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A novel hybrid multiobjective algorithm is presented in this paper, which combines a newmultiobjective estimation of distribution
algorithm, an efficient local searcher and 𝜀-dominance. Besides, twomultiobjective problemswith variable linkages strictly based on
manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space,
is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution
model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited,
which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to
exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since 𝜀-dominance is a
strategy that canmakemultiobjective algorithmgainwell distributed solutions and has low computational complexity, 𝜀-dominance
and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution
algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and
without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms,
our algorithm achieves comparable results in terms of convergence and diversity metrics.

1. Introduction

Multiobjective optimization usually involves many conflict-
ing, incomparable, and noncommensurable objectives. Dur-
ing the past two decades, multiobjective evolutionary algo-
rithms (MOEAs) have obtained much more interest among
optimization community mainly because of the fact that they
can be suitably applied to deal simultaneously with a set of
possible solutions. A number of evolutionary algorithms have
been developed for multiobjective problems, such as strength
Pareto evolutionary algorithm (SPEA) [1], Pareto archived
evolution strategy (PAES) [2], Pareto envelope-based selec-
tion algorithm (PESA) [3, 4], micro-GA [5], nondominated
sorting genetic algorithm II (NSGA-II) [6], strength Pareto
evolutionary algorithm 2 (SPEA2) [7], multiple objectives
with particle swarm optimization (MOPSO) [8], nondomi-
nated neighbor immune algorithm (NNIA) [9], and MOEA

with adaptive weight adjustment (MOEA/D-AWA) [10].
Following the recent review of evolutionary multiobjective
optimization fields [11, 12], NSGA-II and SPEA2 can be
considered as two representatives of state-of-the-art MOEAs
in current multiobjective optimization community.

The current MOEAs research mainly focuses on the
following several highly related issues, such as fitness assign-
ment, diversity maintenance, external population, combina-
tion of MOEA and local search, new dominance scheme,
and many-objective problems. However, there are little fresh
work done on how to generate new solutions and most
current MOEAs directly adopt traditional crossover and
mutation operators. Based on the works [13, 14], we can
gain multiobjective problems (MOPs) with variable linkages
causing trouble to MOEAs with traditional crossover and
mutation operators. It seems that it is urgent to design new
scheme to generate new solutions.
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Estimation of distribution algorithms (EDAs) are a
new computing paradigm in evolutionary computation. A
posterior probability distribution model based on globally
statistical information from the selected solutions is built to
generate new solutions for next generation. This new class
of algorithms generalizes genetic algorithms by replacing the
crossover and mutation operators by learning and sampling
the probability distribution of the promising individuals
of population per iteration. Working in such a way, the
relationships between the variables involved in the problem
domain are explicitly and effectively captured and exploited.
Several EDAs have been proposed for MOPs. Khan [15]
proposed multiobjective BOA (mBOA) and multiobjective
hierarchical BOA (mhBOA) by combining the model build-
ing and model sampling procedures of BOA [16] and hier-
archical BOA (hBOA) [17] with the selection procedure of
NSGA-II. They compared the performance of mBOA and
mhBOA with that of NSGA-II on a class of bounded difficult
additively separable deceptive and hierarchically deceptive
functions. Bosman and Thierens [18] combined IDEAs with
nondominated tournament selection and clustering, and they
used clustering to split the population into subpopulation
and separate models were built for each subpopulation.
Laumanns and Ocenasek [19] combined mixed BOA with
the selection and replacement procedures of SPEA2. The
algorithm was tested on some knapsack problems, and it was
shown to dominate NSGA-II and SPEA2 in most instances.
Zhou et al. [20] present a way, named multiobjective EDA
based on decomposition, which utilizes decomposition based
techniques and probabilistic model based methods, to tackle
the traveling salesman problem. However, these MOEDAs
do not involve how the Pareto set distributes in the decision
space.

The Pareto set of a continuous MOP is a piecewise
continuous (𝑚 − 1)-dimensional manifold, where 𝑚 is the
number of the objectives, which have been investigated and
applied by several scholars [21, 22]. Zhang et al. [14] exploited
the property explicitly and proposed regularity model based
multiobjective estimation of distribution algorithm, called
RM-MEDA, a regularity model based EDA for continuous
MOPs. They have validated that RM-MEDA can effectively
deal with MOPs with variable linkages and admitted that the
performance of RM-MEDAdeclines if aMOP hasmany local
Pareto fronts [14, 23].

As Ong et al. [24, 25] suggested, in recent years, the
development of hybrid genetic algorithm is one of the most
significant trends in the field of metaheuristics. Methods
of this kind hybridize recombination operators with local
heuristics. Such a hybrid algorithm is also called a memetic
algorithm. It is clearly shown that memetic algorithms have
higher search ability than traditional EMO algorithms [26].
Ishibuchi and Murata [27] are the first two scholars to
propose a multiobjective genetic local search algorithm.
Afterward, Xu et al. [28] proposed GLSA, Jaszkiewicz [29]
proposed MOGLS, and Liu et al. [30] proposed FMOPSO.
As forenamed, RM-MEDA extracts globally statistical infor-
mation to build the probability distribution model and
performs weakly in local search. If we hybridize an effective
local search operator with RM-MEDA, we may get balance

between exploration and exploitation in the search space.
For this end, an incremental tournament local searcher
operator is proposed in our study, which biases solutions with
high isolation value. Our algorithm is called multiobjective
memetic estimation of distribution algorithm.

In order to keep well-spread Pareto-optimal solutions, 𝜀-
dominance is employed in our algorithm. The 𝜀-dominance
does not allow two solutions with a difference less than 𝜀

𝑖
in

the 𝑖th objective to be nondominated to each other, thereby
allowing a good diversity to be maintained in a population.
Besides, the method is quite pragmatic because it allows
the user to choose a suitable 𝜀

𝑖
depending on the desired

resolution in the 𝑖th objective. Deb et al. [31] have validated
that the diversitymetric of 𝜀-MOEA is slightly better than that
of NSGA-II based on crowding distance.

Moreover, in [14], Zhang et al. proposed ten multiobjec-
tive problemswith variable linkages. However, distribution of
these ten problems is linear or almost linear in decision space.
Besides, RM-MEDA introduces local principal component
analysis to build probability distribution model, which is lin-
ear or local-linear distribution in decision space. Therefore,
most of these problems may be easy for RM-MEDA. For this
end, two more difficulty problems are proposed in this paper,
whichmore accordwithmanifold distribution in the decision
space by introducing nonlinear mapping into variables.

In the remainder of the paper, we briefly mention nota-
tions and definitions in Section 2.Thereafter, in Section 3, we
briefly describe RM-MEDA. Section 4 presents the proposed
MMEDA. Section 5 describes our proposed two problems. In
Section 6, the experimental study is demonstrated. Finally, we
outline the conclusions of this paper.

2. Definitions and Notations

In our paper, we consider the following continuous MOP:

min𝑓 (x) = (𝑓1 (x) , 𝑓2 (x) , . . . , 𝑓𝑚 (x))
𝑇
, (1)

where x ∈ Ω ⊆ 𝑅𝑁, x is a decision variable vector, and
Ω is a continuous search space. 𝑓 : x → 𝑅

𝑚 is the map
of decision variable space to 𝑚 real valued objective space.
The objectives in a MOP conflict each other, and no single
solution can optimize all the objectives at the same time.
The Pareto front/Pareto set (PF/PS) is set of all the optimal
tradeoff solutions in the objective/decision space.

Definition 1 (Pareto dominance). There is a vector u =

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
), which is said to dominate v = (V

1
, V
2
, . . . , V

𝑚
)

(denoted by u < v), if and only if u is partially less than k,
which is equal to this expression:∀𝑖 ∈ {1, . . . , 𝑚},𝑢

𝑖
≤ V
𝑖
∧∃𝑖 ∈

{1, . . . , 𝑚} : 𝑢
𝑖
< V
𝑖
.

Definition 2 (Pareto optimality). A point x∗ ∈ Ω is a random
optimal point and if for every x ∈ Ω and I = (1, 2, . . . , 𝑚)
either ∀𝑖 ∈ I, 𝑓

𝑖
(x) = 𝑓∗

𝑖
(x) or there is at least one 𝑖 ∈ I such

that 𝑓
𝑖
(x) > 𝑓∗

𝑖
(x). In other words, this definition says that

x∗ is Pareto optimal if there are no feasible vectors x which
can decrease some criterion without causing a simultaneous
increase in at least one other criterion.
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Step 1. Initialization: Set 𝑡 = 0, generate initial population P(0) and evaluate them.
Step 2. Termination: If 𝑡 > 𝐺max is satisfied, export P(t) as the output of the algorithm, and stop, else go to step 3.
Step 3. Modeling: Perform local PCA to partition P(t) into 𝐾 disjoint clusters 𝑆1, 𝑆2, . . . , 𝑆𝐾. For each cluster 𝑆𝑗,
build model (2) by (4) and (5).
Step 4. Sampling: Sample new populationO(t) from model (2) and evaluateO(t).
Step 5. Non-dominated Sorting and Crowding Distance Assignment: Use the famous fast non-dominated sorting procedure
and select solutions at first several low ranks from P(t) andO(t). At the critical rank, the crowding distance computation
is employed to select individuals with higher values of crowding distance. Then, P(t + 1) is created.
Step 6. set 𝑡 := 𝑡 + 1 and go to Step 2.

Algorithm 1: The main loop of RM-MEDA.

Solutions 
Pareto set

Figure 1: Illustration of individual solutions scattered around PS in
the decision space.

3. The Framework of RM-MEDA

Under some smoothness assumptions, it could be induced
from the Karush-Kuhn-Tucker condition that the PS of (1)
defines a piecewise continuous (𝑚−1)-dimensionalmanifold,
where𝑚 is the number of objectives. In [14], they give us the
following model to illustrate individual solutions scattered
around the PS in the decision space:

𝜉 = 𝜁 + ], (2)

where 𝜁 is uniformly distributed over a piecewise continuous
(𝑚 − 1)-dimensional manifold. ] is an 𝑛-dimensional zero-
mean noise vector and 𝑛 is the number of decision variables.
Figure 1 illustrates the basic idea of RM-MEDA.

In [14], piecewise (𝑚 − 1)-dimensional linear models are
used to approximate model 𝜁 in (2). Local principal com-
ponent analysis is applied to partition population. In RM-
MEDA, the number of clusters is an experimental parameter
andZhang sets it to be 5.The solutions of each cluster are used
to build a statistical model by principal component analysis
and we could get the parameters of eachmodel and noise ] in
(2). New trial solutions are sampled from each local model.

As mentioned above, offspring solutions are generated by
the statistical model and how to build the model is crucial to
this algorithm. In RM-MEDA, they first partition population
𝑃(𝑡) into disjoint clusters 𝑆1, 𝑆2, . . . , 𝑆𝐾 by local principal
component analysis, and more details about partition can be

found in [32]. For each cluster 𝑆𝑗, let x𝑗 be its mean andU𝑗
𝑖
its

𝑖th principal component. Compute following two equations:

𝑎
𝑗

𝑖
= min (x − x𝑗)

𝑇

U𝑗
𝑖
,

𝑏
𝑗

𝑖
= max (x − x𝑗)

𝑇

U𝑗
𝑖
, x ∈ 𝑆𝑗

(3)

for 𝑖 = 1, 2, . . . , 𝑚. Then, set

Ψ
𝑗
= {x ∈ 𝑅

𝑛

x
= x𝑗 +∑𝛼

𝑖
U𝑗
𝑖
, 𝑎
𝑗

𝑖
− 0.25 (𝑏

𝑗

𝑖
− 𝑎
𝑗

𝑖
)

≤ 𝛼
𝑖
≤ 𝑏
𝑗

𝑖
+ 0.25 (𝑏

𝑗

𝑖
− 𝑎
𝑗

𝑖
) , 𝑖 = 1, 2, . . . , 𝑚 − 1} .

(4)

Let 𝜆𝑗
𝑖
be the 𝑖th largest eigenvalue of covariance matrix of

points in 𝑆𝑗, and ] ∼ 𝑁(0, 𝛿
𝑗
I):

𝛿
𝑗
=

1

𝑛 − 𝑚 + 1

(𝜆
𝑗

𝑚
+ 𝜆
𝑗

𝑚+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑗

𝑛
) . (5)

From (4) and (5), we can get the model of (2) for each cluster,
and new offspring solutions are sampled from themodel.The
flowchart of RM-MEDA is illustrated in Algorithm 1.

RM-MEDA is a novel and efficient multiobjective esti-
mation of distribution algorithms and has been validated by
multiobjective problems with variable linkages. However, it
may fail in locating the global PF if aMOPhasmany local PFs
[23], and it has not been tested by famous ZDT and DTLZ
problems. In the next section, we proposed multiobjective
memetic estimation of distribution algorithms, which is a
more efficient and effective hybrid multiobjective algorithm.

4. The Proposed Method: MMEDA

4.1. Incremental Tournament Local Searcher (ITLS). It is
known that memetic algorithms, combined with EAs and
local search heuristics, can be implemented to maintain a
balance between exploration and exploitation in the search
space. Besides, it is clearly shown by Jaszkiewicz [26] that
memetic EMOalgorithms have higher search ability than tra-
ditional EMO algorithms. Several memetic EMO algorithms
have been proposed and showhigh competitive performance.
In this paper, an incremental tournament local searcher is
proposed and combined with RM-MEDA.
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Step 1. Find non-dominated solutions N(t) from population P(t), and assign crowding distance to N(t).
Step 2. Select 𝑛

𝑠
non-dominated solutions from N(t) by crowding distance to form tournament pool.

If the size of N(t) is less than 𝑛
𝑠
, then all of N(t) are selected.

Step 3. Perform tournament selection with tournament size 𝑛
𝑡
from the tournament pool by crowding distance and𝑁

𝑠

non-dominated solutions are selected, called active subpopulation.
Step 4. Solutions from active subpopulation and tournament pool are selected randomly to implement simulated binary
crossover operator and polynomial mutation. All of the new solutions are merged into new populationO(t).

Pseudocode 1: The main pseudocode of ITLS.

Following Liu et al.’s recent reviews [30], the issues
considered in the design of the local searcher operator include
(1) the selection of appropriate search direction; (2) the
selection of appropriate solutions for local optimization; and
(3) the allocation of computational budget for local search.
With these notions in mind, we devise our local searcher as
follows.

An active subpopulation is selected by tournament; that
is, 𝑁
𝑠
nondominated solutions are selected before modeling

in RM-MEDA per iteration. At first, a tournament pool
is built by nondominated solutions with higher value of
crowding distance, and the size of tournament pool is 𝑛

𝑠
. If

the number of nondominated solutions found so far is less
than 𝑛

𝑠
, all of the nondominated solutions are included in the

tournament pool. Then we select solutions with higher value
of crowding distance by performing tournament selection,
and the winner solutions are put in the active subpopulation,
whose size is 𝑁

𝑠
. Since 𝑁

𝑠
is always larger than the size of

tournament pool, 𝑛
𝑠
, we call it incremental tournament local

searcher.Then, traditional genetic operators are employed on
the active subpopulation for local search. Figure 2 illustrates
the basic idea of ITLS.

By Figure 2, we can obtain that if a nondominated solu-
tion locates in more isolated regions, there are more off-
springs created near the solutions. The aim is that the larger
the crowding-distance value of an individual, the more the
times the individual will be reproduced. So there exist more
chances to do search in less-crowded regions of the tradeoff
fronts. Now, we can answer the former three issues of local
searcher.The search direction is optimization direction and is
illustrated in Figure 2; the solutions for local optimization are
biased towards isolated ones; and the allocation of computa-
tional resource for local searcher is determined by𝑁

𝑠
, the size

of active subpopulation.
In order to present ITLS in detail, the procedure is

outlined in Pseudocode 1. Before we describe the ITLS, let
us give some more notations. The tournament scale is 𝑛

𝑡
,

and population 𝑃(𝑡) is from RM-MEDA before modeling.
Nondominated solutions from 𝑃(𝑡) are denoted by𝑁(𝑡).

4.2. The Adopted 𝜀-Dominance. It is clear from the existing
studies that there are two distinct goals in the development
of an MOEA: the first one is convergence to the true Pareto-
optimal front; then the second one is maintenance of a well-
distributed set of nondominated solutions. The proposed
ITLS in former subsection corresponds to the first goal. In

Offsprings
Nondominated solutions 

Search direction

Pareto set

Figure 2: Illustration of basic idea of ITLS.

order to maintain well-spread Pareto-optimal solutions, we
introduce the 𝜀-dominance in our paper.

The 𝜀-dominance does not allow two solutions with a
difference less than 𝜀

𝑖
in the 𝑖th objective to be nondominated

to each other, thereby allowing a good diversity to be main-
tained in a population. By 𝜀-dominance, the search space
is divided into a number of grids (or hyperboxes) and the
diversity is maintained by ensuring that a grid or hyperbox
can be occupied by only one solution. In our MMEDA, there
are two coevolving populations: an internal population𝑃(𝑡)
and an archive population 𝑁(𝑡). The archive population is
updated based on the 𝜀-dominance concept, whereas a usual
domination concept is used to update the internal population.
Every solution in the archive is assigned an identification
array (B = (𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑚
)
𝑇, where 𝑚 is the total number

of objectives) as follows:

𝐵
𝑗 (
f) =
[

[

[

[

(𝑓
𝑗
− 𝑓

min
𝑗
)

𝜀
𝑗

]

]

]

]

for min 𝑓 (x) in (1) , (6)

where𝑓min
𝑗

is theminimumpossible value of the 𝑗th objective
(default value of it is 𝑓min

𝑗
= 0) and 𝜀

𝑗
is the allowable

tolerance in the 𝑗th objective below which two values are
meaningless to the user. With the identification arrays cal-
culated for the offspring and each archive member, we can
decide how the archive population updates. More details of
𝜀-dominance can be found in [31].
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Step 1. Initialization: Set 𝑡 = 0, generate initial population P(0) and evaluate it.
Step 2. Update non-dominated population: Identify non-dominated solutions from population P(t), and update archive N(t)
by 𝜀 dominance.
Step 3. Termination: If 𝑡 > 𝐺max is satisfied, export N(t) as the output of the algorithm, and Stop, else go to step 3.
Step 3. ITLS: Perform incremental tournament local searcher to generate𝑁

𝑠
new solutions Ns(t).

Step 4.Modeling: Perform the (m-1)-d local PCA to partition P(t) into 𝐾 disjoint clusters 𝑆1, 𝑆2, . . . , 𝑆𝐾. For each cluster 𝑆𝑗,
build model (2) by (4) and (5).
Step 5. Sampling: Sample new populationO(t) from model (2) and evaluateO(t).
Step 6. Update current population: select𝑁 solutions from P(t) ∪O(t) ∪ Ns(t) to create P(t + 1).
Step 7. set 𝑡 := 𝑡 + 1 and go to Step 2.

Algorithm 2: The details of MMEDA.

4.3. Details of MMEDA. As mentioned above, RM-MEDA
extracts globally statistical information to build the prob-
ability distribution model and then samples it to gener-
ate offspring, which emphasizes global statistics ability, yet
brings the trouble of weak performance in local search.
However, several memetic MOEAs have been proposed and
implemented to maintain a balance between exploration and
exploitation in search space, which is often crucial to the
success of the search and optimization process. For this end,
a local search operator, called ITLS, is proposed to combine
with RM-MEDA. Besides, in order to maintain well-spread
Pareto-optimal solutions, 𝜀-dominance is employed in our
algorithm, whose name is MMEDA.The proposed algorithm
is hybrid with global search and local search, and the success
of it is due to the tradeoff between the exploration ability of
RM-MEDA and the exploitation ability of ITLS. The details
of MMEDA are in Algorithm 2.

5. Two Novel Multiobjective Problems with
Variable Linkages

A number of test problems for multiobjective optimization
have been designed by some scholars, such as SCHby Schaffer
[33], KUR by Kursawe [34], FON by Fonseca and Fleming
[35], ZDTs by Zitzler et al. [36], and DTLZs by Deb et al. [37].
These MOPs have been used in a number of significant past
studies of EMO to test an optimization methodology. Fol-
lowing Deb’s recent review of multiobjective test problems,
many of the existing test problems are separable variable-wise
or possess linear functions of the variable, which may not
provide adequate difficulties to an EMOmethodology. Zhang
et al. [14] realized the point and proposed ten multiobjective
problems with variable linkages (F1∼F10 in Table 1).

Analyzing the ten problems proposed by [14], we can get
that x

𝑖
= x
1
, 𝑖 = 2, . . . , 30, for F1∼F4, and x

𝑖
= √x1 , 𝑖 =

2, . . . , 30, for F5∼F10, when all the solutions converge to
Pareto- optimal fronts. The scheme of introducing variable
linkages proposed in the ten problems can be regarded as
variable linear or near-linear mapping. Besides, RM-MEDA
is based on probability distributions model built by local
principal component analysis, which is also a linear or local-
linear statistical model. Consequently, RM-MEDA may be
efficient to most of these problems. In order to investigate
the performance of the optimization methodology, more

problems should be employed and tested. For this end,
we introduce twenty-two multiobjective problems with and
without variable linkages in our experiment in Table 1.

The variable linkages in our proposed problems are based
on the following nonlinear mapping on the variables:

x
1
→ x
1
, x

𝑖
→ sin (𝜋x

𝑖
) − x
1
, 𝑖 = 2, . . . , 𝑛. (7)

In Figure 1, we can obtain that the Pareto set, in the decision
space, of a continuous multiobjective optimization problem
is a piecewise continuous (𝑚−1)-dimensional manifold, and
it seems that the ten problems (F1∼F10) may be a simple
and special case of the regularity. The problem introduced
by nonlinear mapping in (7) seems more accordant with the
regularity. Furthermore, there is no common rules of why
we choose sin() function, and other nonlinear function can
be used, and more difficulty problems can be proposed by
modifying the period of the sin().The details of two advanced
problems are in Table 1 (AF1 and AF2).

6. Experimental Study

6.1. Test Problems. The first five ZDT problems were devel-
oped by Zitzler et al. [36] (so called ZDT problems), and
the next five DTLZ problems were defined by Deb et al. [37]
(so called DTLZ problems). These problems have been cited
in a number of significant past studies in EMO community
and they can test evolutionary multiobjective optimization
algorithms in different aspects. Furthermore, ten problems
with variable linkages proposed by Zhang et al. [14] have
also been introduced in our paper, which can bring trouble
to most of variable-wise EMO methodology, and have been
validated by Zhang et al. Lastly, two more difficult problems
proposed by ourselves are also presented in Table 1.

It is necessary to note that the performance of an MOEA
in tacklingmultiobjective constrained optimization problems
may largely depend on the constraint-handling technique
used [38], so we do not mention side-constrained problems
in this study.

6.2. Performance Metrics. Zitzler et al. [39] suggested that for
a 𝑘-objective optimization problem, at least 𝑘 performances
are needed to compare two or more solutions and an infinite
number of metrics to compare two or more sets of solutions.
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Table 1: Test instances.

Instance Variable Objectives Number of evaluations

ZDT1 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1

𝑓
2
(x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
𝑥
𝑖
) / (𝑛 − 1)

50 000

ZDT2 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1

𝑓
2
(x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x) )2]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
𝑥
𝑖
) / (𝑛 − 1)

50 000

ZDT3 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1

𝑓
2
(x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x) − 𝑓

1
(x)/𝑔 (x) sin(10𝜋𝑥

1
)]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
𝑥
𝑖
) / (𝑛 − 1)

50 000

ZDT4
𝑥
1∈[0,1]

𝑥
𝑖∈[−5,5]

𝑖 = 2, . . . , 10

𝑓
1
(x) = 𝑥

1

𝑓
2
(x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 10(𝑛 − 1) + ∑𝑛
𝑖=2
[𝑥
𝑖

2
− 10 cos (4𝜋𝑥

𝑖
)]

50 000

ZDT6 [0, 1]
𝑛

𝑛 = 10

𝑓
1
(x) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
)

𝑓
2
(x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x))2]

𝑔 (x) = 1 + 9[(∑𝑛
𝑖=2
𝑥
𝑖
) / (9) ]

0.25

50 000

DTLZ1
[0, 1]
𝑛

𝑛 = 7

x
𝑀
= [0, 1]

5

𝑓
1
(x) = 0.5𝑥

1
𝑥
2
(1 + 𝑔 (x))

𝑓
2
(x) = 0.5𝑥

1
(1 − 𝑥

2
) (1 + 𝑔 (x))

𝑓
3
(x) = 0.5 (1 − 𝑥

1
) (1 + 𝑔 (x))

𝑔 (x) = 100 [

x
𝑀





+ ∑
𝑥𝑖∈𝑋𝑀

((𝑥
𝑖
− 0.5)

2

− cos (20𝜋 (𝑥
𝑖
− 0.5)))]

60 000

DTLZ2 [0, 1]
𝑛

𝑛 = 12

𝑓
1
(x) = cos (0.5𝜋𝑥

1
) cos(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
2
(x) = cos (0.5𝜋𝑥

1
) sin(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
3
(x) = sin(0.5𝜋𝑥

1
)(1 + 𝑔)

𝑔 (x) = ∑𝑛
𝑖=3
(𝑥
𝑖
− 0.5)

2

50 000

DTLZ3 [0, 1]
𝑛

𝑛 = 12

𝑓
1
(x) = cos (0.5𝜋𝑥

1
) cos(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
2
(x) = cos (0.5𝜋𝑥

1
) sin(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
3
(x) = sin(0.5𝜋𝑥

1
)(1 + 𝑔)

𝑔 (x) = 100 [

x
𝑀





+ ∑
𝑛

𝑖=3
((𝑥
𝑖
− 0.5)

2

− cos (20𝜋 (𝑥
𝑖
− 0.5)))]

50 000

DTLZ4 [0, 1]
𝑛

𝑛 = 12

𝑓
1
(x) = cos (0.5𝜋𝑥

1

𝛼
) cos(0.5𝜋𝑥

2

𝛼
)(1 + 𝑔)

𝑓
2
(x) = cos (0.5𝜋𝑥

1

𝛼
) sin(0.5𝜋𝑥

2

𝛼
)(1 + 𝑔)

𝑓
3
(x) = sin(0.5𝜋𝑥

1

𝛼
)(1 + 𝑔)

𝑔 (x) = ∑𝑛
𝑖=3
(𝑥
𝑖
− 0.5)

2

𝛼 = 100

50 000

DTLZ6
[0, 1]
𝑛

𝑛 = 22

x
𝑀
= [0, 1]

20

𝑓
1
(x) = 𝑥

1 𝑓2
(x) = 𝑥

2
𝑓
3
(x) = (1 + 𝑔 (x

𝑀
)) ℎ

𝑔 (x
𝑀
) = 1 + 0.45∑𝑥

𝑖 𝑥𝑖
∈ x
𝑀

ℎ = 3 − 𝑓
1
/ (1 + 𝑔) (1 + sin (3𝜋𝑓

1
)) − 𝑓

2
/ (1 + 𝑔) (1 + sin (3𝜋𝑓

2
))

50 000

F1 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
(𝑥
𝑖
− 𝑥
1
)
2

) / (𝑛 − 1)

15 000

F2 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x) )2]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
(𝑥
𝑖
− 𝑥
1
)
2

) / (𝑛 − 1)

15 000

F3 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
)

𝑓
2
(x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x))2]

𝑔 (x) = 1 + 9[(∑𝑛
𝑖=2
(𝑥
𝑖
− 𝑥
1
)
2

) /9]
0.25

100 000

F4 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = cos (0.5𝜋𝑥

1
) cos(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
2
(x) = cos (0.5𝜋𝑥

1
) sin(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
3
(x) = sin(0.5𝜋𝑥

1
)(1 + 𝑔)

𝑔 (x) = ∑𝑛
𝑖=3
(𝑥
𝑖
− 𝑥
1
)
2

35 000

F5 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
(𝑥
𝑖

2
− 𝑥
1
)

2

) / (𝑛 − 1)

15 000
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Table 1: Continued.

Instance Variable Objectives Number of evaluations

F6 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x) )2]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
(𝑥
𝑖

2
− 𝑥
1
)

2

) / (𝑛 − 1)

15 000

F7 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
)

𝑓
2
(x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x))2]

𝑔 (x) = 1 + 9[(∑𝑛
𝑖=2
(𝑥
𝑖

2
− 𝑥
1
)

2

) /9]
0.25

100 000

F8 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = cos (0.5𝜋𝑥

1
) cos(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
2
(x) = cos (0.5𝜋𝑥

1
) sin(0.5𝜋𝑥

2
)(1 + 𝑔)

𝑓
3
(x) = sin(0.5𝜋𝑥

1
)(1 + 𝑔)

𝑔 (x) = ∑𝑛
𝑖=3
(𝑥
𝑖

2
− 𝑥
1
)

2

35 000

F9 [0, 1] × [0, 10]
𝑛−1

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔(x) = 0.00025∑𝑛
𝑖=2
(𝑥
2

𝑖
− 𝑥
1
)
2
−∏
𝑛

𝑖=2
cos((𝑥2

𝑖
)/√𝑖 − 1) + 2

100 000

F10 [0, 1] × [0, 10]
𝑛−1

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 10(𝑛 − 1) + ∑𝑛
𝑖=2
[(𝑥
𝑖

2
− 𝑥
1
)

2

− 10 cos (2𝜋 (𝑥
𝑖

2
− 𝑥
1
))]

100 000

AF1 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 𝑥

1 𝑓2 (
x) = 𝑔 (x) [1 − √𝑓

1
(x) /𝑔 (x)]

𝑔 (x) = 1 + 9 (∑𝑛
𝑖=2
(100 sin(𝜋𝑥

𝑖
) − 𝑥
1
)
2

) / (𝑛 − 1)

30 000

AF2 [0, 1]
𝑛

𝑛 = 30

𝑓
1
(x) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
)

𝑓
2
(x) = 𝑔 (x) [1 − (𝑓

1
(x) /𝑔 (x))2]

𝑔 (x) = 1 + 9[(∑𝑛
𝑖=2
(6 (sin𝜋𝑥

𝑖
− 𝑥
1
))
2

) /9]
0.25

60 000

Coello Coello et al. [8] proposed three issues to allow a
quantitative assessment of the performance of a multiobjec-
tive optimization algorithm. As we know, it is a common
task for any multiobjective optimization algorithm to find
solutions as close as possible to the Pareto front and to make
them as diverse as possible in the obtained nondominated
front. Furthermore, the latter case includes maximizing the
spread and the uniformity of solutions found in the final
Pareto front. For this end, three metrics are employed in our
paper to investigate the performance of the algorithm. As
[14], we apply inverted generation distance to the final Pareto-
optimal set obtained by anMOEA to evaluate its convergence
and spread performance. We also adopt convergence metric
proposed by Deb et al. [6] to measure the convergence to
the final solutions. Finally, in order to check the uniformity
of Pareto-optimal solutions we get in final generation and
spacing devised by Schott [40] metric is employed in our
paper. The three metrics are summarized as follows.

6.2.1. Inverted Generation Distance. Let 𝑃∗ be a set of
uniformly distributed points in the objective space along
the PF. Let 𝑃 be an approximation to the PF; the inverted
generational distance from 𝑃∗ to 𝑃 is defined as

𝐷(𝑃
∗
, 𝑃) =

∑V∈𝑃∗ 𝑑 (V, 𝑃)
|𝑃
∗
|

, (8)

where 𝑑(V, 𝑃) is the minimum Euclidean distance between V
and the points in 𝑃.The inverted generation distance denotes
the metric convergence and spread, which represents the
distance between the set of the true Pareto-optimal fronts and
converged Pareto solutions obtained by EMOAs.

6.2.2. Convergence Metric. Metric 𝑌 is used to estimate how
far the elements in the set of nondominated solutions found
so far are from those in the Pareto-optimal set, and it is
defined as

𝑌 (𝑃, 𝑃
∗
) =

∑V∈𝑃 𝑑 (V, 𝑃
∗
)

|𝑃|

, (9)

where 𝑑(V, 𝑃∗) is the minimum Euclidean distance between
V and the points in 𝑃∗. Since multiobjective algorithms can
be tested on problems having a known set of Pareto-optimal
solutions, the calculation of the two metrics is possible.

6.2.3. Spacing. Let 𝑃 be the final approximate Pareto-optimal
set obtained by an MOEA.The function 𝑆 is as follows:

𝑆 = √
1

ℎ − 1

ℎ

∑

𝑖=1

(𝑑 − 𝑑
𝑖
)

2

, (10)

where 𝑑
𝑖
= min

𝑗
(|𝑓
𝑖

1
(𝑥) − 𝑓

𝑗

1
(𝑥)| + ⋅ ⋅ ⋅ + |𝑓

𝑖

𝑚
(𝑥) − 𝑓

𝑗

𝑚
(𝑥)|), 𝑑

is the mean of all 𝑑
𝑖
, and ℎ is the number of nondominated

solutions found so far. A value of zero for thismetric indicates
that all members of the Pareto front currently available are
equidistantly spaced.

6.3. The Compared Algorithms. As Deb et al.’s suggestion in
[13], some EMO procedures with variable-wise recombina-
tion operators do not perform as well as those with vector-
wise operators; besides, PCX-NSGA-II [13] and GDE3 [41]
are recommended to handle linkages-based multiobjective
optimization problems. Zhang et al. [14] compared RM-
MEDA with GDE3, PCX-NSGA-II, and MIDEA [42]. They
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concluded that RM-MEDA performed better than GDE3,
PCX-NSGA-II, andMIDEA on some test instances with vari-
able linkages, and MIDEA performed slightly badly among
the four algorithms. Overall considering former works [13,
14], we choose RM-MEDA, GDE3, and PCX-NSGA-II as the
comparisons with MMEDA.

The third evolution version of generalized differential
evolution (GDE3) is another updated version of original
DE, which modifies earlier GDE version using a growing
population and nondominated sorting with pruning of non-
dominated solutions to decrease the population size at each
generation. The procedure is similar to NSGA-II except that
the simulator binary crossover is replaced with a differential
evolution operator. The code of GDE3 used in comparison is
written in MATLAB by the authors.

Parent-centric recombination (PCX) is a real parameter
genetic operator in [43]. Deb et al. [13] introduced the PCX
recombination operator in NSGA-II and validated that PCX-
based NSGA-II performs better on some problem with vari-
able linkages. The details of PCX-NSGA-II can be found in
[13]. The code of PCX-NSGA-II is programmed by ourselves
by referring to the code of SBX-NSGA-II and G3PCX from
KanGAL (http://www.iitk.ac.in//kangal/).

We have discussed so much about RM-MEDA in the
former section in our paper.Here, we acknowledge the help of
Professor Qingfu Zhang and Dr. Aimin Zhou for sharing the
code of RM-MEDA with us and their insightful comments.

6.4. Experimental Setup. In our experiments, the code is
programmed in MATLAB. The source code of MMEDA
can be obtained from the authors upon request. All the
simulations run at a personal computer with P-IV 3.0G CPU
and 2G RAM. The experimental setting is as follows. Firstly,
in GDE3, both CR and F in the differential operator are set to
be 1 for F1∼F10 and AF1∼AF3, which have been investigated
by Deb et al. [13] and Zhang et al. [14] on MOPs with
variable linkages. Furthermore, by referring to the involved
literatures [44, 45], CR and F are set to be 0.2 for ZDTs
and DTLZ2, DTLZ4, and DTLZ6 except 0.5 for DTLZ1 and
DTLZ3. Secondly, in PCX-NSGA-II, 𝜎 in PCX is set to be 0.4
for all the test instances which work well in studies in [13].
Thirdly, in RM-MEDA, all the parameters’ setting is the same
as the original paper; that is, in local PCA algorithm,𝐾 is set
to be 5, and extension rate is 0.25. Finally, in MMEDA, the
size of tournament pool, 𝑛

𝑠
, is 30, tournament scale is 2, and

the size of active subpopulation,𝑁
𝑠
, is 40 for all test instances.

Besides, the crossover probability of 𝑝
𝑐
= 0.9 and a mutation

probability of 𝑝
𝑚
= 1/𝑟 (where 𝑟 is the number of decision

variables for real-coded GAs) for test instances. We choose
𝜂
𝑐
= 15 and 𝜂

𝑚
= 20, which are similar to Deb et al.’s setting

in [6].
Furthermore, the fourth column in Table 1 is the number

of total evaluations for each test instance, respectively, which
is followed by some significant past studies in this area [9,
14, 37, 46]. Indexes of the different algorithms are shown in
Table 2. The 𝜀 values for different test instances are described
in Table 3, which are similar to 𝜀-MOEA [31] and 𝜀-ODEMO
[47]. Besides, we select 500 for two objective problems and

Table 2: Indexes of the different algorithms.

Index 1 2 3 4
Algorithms MMEDA RM-MEDA GDE3 PCX-NSGA-II

1000 for three objective problems with evenly distributed
points in Pareto-optimal front, and these points are denoted
by 𝑃∗.

6.5. Experimental Results of Multiobjective Problems without
Variable Linkages. Deb et al. [13] and Zhang et al. [14] have
investigated and validated that GDE3, PCX-NSGA-II, and
RM-MEDA performed better than other EMOAs on multi-
objective problems with variable linkages. However, whether
these algorithms could get the same good performance on
multiobjective problems without variable linkages is still not
investigated so far. For this end, we give the experimental
comparison of MMEDA, RM-MEDA, GDE3, and PCX-
NSGA-II on famous ZDT andDTLZproblems in this section.

Figure 3 shows the Pareto fronts obtained from our
algorithm in a random single run. These problems without
variable linkages are rarely tested by estimation of distri-
bution algorithms, and we can see that our method could
get fairish results on famous ZDT and DTLZ test instances.
Besides, seeing DTLZ2, DTLZ3, and DTLZ4 in Figure 3, we
can gain that some extreme points of the Pareto front, as
well as points located in segments of the Pareto front that are
almost horizontal or vertical, are lost. This is the curse of 𝜀-
dominance, which has been investigated byDeb et al. [31] and
Hernández-Dı́az et al. [48].

Next, we investigate statistical results of the four algo-
rithms in our paper in 30 independent runs on each test
problem, which are in the form of box plots [49]. In a notched
box plot, the notches represent a robust estimate of the
uncertainty about the medians for box-to-box comparison.
Symbol “+” denotes outlier (Figure 4).

The 30-variable ZDT1 problem has a convex Pareto-
optimal front, while ZDT2 has a nonconvex Pareto-optimal
front, and ZDT3 provides difficulties by its discontinuities.
Many MOEAs have achieved very good results on these
problems in both goals of multiobjective optimization (con-
vergence to the true Pareto front and uniform spread of
solutions along the front). The results of the problems ZDT1,
ZDT2, and ZDT3 (Figures 3 and 4) show that MMEDA
achieves good results, which are comparable to the results of
RM-MEDA,GDE3, andPCX-NSGA-II; however,MMEDA is
not the best in all metrics of the four algorithms. On the first
three test problems we cannot see a meaningful difference
in performance of the four algorithms. If it is exigent to
find which is best, we can see that RM-MEDA is slightly
better than the other three algorithms in terms of spacing,
while it performs a little poor in convergencemetric. Besides,
MMEDA andGDE3 are a little better in terms of convergence
metric, while they achieve a little worse in spacing metric of
these three problems.

ZDT4 is a hard optimization problem with many (219)
local Pareto fronts that tend to mislead the optimization
algorithm. In Figure 5, we can see that RM-MEDA has
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Table 3: The 𝜀 values for different test instances.

ZDT1 [0.0075, 0.0075] DTLZ2 [0.045, 0.045, 0.03] F4 [0.045, 0.045, 0.03] F10 [0.0075, 0.0075]
ZDT2 [0.0075, 0.0075] DTLZ3 [0.045, 0.045, 0.03] F5 [0.0075, 0.0075] AF1 [0.0075, 0.0075]
ZDT3 [0.0025, 0.0035] DTLZ4 [0.045, 0.045, 0.03] F6 [0.0075, 0.0075] AF2 [0.0075, 0.0075]
ZDT4 [0.0075, 0.0075] DTLZ6 [0.035, 0.035, 0.035] F7 [0.0075, 0.0075] AF3 [0.0075, 0.0075]
ZDT6 [0.0075, 0.0075] F1 [0.0075, 0.0075] F8 [0.045, 0.045, 0.03]
DTLZ1 [0.02, 0.02, 0.05] F2 [0.0075, 0.0075] F9 [0.0075, 0.0075]

difficulty in locating the global true Pareto-optimal front.
Besides, MMEDA, GDE3, and PCX-NSGA-II produce a very
similar convergence and diversity measure. Furthermore,
it seems that MMEDA demonstrates the best in terms of
convergence and diversity by box plots in small scale.

With respect to the 10-variable test problem ZDT6, there
are two major difficulties. The first one is thin density of
solutions towards the Pareto front and the second one is
nonuniform spread of solutions along the front. The Pareto-
optimal solutions of DTLZ1 with (115 – 1) local Pareto fronts
lie on a three-dimensional plane satisfying 𝑓

1
+ 𝑓
2
+ 𝑓
3
=

0.5 (Figure 3). In Figure 5, we can obtain that MMEDA and
GDE3 achieve good convergence and diversity measures of
ZDT6, followed by PCX-NSGA-II and RM-MEDA, while,
for DTLZ1, it seems that MMEDA gives both the best
convergence and diversity measure in the four algorithms.

On the whole, we can obtain that MMEDA seems to be
the best algorithmon these three problems. However, if we do
not employ local searcher, EDAs based on probability global
statistical informationmay performweakly in approximating
the Pareto-optimal fronts of the three problems.

Problems of DTLZ2, DTLZ3, and DTLZ4 are three-
objective test instances with spherical Pareto-optimal front
(see Figure 3). Note that DTLZ3 has lots of local Pareto
fronts, DTLZ4 emphasizes nonuniformity, and DTLZ6 has
219 disconnected Pareto-optimal regions in the search space.
Figure 6 shows the performance metrics of the four algo-
rithms on the four problems, respectively. We can find that
MMEDA is the best in terms of both convergence and
diversity on DTLZ3 and DTLZ4. Furthermore, for DTLZ3,
MMEDA performs much better than the other there algo-
rithms even though DTLZ3 has (310 – 1) local Pareto-optimal
fronts. Gong et al. [9], Deb et al. [37], and Khare et al.
[46] claimed that, for DTLZ3, NSGA-II, SPEA2, and PESA-
II could not quite converge on to the true Pareto-optimal
fronts in 500 generations (50 000 function evaluations). In
our paper, we have found that GDE3, PCX-NSGA-II, and
RM-MEDA also did badly in solving DTLZ3.

For convergence metric, it seems that GDE3 achieves the
best measure in the four algorithms on DTLZ2 and DTLZ6.
Besides, for diversity metric, MMEDA is the best on the four
problems, which is the strongpoint of 𝜀-dominance. Since the
𝜀-dominance does not allow two solutions with a difference
of 𝜀
𝑖
in the 𝑖th objective to bemutually nondominated to each

other, it will be usually not possible to obtain the extreme
corners of the Pareto-optimal front. Although there is such
shortcoming of 𝜀-dominance, we could still get better spacing

measurement than that of RM-MEDA, GDE3, and PCX-
NSGA-II, which are based on crowding distance proposed by
Deb et al. [6].

Overall considering the ten famous two and three objec-
tive problems without variable linkages, we can conclude
that MMEDA produces a good convergence and diversity
metrics with the exception of ZDT1, ZDT2, and ZDT3. GDE3
obtains comparative results for most of problems except
DTLZ1 and DTLZ3. Besides, PCX-NSGA-II and RM-MEDA
are not better than MMEDA and GDE3 on most of the ten
problems. However, the mechanism of RM-MEDA is based
on global statistical information, and strongpoints of RM-
MEDA are discovering linkages of variables and holding the
spread of the final solutions. Besides, there are no variable
linkages in the former ten problems. Therefore, it is not
fair for RM-MEDA. In [14], it has been validated that RM-
MEDA performs better than GDE3 and PCX-NSGA-II on
some multiobjective problems with variable linkages. In the
next subsection, we will give experimental results of our
algorithms compared with the other three algorithms on
twelve multiobjective problems with variable linkages.

6.6. Experimental Results of Multiobjective Problems with
Variable Linkages. In this subsection, experimental results
of twelve multiobjective problems with variable linkage are
presented. The representation of experimental results is
similar to that of Section 6.5; that is, 30 independent runs are
performed on each test problem.The statistical results of our
selected three metrics are shown by box plots too.

Figure 7 shows the Pareto fronts obtained by our algo-
rithm on F1∼F10 and AF1, AF2 in a random single run. We
can see that MMEDA obtains good results of F1, F2, F3, F4,
F5, F6, F9, AF1, and AF2. However, MMEDAperforms a little
poor on F7, F8, and F10, especially on F10, of which MMEDA
cannot converge to the true Pareto-optimal fronts. In [14],
RM-MEDA is also trapped in local Pareto front on F10.
Furthermore, for GDE3 and PCX-NSGA-II, they converge to
a small region of global Pareto fronts of F10, which is called
“genetic drift.” Next, we will give experimental comparison
with MMEDA, RM-EDA, GDE3, and PCX-NSGA-II by box
plots for further research.

Since F1 and F5 are variants of ZDT1 by introducing
linear and nonlinear variable linkages into them, respectively,
we put the statistical results of them in the same figure
(Figure 8) for comparison, which are similar to F2 and F6.
Note that the metric inverted generation distance should
be first choice for comparison because inverted generation
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Figure 3: Pareto fronts obtained by MMEDA on ZDT and DTLZ problems in our paper, respectively.
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distance can measure both convergence and spread. If we
ignore inverted generation distance, we cannot get rational
and comprehensive comparison. Taking F6, for example, if we
only concentrate on the metric convergence and spacing, it
seems that PCX-NSGA-II is the best choice for this problem.
Nevertheless, analyzing F6D in Figure 8, the result of F6 is in
a small region of whole Pareto- optimal front, which is called
“genetic drift” by Goldberg and Segrest [50] and Fonseca and
Fleming [51]. Zhang et al. got the same results of PCX-NSGA-
II on F6 [14]. For this end, inverted generation distance is
foundational one among the three metrics.

In terms of convergence metric of F1 and F2, MMEDA
obtains best performance, while it performs a little poor
in spacing metric. Furthermore, MMEDA and RM-MEDA
perform better than GDE3 and PCX-NSGA-II on the four
problems in terms of spread and convergence. Although

PCX-NSGA-II seems better in spacing metric on F5 and F6,
it experiences difficulty in spread.

With respect to F3 and F7, since they are variants of ZDT6
by introducing linear and nonlinear variable linkages into
them, respectively, there are three major difficulties of them.
The first two difficulties are the same as ZDT6 as described
above, while the third one is linkage relations between vari-
ablemappings.Therefore, F3 and F7 havemore difficulty than
F1, F2, F5, and F6. Figure 9 shows the performance measures
on F3 and F7. We can obtain that RM-MEDA and MMEDA
achieve better performance thanGDE3 and PCX-NSGA-II in
terms of spread, convergence, and uniformity. This might be
the reason why GDE3 and PCX-NSGA-II have no efficient
mechanism for discovering variable relation, yet RM-MEDA
and MMEDA hold the property by building the probability
distribution model based on manifold distribution of Pareto
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set in decision space, which have been described in detail in
Section 3. Finally, it seems that RM-MEDA is slightly better
than MMEDA on the two problems.

F4 and F8 are variants of DTLZ2, and Figure 10 is the
statistical results of them. We can obtain that MMEDA is
slightly better than other three algorithms in our paper.
Besides, GDE3 shows comparative results on F4, followed by

RM-MEDA. In [14], Zhang et al. admitted that GDE3 slightly
outperforms better than RM-MEDA on some problems and
pointed out that the reason might be that RM-MEDA does
not directly use the local information of previous solutions
in generating new solutions. Here, we give one possible
answer, MMEDA, the hybridization of RM-MEDA and an
efficient local searcher. For F8,GDE3 andPCX-NSGA-II both
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converge to a curve and several points, which is “genetic
drift” in multiobjective optimization. Figure 11 is the result
of a single run of GDE3, and PCX-NSGA-II has similar
results with GDE3. In multiobjective optimization, genetic
drift means that finite population tends to converge to small
regions of efficient set.

F9 is a variant of multimodal with Griewank function,
while F10 is a variant of multimodal with Rastrigin function,
and all of them are introduced into nonlinear mapping on
variables. Figure 12 is the statistical results of them by the
four algorithms in our study. We can obtain that MMEDA
and RM-MEDA get very similar performance of F9, and
they get better measurement than GDE3 and PCX-NSGA-
II. However, with respect to F10, it seems that MMEDA
and PCX-NSGA-II are the best two algorithms in terms
of the three metrics. However, it is not true to them. In
Figure 7 (F10), we can see that all the solutions obtained by
MMEDA converge to a small region near the global Pareto-
optimal front, which is similar to PCX-NSGA-II [14]. They
are trapped in “genetic drift.” Besides, the final Pareto fronts
obtained by RM-MEDA and GDE3 on F10 are far from the
Pareto-optimal front, which can be validated by inverted
generation distance (F10D in Figure 12) and convergence
metric (F10Y in Figure 12). They are stagnated at local Pareto
fronts. In a word, we have to admit that all the four algorithms
cannot solve the problem efficiently.

By comparison, we can see that MMEDA is best in
convergence and spread on AF1 and AF2, followed by RM-
MEDA and GDE3. For PCX-NSGA-II (Figure 13), it cannot
converge to the true Pareto-optimal front of the two prob-
lems. From these two problems, we can see that MMEDA,
which hybrids with ITLS, is a competitive algorithm for some
problems.

However, overall considering the experimental results of
the twelve problems with variable linkages, RM-MEDA and
MMEDA are twomore efficient and effective algorithms than
traditional EAs for most of the problems. For EDAs, this
new class of algorithms generalizes genetic algorithms by
replacing the crossover and mutation operators by learning
and sampling the probability distribution of the promising
individuals of population, and the relationships between the
variables involved in the problem domain are explicitly and
effectively captured and exploited. Besides, the regularity
that the distribution of Pareto set in the decision space is a
piecewise continuous (𝑚−1)-dimensionalmanifold is hybrid
into MMEDA and RM-MEDA. Therefore, we can conclude
that MMEDA and RM-MEDA should be better GDE3 and
PCX-NSGA-II. Besides, from two problems (F3, F7) we can
see that RM-MEDA is better than MMEDA in all metrics.
However, in terms of convergence, MMEDA is slightly better
than RM-MEDA on nine problems (F1, F2, F4, F5, F6, F8,
F10, AF1, and AF2) and the effectiveness of our ITLS seems
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Figure 8: Statistical values of inverted generation distance (“D” in FXD for short), convergence (“Y” in FXY for short), and spacing (“S” in
FXS for short) for F1, F5, F2, and F6 obtained by MMEDA, RM-MEDA, GDE3, and PCX-NSGA-II, respectively.

to play a very significant role for the above nine problems.
But, for seven problems (F1∼F3, F5∼F7, and F9), RM-MEDA
outperforms MMEDA in terms of spacing metric.

As we know, convergence to the true Pareto-optimal front
and maintenance of a well-distributed set of nondominated
solutions are two challenges for multiobjective optimization
community. However, if solutions obtained by an algorithm

cannot converge to the true Pareto-optimal fronts, they are
stagnated in local optimal fronts. It is useless to consider
uniformity. Besides, if solutions obtained by an EMOA only
converge to a small region of the whole Pareto-optimal
front, they have trouble in “genetic drift.” We cannot make
a comprehensive view of the EMOA if we only take conver-
gence and spacing metrics into account. Since the inverted
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generation can measure both convergence and spread of
solutions obtained by an EMOA, it is used as remedy for
the shortcomings of generation distance and spacingmetrics.
Next, we judge the statistical results by combined metrics.

Finally, with respect to the twenty-two multiobjective
problemswith andwithout variable linkages, we can conclude
the following.

(1) In terms of convergence and spread, MMEDA
achieves the best measurement among the four algo-
rithms on ZDT4, DTLZ1, DTLZ3, DTLZ4, F1, F2,
F4, F5, F8, F9, AF1, and AF2 out of the twenty-two
problems while RM-MEDA performs best on F3, F6,
and F7. GDE3 does best on ZDT1, ZDT3, ZDT6,
DTLZ2, and DTLZ6. PCX-NSGA-II seems to obtain
the best result of ZDT2.

(2) In terms of spread and spacing, MMEDA performs
the best performance on ZDT4, ZDT6, DTLZ1,
DTLZ2, DTLZ3, DTLZ4, DTLZ6, F4, F8, AF1, and
AF2, while RM-MEDA is the best on ZDT1, ZDT2,
ZDT3, F1, F3, F5, F6, F7, and F9. GDE3 achieves the
best on F2.

Overall considering the three metrics, we can get that
MMEDA turns out to be the best compromise among the
four MOEAs considered in this study. However, MMEDA
is possibly trapped in “genetic drift,” and we can get it
from the results of F10 in Figure 3. Therefore, much work
is needed to balance the exploration ability of global model
and the exploitation ability of local searcher, or more efficient
EDAs based on other machine learning techniques should be
proposed.

In one word, depending on these empirical results and
detailed analysis, we can draw that MMEDA is an efficient
algorithm in solving multiobjective optimization problems
with and without variable linkages.

7. Concluding Remarks

We have proposed a novel multiobjective algorithm based on
the manifold distribution of Pareto set in the decision space,

an efficient local searcher (ITLS), and 𝜀-dominance. Besides,
two more difficult multiobjective problems by introducing
nonlinear mapping into variable linkages are proposed. Fol-
lowing Deb et al. and Zhang et al.’s recent review of current
evolutionarymultiobjective optimization fields [13, 14]multi-
objective problemswith variable linkages havemore difficulty
for most current state-of-the-art MOEAs. Consequently, in
order to test our proposed algorithm, MMEDA, twenty-two
multiobjective problems with and without variable linkages
are employed, and RM-MEDA, GDE3, and PCX-NSGA-II
are used in comparison.The results show that our algorithms
get competitive results in terms of convergence and diversity
metrics.

However, there is much work to do in multiobjective
optimization community. An issue that should be addressed
in the future research is 𝜀-dominance. In our study, it
seems that spacing metric of some two-objective problems
(such as ZDT1 and ZDT3) is not better than PCX-NSGA-
II and GDE3, which are based on crowding distance in
SBX-NSGA-II [6], and Deb et al. [31] have validated by
experiments that 𝜀-MOEAs get better spacing metric than
NSGA-II based on crowding distance. There are two major
reasons of this. The first is that we introduce a local searcher
(ITLS) and the number of iterations will be less than the
other three algorithms in our study under the same limit
of total evaluations. The second is that some extreme points
of the Pareto front, as well as points located in segments
of the Pareto front that are almost horizontal or vertical,
are lost. This is the curse of 𝜀-dominance. Some scholars
have proposed Pareto adaptive 𝜀-dominance [48], which is
an advanced version of 𝜀-dominance. But the loss of extreme
solutions still exists. So much work is still needed to propose
new version of dominance.

Another important topic is “genetic drift,” which has been
studied by some researchers, such as Goldberg and Segrest
[50], Fonseca and Fleming [51], and Srinivas and Deb [52].
At first, fitness sharing techniques are proposed to prevent
genetic drift in multimodal function optimization andmulti-
objective optimization [52]. Later on, fitness assignment and
crowding distance are proposed by Deb et al. [6] and Zitzler
et al. [7] for diversity maintenance. Nowadays, some state-of-
the-art MOEAs have still trouble in “genetic drift” on some
multiobjective problems with variable linkages [13, 14]. So
how we can design new efficient and effective scheme to
maintain diversity is an important issue of modern EMO
community.

How to advance the local search ability of modern
MOEAs is anotherworthwhilework.Gong et al. [9],Deb et al.
[37], and Khare et al. [46] validated that, for DTLZ3, NSGA-
II, SPEA2, and PESA-II, which are representative of state-of-
the-art MOEAs in multiobjective optimization community,
could not quite converge on to the true Pareto-optimal fronts
in 500 generations (50 000 function evaluations). We have
found that GDE3, PCX-NSGA-II, and RM-MEDA also did
badly in solving DTLZ3. DTLZ3 may be only one case of
problems with many local Pareto fronts, and, possibly, there
are many complicated problems like DTLZ3. Therefore, it
requires designing more efficient and effective algorithms.
Memetic algorithm may be one potential answer to the
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problem, and several multiobjective memetic algorithms
have been proposed by some scholars [27, 29, 53], which have
shown comparative performance than traditional EMOAs.
A more efficient and effective hybrid algorithm should be
addressed in the future research.
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