2.1. Electric Arc Model. The development of a methodology
for HIF localization and detection requires a suitable repre-
sentation for the high impedance existing during this kind of
phenomenon. In this paper, a model based in the electric arc
is proposed for representing this impedance.

Despite the complexity associated with the arc behavior,
different methods have been developed to model and sim-
ulate its behavior. Thermal models are commonly used to
describe the electric arc dynamics. These models have a long
history since Cassie and Mayr [17, 18] introduced their first
descriptions of the arc conductivity in the form of a first-
order differential equation. These dynamic equations have
been improved and modified in order to increase the models
validity and to reduce the computational burden. Most of
such equations are of the form [19, 20]

𝑑 ln𝑔
𝑑𝑡

=
1

𝜏 (V, 𝑖)
(

V𝑖
𝑃 (V, 𝑖)

− 1) , (1)

where 𝑔 = 𝑖/V, V, and 𝑖 are the arc conductance, arc voltage,
and arc current, respectively, 𝜏(V, 𝑖) is the time constant,
and 𝑃(V, 𝑖) is the cooling power. In the high- and low-
current regions, (1) turns into the Mayr and Cassie models,
respectively [19]. In [21] Kizilcay and Pniok proposed amodel
which can be obtained from the general equation (1) by taking
𝜏 as a constant and the heat dissipation power in the form
𝑃 = 𝑃

0
+𝑉
0
|𝑖|. As a result the arc conductance equation takes

the form

𝑑𝑔

𝑑𝑡
=
𝐺 (𝑖) − 𝑔

𝜏
, (2)

where the steady state conductance is a function of the arc
current:

𝐺 (𝑖) =
𝑖
2

𝑃
0
+ 𝑉
0 |𝑖|

. (3)

First, if the electric arc current in (3) is of the sinusoidal
(or quasi-sinusoidal) form with frequency 𝜔 = 2𝜋/𝑇, then,
according to (3), the steady state conductance is a periodic
function with frequency 2𝜔, which can be expanded in
Fourier series with the even harmonics:

𝐺 (𝑡) =

∞

∑

𝑛=−∞

𝐺
𝑛
𝑒
𝑗2𝑛𝜔𝑡

. (4)

If the period of (3) 𝜏 ≫ (𝑇/2), then the steady state
conductance is the superposition of the constant part 𝐺

0
and

the rapidly oscillating part 𝛿𝐺(𝑡):

𝐺 (𝑡) = 𝐺
0
+ 𝛿𝐺 (𝑡) , (5)

where the rapidly oscillating part can be filtered by the
operation:

𝐺 (𝑡) =
1

𝑇
∫

𝑇

0

𝐺 (𝑡) 𝑑𝑡 = 𝐺
0
. (6)

Then, substituting (5) into (2), the arc conductance 𝑔(𝑡) can
be represented as a sum of the “slow” part 𝑔(𝑡), which does
not change significantly during one period 𝑇 and the rapidly
oscillating component 𝛿𝑔(𝑡) is as follows:

𝑔 (𝑡) = 𝑔 (𝑡) + 𝛿𝑔 (𝑡) . (7)

The equation for the slow part of the arc conductance can
be obtained by applying the averaging operation (6) to both
parts of (2). Then, due to the linearity of the operator (6),

𝑑𝑔

𝑑𝑡
=
𝐺 (𝑖) − 𝑔

𝜏
(8)

and the solution to this equation in the time domain has the
form

𝑔 (𝑡) = 𝐺
0
(1 − 𝑒

−𝑡/𝜏
) . (9)

This paper only considers the slow part of the arc conduc-
tance and how this part interacts with the transmission line. A
more exact description requires considering the full Fourier
series (4). Evidently, the rapidly oscillating part of the steady
state conductance injects harmonics into the transmission
line.The analysis of such harmonics is an interesting problem,
which can provide the complete information about the HIF.
However, this problem is beyond the purpose of this paper.

In the next subsection, (9) is validated by obtaining the
arc model parameters 𝐺

0
and 𝜏 from measurements.

2.2. Parameter Calculation for the Arc Model. In this section,
field measurements during HIFs are used to calculate the arc
model parameters 𝐺

0
and 𝜏. The HIF records were obtained

during field test in a 13.8 kV distribution circuit owned by the
national utility of México (CFE). Figures 1 and 2 show the
current and voltage waveforms, respectively, during a HIF.

Theparameters𝐺
0
and 𝜏 can be obtained from the current

and voltage waveforms by using the least square method.
Let us denote the fault conductance, current, and voltage
by 𝑔
𝑓
(𝑡
𝑘
), 𝑖
𝑓
(𝑡
𝑘
), and V

𝑓
(𝑡
𝑘
), respectively, taken at discrete

time instants 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
.

The averaged (“slow”) arc conductance can be calculated
as follows:

𝑔
𝑓
(𝑡
𝑘
) = √

∑
𝑛

𝑖=−𝑛
𝑖
𝑓

2
(𝑡
𝑘+𝑖
)

∑
𝑛

𝑖=−𝑛
V
𝑓
2 (𝑡
𝑘+𝑖
)
, (10)

where the number 𝑛 is taken large enough to smooth the
conductance curve. 𝑔(𝑡

𝑘
) is the fault conductance predicted
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Figure 1: Measured current during a high impedance fault.
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Figure 2: Measured voltage during a high impedance fault.

by the model (9) at discrete moments 𝑡
𝑘
. Then, the sum

of squared deviations of the theoretical values from the
experimental data is

𝑆 (𝐺
0
, 𝜏) =

𝑁

∑

𝑘=1

(𝑔 (𝑡
𝑘
) − 𝑔
𝑓
(𝑡
𝑘
))
2

. (11)

The minimum of the sum of squares is found by solving the
following system of equations:

𝜕 (𝑆 (𝐺
0
, 𝜏))

𝜕𝐺
0

= 0,
𝜕 (𝑆 (𝐺

0
, 𝜏))

𝜕𝜏
= 0. (12)

This system of equations can be solved numerically by
any suitable method, for example, by the gradient descent
technique [19]. The results of solving the system (12) are
𝐺
0
= 0.000065℧ and 𝜏 = 0.051 s. The validation of these

parameter calculations will be shown in Section 6.

3. Lossless Transmission Line

Figure 3 shows a single-phase two-wire lossless transmission
line of length 𝑙, a source𝑉

𝑆
with impedance𝑍

𝑆
at the sending

ZS(s)

ZR(s)

x
l0

VS(s )

Z0

I(x, s)

V(x, s)∼

Figure 3: Transmission line terminated on a HIF.

end and terminated by an impedance𝑍
𝑅
, associated with the

HIF.
The equations that describe the lossless transmission line

with distributed parameter are

𝜕V (𝑥, 𝑡)
𝜕𝑥

= −𝐿
𝜕𝑖 (𝑥, 𝑡)

𝜕𝑡
, (13)

𝜕𝑖 (𝑥, 𝑡)

𝜕𝑥
= −𝐶

𝜕V (𝑥, 𝑡)
𝜕𝑡

, (14)

where 𝐿 and 𝐶 are the transmission line inductance and
capacitance, respectively. Equations (13) and (14) can be
reduced to the so-called travelling wave equation for voltage
[20]:

𝜕
2V (𝑥, 𝑡)
𝜕𝑥2

−
1

𝑐2

𝜕
2V (𝑥, 𝑡)
𝜕𝑡2

(𝑥, 𝑡) = 0, (15)

where 𝑐 is the wave velocity:

𝑐 =
1

√𝐿𝐶
. (16)

The general solution to (15) in the Laplace domain has the
form

𝑉 (𝑥, 𝑠) = 𝐴 (𝑠) 𝑒
−𝑠𝑥/𝑐

+ 𝐵 (𝑠) 𝑒
𝑠𝑥/𝑐

−
1

𝑠𝑐
∫

𝑥

0

sin ℎ (𝑠
𝑐
(𝑥 − 𝑦)) (V

𝑡
(𝑦, 0)+𝑠V (𝑦, 0)) 𝑑𝑦.

(17)

Equation (15) should be considered together with the respec-
tive boundary conditions:

𝑉 (0, 𝑠) = 𝑉
𝑆
(𝑠) − 𝑍

𝑆
(𝑠) 𝐼 (0, 𝑠) ,

𝑉 (𝑙, 𝑠) = 𝑍
𝑅 (𝑠) 𝐼 (𝑙, 𝑠) .

(18)

Boundary conditions (18) contain the unknown currents
in the sending and receiving ends 𝐼(0, 𝑠) and 𝐼(𝑙, 𝑠), which can
be found by substituting the general solution (17) into (13) in
the Laplace domain.Then, the unknown terms 𝐴(𝑠) and 𝐵(𝑠)
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can be excluded from the solution (17) by using the boundary
conditions (18). As a result it can be obtained as

𝑉 (𝑥, 𝑠) =
𝑒
(−𝑠/𝑐)𝑥

+ Γ
𝑅 (𝑠) 𝑒

(−𝑠/𝑐)(2𝑙−𝑥)

1 − Γ
𝑆 (𝑠) Γ𝑅 (𝑠) 𝑒

−2𝑠𝑙/𝑐

× (
𝑉
𝑆
(𝑠) (1 − Γ

𝑆
(𝑠))

2
−
(1 + Γ

𝑆
(𝑠)) 𝑍

0
𝑖 (0, 0)

2𝑠
)

+
Γ
𝑆 (𝑠) 𝑒
−𝑠𝑥/𝑐

+ 𝑒
𝑠𝑥/𝑐

1 − Γ
𝑆
(𝑠) Γ
𝑅
(𝑠) 𝑒−2𝑠𝑙/𝑐

× (
𝑒
(−𝑠/𝑐)𝑙

(1 + Γ
𝑅 (𝑠)) 𝑍0𝑖 (𝑙, 0)

2𝑠
+

1

2𝑠𝑐

× ∫

𝑙

0

(𝑒
−𝑠𝑦/𝑐

+ Γ
𝑅
(𝑠) 𝑒
(−𝑠/𝑐)(2𝑙−𝑦)

)

× (V
𝑡
(𝑦, 0) + 𝑠V (𝑦, 0)) 𝑑𝑦)

−
1

𝑠𝑐
∫

𝑥

0

sin ℎ(
𝑠 (𝑥 − 𝑦)

𝑐
) (V
𝑡
(𝑦, 0)+𝑠V (𝑦, 0)) 𝑑𝑦,

(19)

where 𝑍
0
is the characteristic impedance of the line:

𝑍
0
= √

𝐿

𝐶
. (20)

Γ
𝑆
and Γ
𝑅
are the reflection coefficients at the source and the

receiving end, respectively:

Γ
𝑆 (𝑠) =

𝑍
𝑆 (𝑠) − 𝑍0

𝑍
𝑆
(𝑠) + 𝑍

0

, (21)

Γ
𝑅 (𝑠) =

𝑍
𝑅 (𝑠) − 𝑍0

𝑍
𝑅
(𝑠) + 𝑍

0

. (22)

Solution (19) describes the traveling wave voltage in a
lossless transmission line of a length 𝑙 with the sending and
backward reflection coefficients Γ

𝑆
and Γ
𝑅
, respectively.

For a realistic HIF modeling, the transmission line
equations (13)–(15) should be considered together with the
arc model equation (1) or (2). As a result, a system of a
partial differential equation (15) and an ordinary nonlinear
differential equation of the type (2) is obtained. Solving such
a system of equations in general form is a real mathematical
challenge due to the nonlinearity of (2). However, the
assumptions and developments made in the previous section
regarding (2) have led to amore suitable representation to the
arc conductance like in (9).

4. Modeling the Electric Arc
Reflection Coefficient

The first step for modeling the interaction between the
transmission line and the HIF is to obtain the electric arc
impedance𝑍

𝑅
(𝑠) and the corresponding reflection coefficient

Γ
𝑅
(𝑠). This is carried out taking into account the fact that the

arc conductance 𝑔(𝑡) changes slowly with respect to the arc
voltage and current. Applying the Laplace transform toOhm’s
law,

𝑖
𝑅
(𝑡) = 𝑔 (𝑡) V

𝑅
(𝑡) (23)

and by using the periodicity of the arc voltage

𝑖
𝑅
(𝑠) = ∫

∞

0

𝑒
−𝑠𝑡
𝑔 (𝑡) V

𝑅
(𝑡) 𝑑𝑡

=

∞

∑

𝑛=0

𝑒
−𝑠𝑇𝑛

∫

𝑇

0

𝑒
−𝑠𝜉
𝑔 (𝑇𝑛 + 𝜉) V

𝑅
(𝜉) 𝑑𝜉

=

∞

∑

𝑛=0

𝑒
−𝑠𝑇𝑛

𝑔 (𝑇𝑛 + 𝜉
∗

𝑛
) Ψ (𝑠, 𝑇) ,

(24)

where according to the mean value theorem 𝜉
∗

𝑛
∈ [0, 𝑇], then

Ψ (𝑠, 𝑇) = ∫

𝑇

0

𝑒
−𝑠𝜉V
𝑅
(𝜉) 𝑑𝜉. (25)

On the other hand, the arc voltage in the Laplace domain is

𝑉
𝑅 (𝑠) = ∫

∞

0

𝑒
−𝑠𝑡V
𝑅 (𝑡) 𝑑𝑡 =

∞

∑

𝑛=0

𝑒
−𝑠𝑇𝑛

∫

𝑇

0

𝑒
−𝑠𝜉V
𝑅 (𝜉) 𝑑𝜉

=
Ψ (𝑠, 𝑇)

(1 − 𝑒−𝑠𝑇)
,

Ψ (𝑠, 𝑇) = (1 − 𝑒
−𝑠𝑇

)𝑉
𝑅
(𝑠) .

(26)

Substituting this result into (24), the following formula is
obtained:

𝐼
𝑅
(𝑠) = 𝑉

𝑅
(𝑠) 𝑍
−1

𝑅
(𝑠) , (27)

where after neglecting the small parameter 𝜉∗
𝑛
/𝜏 < 𝑇/𝜏 ≪ 1,

the inverse arc impedance becomes

𝑍
−1

𝑅
(𝑠) = (1 − 𝑒

−𝑠𝑇
)

∞

∑

𝑛=0

𝑒
−𝑠𝑇𝑛

𝑔 (𝑇𝑛 + 𝜉
∗

𝑛
)

≈ 𝐺
0
(1 − 𝑒

−𝑠𝑇
)

∞

∑

𝑛=0

𝑒
−𝑠𝑇𝑛

(1 − 𝑒
−𝑇𝑛/𝜏

)

=
𝐺
0
(1 − 𝑒

−𝑇/𝜏
)

𝑒𝑠𝑇 − 𝑒−𝑇/𝜏
.

(28)

Then, substituting (28) into (22), the electric arc reflection
coefficient Γ

𝑅
is obtained in the form

Γ
𝑅
(𝑠) =

𝑒
𝑠𝑇
− 𝑒
−𝑇/𝜏

− 𝐺
0
𝑍
0
(1 − 𝑒

−𝑇/𝜏
)

𝑒𝑠𝑇 − 𝑒−𝑇/𝜏 + 𝐺
0
𝑍
0
(1 − 𝑒−𝑇/𝜏)

. (29)

Since the fault conductance is small, that is, 𝐺
0
𝑍
0
≪ 1,

then the following asymptotic formula can be obtained by
expanding (29) in power series in 𝐺

0
𝑍
0
:

Γ
𝑅
(𝑠) = 1 −

2𝐺
0
𝑍
0
(1 − 𝑒

−𝑇/𝜏
)

𝑒𝑠𝑇 − 𝑒−𝑇/𝜏
. (30)
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This formula should be substituted into (19). The inverse
Laplace transform of (19) will yield the solution to the trans-
mission line equations in the time domain. For calculating the
inverse Laplace transform with (30), it should be mentioned
that the reflection coefficient (30) has an infinite number of
poles of order 1:

𝑠 = −𝜏
−1
+ 𝑗𝑛𝜔, 𝑛 ∈ Z. (31)

On the other hand, the same function can be expanded in the
following analytical series:

Γ
𝑅
(𝑠) = 1 − 2𝐺

0
𝑍
0
(1 − 𝑒

−𝑇/𝜏
)

∞

∑

𝑛=0

𝑒
−𝑠(𝑛+1)𝑇

𝑒
−𝑛𝑇/𝜏

. (32)

Either formula (30) or formula (32) can be used in (19).
The electric arc is an essentially nonlinear effect in the

sense that the relation between the arc voltage and current
is nonlinear. Therefore, the arc impedance should depend
explicitly or implicitly on the arc voltage. Moreover, its
form can be quite different for varying operational regimes
on the transmission line. Indeed, one can observe that
the arc impedance (28) and the reflection coefficient (32),
respectively, contain the information about the arc voltage
through the period of oscillations. On the other hand, though
formulae (28), (30), and (32) are inapplicable for the arc
voltage of an arbitrary form, they are suitable for an arbitrary
periodical voltage, because only the assumption of a general
periodic voltage form has been used in the arc impedance
deduction.

The correctness of the arc impedance formula (28) can
be demonstrated by transforming to the time domain (27)
considering a sinusoidal voltage. As a result, after expanding
(28) in series, one can obtain, by calculating the respective
residues,

𝑖
𝑅
(𝑡) = 𝑉

0
𝐺
0
(1 − 𝑒

−𝑇/𝜏
)

∞

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

×
1

2𝜋𝑗
∫

+𝑗∞+𝛼

−𝑗∞+𝛼

𝑒
𝑠(𝑡−𝑇(𝑛+1)) 𝜔

𝜔2 + 𝑠2
𝑑𝑠

= 𝑉
0
𝐺
0
(1 − 𝑒

−𝑇/𝜏
) sin (𝜔𝑡)

∞

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝜃 (𝑡 − 𝑇 (𝑛 + 1))

= 𝑉
0
𝐺
0
(1 − 𝑒

−𝑇/𝜏
) sin (𝜔𝑡)

[𝑡/𝑇]−1

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝜃 (𝑡 − 𝑇)

= V
𝑅 (𝑡) 𝐺0 (1 − 𝑒

−[𝑡/𝑇](𝑇/𝜏)
) 𝜃 (𝑡 − 𝑇) ,

(33)

where 𝜃(𝑡 −𝑇(𝑛+1)) is the Heaviside step function and [𝑡/𝑇]
is the integer part of 𝑡/𝑇. Then, the arc conductance becomes

𝑔 (𝑡) = 𝐺
0
(1 − 𝑒

−[𝑡/𝑇](𝑇/𝜏)
) 𝜃 (𝑡 − 𝑇)

= 𝐺
0
(1 − 𝑒

−[𝑡/𝑇](𝑇/𝜏)
) 𝜃 (𝑡) .

(34)

This conductance has a ladder form. A small difference
between the behavior of the conductance (34) and (9) is

originated by the approximation used in the arc impedance
deduction (28). To avoid this error in the inverse Laplace
transform calculation, a “smoothing operator” S, which
transforms a discontinuous function and its derivative into
smooth functions, can be introduced. Indeed, if 𝜙(𝑡) is a
smooth function, then, the operator S can be defined as
follows:

S : 𝜙(𝑘) ([ 𝑡
𝑇
] ⋅ 𝑇) 󳨃󳨀→ 𝜙

(𝑘)
(𝑡) , where 𝑘 = 0, 1. (35)

Such definition of the smoothing operator, which
includes the smoothing of the generalized functions such as
the first derivative 𝜙󸀠([𝑡/𝑇] ⋅ 𝑇), is required in order to reach
the commutation between S and the derivative operator; that
is,

S( 𝑑

𝑑𝑡
) = (

𝑑

𝑑𝑡
) S. (36)

Applying this operator to the ladder-form conductance (34),
we finally obtain the smooth arc conductance (9). Thus, the
arc impedance and the arc reflection coefficient take the form

𝑍
−1

𝑅
(𝑠) = S

𝐺
0
(1 − 𝑒

−𝑇/𝜏
)

𝑒𝑠𝑇 − 𝑒−𝑇/𝜏
,

Γ
𝑅
(𝑠) ≈ 1 − S

2𝐺
0
𝑍
0
(1 − 𝑒

−𝑇/𝜏
)

𝑒𝑠𝑇 − 𝑒−𝑇/𝜏
,

(37)

where the smoothing operator should be applied after the
inverse Laplace transform.

5. Interaction between the HIF Model and
the Transmission Line

5.1. The HIF Model and the Transmission Line. For modeling
the interaction between the transmission line and theHIF, we
should substitute the reflection coefficient (37) into solution
(19) to the transmission line equation, with the respective
initial conditions. According to usual assumptions [22], the
source impedance in Figure 3 can be taken as 𝑍

𝑆
= 𝑍
0
and

therefore the generator reflection coefficient is zero; that is,
Γ
𝑆
(𝑠) = 0. Then, (19) is significantly simplified:

𝑉 (𝑥, 𝑠) =
1

2
(𝑉
𝑠
(𝑠) −

𝑍
0
𝑖 (0, 0)

𝑠
) (𝑒
(−𝑠/𝑐)𝑥

+Γ
𝐴
(𝑠) 𝑒
(−𝑠/𝑐)(2𝑙−𝑥)

)

+ 𝑒
(−𝑠/𝑐)(𝑙−𝑥)

(
1 + Γ
𝑅
(𝑠)

2

𝑍
0
𝑖 (𝑙, 0)

𝑠

+
1

2𝑠𝑐
∫

𝑙

0

(𝑒
(𝑠/𝑐)(𝑙−𝑦)

+Γ
𝐴
(𝑠) 𝑒
(−𝑠/𝑐)(𝑙−𝑦)

)

× (V
𝑡
(𝑦, 0) + 𝑠V (𝑦, 0)) 𝑑𝑦)

−
1

𝑠𝑐
∫

𝑥

0

sin ℎ(
𝑠 (𝑥 − 𝑦)

𝑐
) (V
𝑡
(𝑦, 0)+𝑠V (𝑦, 0)) 𝑑𝑦.

(38)
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It is assumed that before theHIFhas occurred, the line has
been energized and operating in normal conditions. Then,
the fault occurs at 𝑡 = 0. To reduce the effect of the load on
the transmission line, the approximation of a semi-infinite
line is considered. Thus, the voltage of the form V(𝑥, 0) =

(𝑉
0
/2) sin(𝜔(𝑡−𝑥/V))was propagating in the line before 𝑡 = 0,

and therefore the following initial conditions should be taken
in (38):

V (𝑥, 0) = −
𝑉
0

2
sin(𝜔𝑥

𝑐
) , 𝑖 (0, 0) = 0,

V
𝑡
(𝑥, 0) =

𝜔𝑉
0

2
cos(𝜔𝑥

𝑐
) , 𝑖 (𝑙, 0) = −

𝑉
0

2𝑍
0

sin(𝜔𝑙
𝑐
) .

(39)

Then, by substituting (37) and (39) into (38) and calcu-
lating the inverse Laplace transform, the solution (38) in the
time domain takes the form

V (𝑥, 𝑡) =
𝑉
0

2
sin [𝜔(𝑡 − 𝑥

𝑐
)]

+
𝑉
0

2
{1 − 2𝐺

0
𝑍
0
(1 − 𝑒

(−1/𝜏)(𝑡−(𝑙−𝑥)/𝑐)
)}

× sin [𝜔(𝑡 − 2𝑙 − 𝑥

𝑐
)] 𝜃(𝑡 −

𝑙 − 𝑥

𝑐
) ,

(40)

where 𝜃(𝑡 − (𝑙 − 𝑥)/𝑐) is the unit-step function.

5.2. Single-Pulse Propagation. After a time interval greater
than the time of arc relaxation 𝜏, the oscillations in the
transmission line reach steady state conditions given by the
following equation:

V
𝑠𝑡
(𝑥, 𝑡) =

𝑉
0

2
{sin [𝜔(𝑡 − 𝑥

𝑐
)]

+ (1 − 2𝐺
0
𝑍
0
) sin [𝜔(𝑡 − 𝑥

𝑐
−
2𝑙

𝑐
)]}

(41)

which is obtained from (40) by considering 𝑡 → ∞. Then,
at a given moment 𝑡

0
≫ 𝜏, a single pulse can be applied at

the source bus and the signal is reflected back by the HIF
and measured at the sending end. By analyzing the time of
return and form of the reflected signal, it is possible to know
the fault characteristics and the distance at which the fault has
occurred.

To analyze the pulse propagation, the solution to (19) can
be represented as a superposition of the steady state solution
(41) and the propagating pulse:

V (𝑥, 𝑡) = V
𝑠𝑡
(𝑥, 𝑡) + 𝜑 (𝑥, 𝑡) ,

𝑖 (𝑥, 𝑡) = 𝑖
𝑠𝑡 (𝑥, 𝑡) + 𝜂 (𝑥, 𝑡) .

(42)

Since the steady state (41) is the solution to (19) (and to
(38) consequently) with the initial conditions (39), then,

by substituting (42) into (38), we can obtain the respective
equation for the componentΦ(𝑥, 𝑠):

Φ (𝑥, 𝑠) = −
1

2
(𝑒
(−𝑠/𝑐)𝑥

+ Γ
𝑅
(𝑠) 𝑒
(−𝑠/𝑐)(2𝑙−𝑥)

)
𝑍
0

𝑠
𝜂 (0, 𝑡

0
)

+ 𝑒
(−𝑠/𝑐)(𝑙−𝑥)

× (
1 + Γ
𝑅
(𝑠)

2

𝑍
0

𝑠
𝜂 (𝑙, 𝑡
0
)

+
1

2𝑠𝑐
∫

𝑙

0

(𝑒
(𝑠/𝑐)(𝑙−𝑦)

+ Γ
𝑅
(𝑠) 𝑒
(−𝑠/𝑐)(𝑙−𝑦)

)

× (𝜑
𝑡
(𝑦, 𝑡
0
) + 𝑠𝜑 (𝑦, 𝑡

0
)) 𝑑𝑦)

−
1

𝑠𝑐
∫

𝑥

0

sin ℎ(
𝑠 (𝑥 − 𝑦)

𝑐
)

× (𝜑
𝑡
(𝑦, 𝑡
0
) + 𝑠𝜑 (𝑦, 𝑡

0
)) 𝑑𝑦,

(43)

where 𝑡 = 𝑡
0
is taken as the initial moment. The initial

conditions for the component 𝜂(𝑥, 𝑡) at the ends of the line
must be equal to zero. We should note that (38) is linear
just formally. In fact, the nonlinearity of (38) consists in the
fact that the steady state component and the perturbed part
𝜑(𝑥, 𝑡) are not independent.The dependence of the perturbed
component𝜑(𝑥, 𝑡) on the steady state oscillations is expressed
in (43) through the reflection coefficient Γ

𝑅
(𝑠).

The initial condition for (43) is given by the Dirac delta-
function [23] with a constant 𝐸:

𝜑 (𝑥, 𝑡
0
) = 𝐸𝛿 (𝑥) . (44)

Since the transmission line model under consideration is
lossless, then the pulse propagates to the point of fault as a
simple travelling wave:

𝜑 (𝑥, 𝑡) = 𝐸𝛿 (𝑥 − 𝑐 (𝑡 − 𝑡
0
)) ,

𝜑
𝑡
(𝑥, 𝑡) = −𝑐𝐸𝛿

󸀠
(𝑥 − 𝑐 (𝑡 − 𝑡

0
)) .

(45)

Then, the second initial condition for (43) is

𝜑
𝑡
(𝑥, 𝑡
0
) = −𝑐𝐸𝛿

󸀠
(𝑥) . (46)

Substituting the initial conditions (44) and (46) into (43),
the following expression is obtained:

Φ (𝑥, 𝑠) =
𝐸

𝑐
(𝑒
−𝑠𝑥/𝑐

+ Γ
𝑅
(𝑠) 𝑒
(−2𝑠𝑙/𝑐)+(𝑠𝑥/𝑐)

) . (47)

By applying the inverse Laplace transform to (47) with the
reflection coefficient (37) expanded in series (32), it can be
found in the time domain:

𝜑 (𝑥, 𝑡) = 𝐸 {𝛿 (𝑥 − 𝑐 (𝑡 − 𝑡
0
)) + 𝛿 (2𝑙 − 𝑥 − 𝑐 (𝑡 − 𝑡

0
))}

−
2𝐸𝐺
0
𝑍
0

𝑐
(1 − 𝑒

−𝑇/𝜏
) S

×

∞

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝛿(𝑡 − 𝑡
0
+
𝑥

𝑐
−
2𝑙

𝑐
− 𝑇 (𝑛 + 1)) .

(48)
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Let us denote

𝑡 − 𝑡
0
+
𝑥

𝑐
−
2𝑙

𝑐
≡ 𝑞. (49)

Then, applying the commutation relation (36) one can obtain,
similarly to (34),

S
∞

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝛿 (𝑞 − 𝑇 (𝑛 + 1))

= S 𝑑

𝑑𝑞

∞

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝜃 (𝑞 − 𝑇 (𝑛 + 1))

= S 𝑑

𝑑𝑞

[𝑞/𝑇]−1

∑

𝑛=0

𝑒
−𝑇𝑛/𝜏

𝜃 (𝑞 − 𝑇)

= S 𝑑

𝑑𝑞
(
1 − 𝑒
−[𝑞/𝑇]𝑇/𝜏

1 − 𝑒−𝑇/𝜏
𝜃 (𝑞 − 𝑇))

=
1

1 − 𝑒−𝑇/𝜏

𝑑

𝑑𝑞
S (1 − 𝑒−[𝑞/𝑇]𝑇/𝜏) 𝜃 (𝑞 − 𝑇)

=
1

𝜏

𝑒
−𝑞/𝜏

1 − 𝑒−𝑇/𝜏
𝜃 (𝑞) .

(50)

By substituting this result into (48), the single-pulse propaga-
tion in the time domain is finally obtained:

𝜑 (𝑥, 𝑡) = 𝐸 {𝛿 (𝑥 − 𝑐 (𝑡 − 𝑡
0
)) + 𝛿 (2𝑙 − 𝑥 − 𝑐 (𝑡 − 𝑡

0
))}

−
2𝐸𝐺
0
𝑍
0

𝑐𝜏
exp{−1

𝜏
(𝑡 − 𝑡

0
+
𝑥

𝑐
−
2𝑙

𝑐
)}

× 𝜃(𝑡 − 𝑡
0
+
𝑥

𝑐
−
2𝑙

𝑐
) .

(51)

From (51) it follows that the returned signal is a pulse
decreasing exponentially, which can provide information
about the HIF.

6. Computer Simulations

In this section, several computer simulations and measured
results are presented. The aim of the first and second cases
of study is to validate the HIF model developed in order to
analyze the interaction between the arc conductance and the
transmission line at power frequency. The objective of the
third case of study is to analyze the model performance at
higher frequencies, during a steep fronted pulse applied at the
substation bus.

6.1. Case 1. In this first case of study, a comparison between
the arc conductance measured during a HIF and the arc con-
ductance calculated with the developed model is presented.
The respective constants involved in (9) were calculated
from field measurements in Section 2.1, and they are 𝐺

0
=

0.000932 ℧ and 𝜏 = 0.0298 s. Figure 4 shows the experimen-
tal arc conductance obtained from field measurements and
the arc conductance calculated by using (9).
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Figure 4: Measured and calculated conductance during a HIF.

A close comparison between measured and calculated
results for the arc conductance, a key parameter for modeling
HIFs, shows a good agreement in magnitude and general
trend of waveforms. The error was calculated by using the
following equation:

error =
√∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑔𝑘 − 𝑔
𝑀

𝑘

󵄨󵄨󵄨󵄨
2

√∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑔𝑘
󵄨󵄨󵄨󵄨
2

, (52)

where 𝑔
𝑘
is the calculated conductance and 𝑔

𝑀

𝑘
is the

measured conductance. In general, the error in magnitude
is smaller than 5%. These results show that the assumptions
made for the development of the HIF are correct and that the
model is capable of calculating the arc conductance during a
HIF.

6.2. Case 2. Once the arc conductance has been calculated,
in this second case of study, a comparison between voltages
and currents measured and calculated using the HIF model
is carried out.

The HIF was applied at the end of a 0.5 km unloaded
distribution feeder. The substation bus voltage is 𝑉

0
at point

𝑥 = 0. The characteristic impedance of the line is taken as
𝑍
0
= 𝑍
𝑆
. The respective parameters involved in the solution

of (40) are given in Table 1. Figure 5 shows the measured and
calculated voltages at the substation bus by using (40).

In Figure 5 the HIF fault is applied at 𝑡 = 0.177 s, and
there are no significant changes on voltages magnitude or
distortion; they are practically superimposed. In brief, there
exists good agreement between measured and calculated
voltages. This voltage behavior is explained by the fact that
voltage at the substation bus is mainly dependent on the
source power, not from the HIF located at 0.5 km.

Figure 6 shows the current wavemeasured and calculated
at 𝑥 = 0, with magnitudes of about 8A rms. The measured
current wave has some harmonic distortion due to the
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Table 1: Parameters for the first and second case of study.

Parameter Value
𝐺
0

0.000932 ℧

𝜏 0.0298 S
𝑉
0

11267 V
𝑐 299 792 km/s
𝑙 0.5 km
𝜔 377 rad/s

0.15 0.2 0.25 0.3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Vo
lta

ge
 (V

)

Measured
Calculated

HIF

×10
4

Figure 5: Measured and calculated voltage during a HIF.

nonlinear behavior of the arc conductance. No harmonic
distortion exists in the current waveform calculated because
of the assumptions made for developing the HIF model,
mainly the use of average values.

Observe in Figures 4 and 6 that after about 3.3 𝜏 the arc
conductance and the current wave measured and calculated
reach their steady state. This behavior is due to the initial
arc conductance, which is highly nonlinear and the current
measured at the substation bus is dependent on this arc
conductance since the line is unloaded. Then, after some
time has elapsed, the electric arc associated with the HIF is
stabilized and the arc conductance reaches its steady state
value. Taking into account the HIF model assumptions, it is
possible to establish that there exists good agreement between
the general trends of the measured and calculated results for
current waveforms.

Cases 1 and 2 demonstrate that the proposed model is
capable of analyzing the dynamic interaction between the
distribution line and the arc conductance associated with
HIFs at power frequency.

6.3. Case 3. In order to analyze the interaction between the
arc conductance and the HIF at higher frequencies, a steep
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Figure 6: Measured and calculated current during a HIF.
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Figure 7: Forward and reflected voltage pulses from the HIF.

fronted pulse is applied during a HIF.The pulse signal 𝐸𝛿(𝑥−
𝑐(𝑡 − 𝑡

0
)) was modelled by a Gaussian function of the type:

𝐸

√2𝜋𝜎
𝑥

exp(−
(𝑥 − V (𝑡 − 𝑡

0
))
2

2𝜎2
𝑥

) , (53)

where the pulse constant𝐸 and the signal width𝜎
𝑥
were taken

as 𝐸 = 50 kV⋅km and 𝜎
𝑥
= 0.1 km. The sequence of events

is as follows: first, a HIF occurs at 𝑡 = 0.177 s. in a 0.5 km
distribution feeder and then at 𝑡 = 0.252 s. a single pulse is
applied. Figure 7 shows the forward and reflected pulse from
the HIF superimposed over the steady state voltage (41).

In Figure 8, the forward and reflected pulses have been
separated from the steady state voltage. Some additional
information can be extracted from Figure 8. For example, let
us denote Δ𝑡 by the time interval between the two pulses.
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Figure 8: Forward and reflected pulse voltage due to HIF.
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Figure 9: Calculated time dependent reflection coefficient.

Then, the distance to the HIF can be calculated according to
the formula

𝑙 =
𝑐Δ𝑡

2
, (54)

where 𝑐 is the wave velocity in the transmission line.
Observe that the reflected pulse is smaller than the

applied one. This decrease in pulse magnitude is due to the
fact that the reflection coefficient is less than one and part
of the pulse energy is dissipated through the electric arc.
Figure 9 shows the voltage reflection coefficient calculated
in the time domain using (22). As expected, this coefficient
is dependent on the arc conductance, which is varying
with time after fault insertion. Before fault inception the
reflection coefficient is equal to one because the line is in open
circuit conditions. After fault inception themagnitude for the
reflected pulse from the HIF is 0.96 pu, for an applied pulse
at 𝑡 = 0.252 s and magnitude equals 1 pu.

The results obtained in the three cases of study are in full
agreement with transmission line theory but include a HIF at
the end of the distribution feeder, which is represented by a
time varying conductance due to the associated electric arc.

In brief, the three cases of study describe the interaction
between the transmission line and the electric arc associated
withHIFs at power and higher frequencies with an acceptable
accuracy.

7. Conclusions

It is well known that HIF depends on the type of ground
surface, moisture, conductor type, environmental conditions,
and voltage level. Many HIFs have similar characteristics
that can be represented considering variations on the arc
parameters like conductance and time constant.

In this work, an analytical model for analyzing the
interaction between HIFs and a transmission line has been
developed. The analysis of this interaction involves the joint
solution of a partial differential equation and a linear differen-
tial equation. The solution of this system is complex, but the
mathematical methods used in this paper lead to an elegant
solution to the problem with no significant loss of accuracy.
The solution is based on considering that for periodic voltages
with a period smaller than the arc time constant, the electric
arc can be represented as load impedance. Several expressions
that relate the relevant arc and transmission line parameters
were obtained, leading to recursive equations that calculate
current and voltage along the line, as well as the dynamic of
the electric arc associated with the HIF.

Three cases of study were presented. The aim of the first
two cases is to validate the model. In this sense, current
and voltages measured during a HIF were compared with
the calculated results provided by the analytical model. The
comparison was extended to the arc conductance during
a HIF. The comparison shows good agreement between
measured and calculated results, which demonstrate that
the proposed model is capable of analyzing the interaction
between the transmission line and the electric arc associated
with the HIF.

In the third case of study a voltage pulse was applied to
the distribution feeder during a HIF.The obtained results are
similar to those predicted by transmission line theory. There
exists a forward pulse along the transmission line which is
reflected back by the HIF. The reflected pulse is smaller than
the applied pulse because of the reflection coefficient between
the transmission line and the electric arc conductance. This
reflection coefficient changes dynamically because the arc
conductance changes with time. Also, considering the arrival
times for the forward and reflected pulse, the distance to the
fault can be calculated. Of course, this is a simplified case,
where the author’s interest is to develop amodel for analyzing
the interaction between the electric arc and the transmission
line and not to develop a technique for HIF localization.

The authors consider that an analytical model for ana-
lyzing the interaction between the electric arc associated
with HIF and a transmission line has been presented. The
model has been validated and the computer results showgood
agreement with measured results. Also, a general description
of the basic foundation of this complex interaction has been
presented which enhances the understanding of the HIF
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phenomenon. Future works should apply the model in more
complex scenarios for HIF localization purposes.
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