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This paper presents a model system to predict severity and duration of traffic accidents by employing Ordered Probit model and
Hazard model, respectively. The models are estimated using traffic accident data collected in Jilin province, China, in 2010. With
the developed models, three severity indicators, namely, number of fatalities, number of injuries, and property damage, as well
as accident duration, are predicted, and the important influences of related variables are identified. The results indicate that the
goodness-of-fit of Ordered Probit model is higher than that of SVC model in severity modeling. In addition, accident severity is
proven to be an important determinant of duration; that is, more fatalities and injuries in the accident lead to longer duration.
Study results can be applied to predictions of accident severity and duration, which are two essential steps in accident management
process. By recognizing those key influences, this study also provides suggestive results for government to take effective measures
to reduce accident impacts and improve traffic safety.

1. Introduction

Traffic accidents are a significant source of deaths, injuries,
property damage, and a major concern for public health
and traffic safety. Accidents are also a major cause of traffic
congestion and delay. Effective management of accident is
crucial to mitigating accident impacts and improving traffic
safety and transportation system efficiency. As two major
steps of the accident response program (shown in Figure 1),
severity prediction and duration estimation are, therefore,
of great importance. Accurate predictions of severity and
duration can provide crucial information for emergency
responders to evaluate the severity level of accidents, estimate
the potential impacts, and implement efficient accident man-
agement procedures.

To the authors’ knowledge, most of the previous studies
examined accident severity and duration separately, although
they were found to have correlation between each other.
Moreover, only one or two of the three aspects of accident
severity, that is, number of fatalities, number of injuries, and
property damage, were investigated by existing researchers.
Therefore, the present study is aimed at developing a model

system to estimate both accident severity and duration.
Furthermore, three indicators for accident severity will be
set, which represents number of fatalities, number of injuries,
and property damage, respectively. In doing so, we will
provide crucial information for emergency responders to take
effective management measures.

The remainder of this paper is organized as follows. In
Section 2, we present the literature review on predictions
of severity and duration in general. The data are described
in Section 3. Following is accident severity modeling in
Section 4 and duration forecasting in Section 5. The paper
concludes with a summary and directions for future research.

2. Existing Literature

As two major factors in accident analysis, severity and
duration have long been important topics for research. Most
of the previous studies examined only one of severity and
duration. For example, with respect to severity analysis,
Chang and Mannering [1] studied the relationship between
injury severity and vehicle occupancy usingWashington State
accident data. Mannera andWünsch-Ziegler [2] investigated



2 Mathematical Problems in Engineering

Accident occurs

Detection

Verification

Severity prediction

Duration prediction

Response

Site management Traffic management

Clearance

Recovery

Figure 1: Accident response procedure.

accident severity and determined the important effects of
related factors. As for duration, Chung [3] modeled accident
durationwith freeway accident data collected in Korea. Anas-
tasopoulos et al. [4] presented a Bayesian networkmodel that
can be used to learn emerging patterns and predict accident
clearance time. Nevertheless, accident severity was found to
have influence on duration time by some researchers. For
instance,NamandMannering [5] revealed thatwhether there
is fatality or injury in accident impacts accident duration.
Besides, as shown in Figure 1, severity prediction and dura-
tion estimation are connected procedures in the accident
management system.Therefore, the two indicators should be
considered together and combined in one model system.

Concerning severity analysis, which includes mainly
three aspects, that is, number of fatalities, number of injuries,
and property damage, most of the existing researchers
investigated it as one comprehensive indicator; for example,
Mannera and Wünsch-Ziegler [2]took accident severity as
one independent variable with four alternatives, namely, fatal,
severe injury, light injury, and property damage. Milton
et al. [6] defined severity levels as property damage only,
possible injury, and injury. Malyshkina and Mannering [7]
modeled severity by using three alternatives, that is, fatality,
injury, and property damage only. In addition, a number of
researchers considered only one or two of the three aspects
of severity. For instance, Stone and Broughton [8] and Sze
and Wong [9] considered only the aspect of fatality by
defining two levels of severity, that is, fatal and nonfatal
accident. Delen et al. [10] defined injury severity levels as
no injury, probable injury, nonincapacitating, incapacitating
and fatality. Similarly, Ballesteros et al. [11] and Roudsari et
al. [12] considered only number of fatalities and injuries but
not property damage. In fact, different types of losses as well
as the amount of losses lead to different response measures
and last possibly for disparate amount of time. For example,
either an accident resulting in $167–5000 property damage or
an accident leading to 1–3 injuries will be defined as level 2

accident in Zhang’s study [13]. However, the latter one needs
rescue services but the former one does not. This indicates
that any of the three indicators, that is, number of fatalities,
number of injuries, and property damage, is crucial tomaking
accident response decision and is therefore recommended
to be modeled separately in order to provide more detailed
information about accident management.

As mentioned above, most of the previous studies exam-
ined accident severity and duration separately, although they
were found to have correlation between each other.Moreover,
only one or two of the three aspects of accident severity,
that is, number of fatalities, number of injuries, and property
damage, were investigated by the existing studies. Therefore,
the present work is aimed at developing a model system to
estimate both accident severity and duration. Furthermore,
three indicators for accident severity will be investigated,
which represent number of fatalities, number of injuries, and
property damage, respectively.

3. Data and Modeling Framework

The dataset for the study contains police-reported traffic
accident records for Jilin province, China, in 2010. With
records containing missing values eliminated, our final
dataset consists of 3,914 cases, in which, 1,280 (32.70%)
cases were pedestrian involved accidents and 387 (9.89%)
cases were non-motor-vehicle-involved accidents. In addi-
tion to severity information, the data contains information
regarding accident duration, accident characteristics (vehicle
fire, crash type, accident occurrence time, and number
of lanes affected), emergency services (police services, fire
and rescue services, tow services, and emergency medical
services), vehicle characteristics (vehicle type involved, debris
involved, hazardous material involved, and disabled vehicles
involved), environmental factors (weather conditions and
visibility distance) and road conditions (number of lanes,
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Figure 2: Accident severity and duration modeling framework.

pavement condition, road geometrics, and roadway surface
condition, etc.).

Based on a preliminary correlation test, 4 independent
variables and 26-candidate dependent variables were selected
from the dataset, as shown in Table 1.

With Nof, Noi, and Pd as independent variables, three
separate severity prediction models will be developed. Then,
duration modeling will be conducted by taking accident
severity as input. The modeling framework is shown in
Figure 2.

4. Severity Modeling

Besides the Ordered Probit model [14], which is often used
in discrete choice modeling, SVM will be introduced in
this paper and be compared with the Ordered Probit model
according to the prediction accuracies.

4.1. Ordered Probit Model. As shown in Table 1, the alter-
natives of the severity related dependent variables are all
ordered. Since multinomial logit (MNL) model, which is
commonly used in discrete choice modeling, would fail to
account for the ordinal nature of the dependent variable
and have the problem of Independence from irrelevant alter-
natives (IIA) [15], this study will employ Ordered multiple
choice model for severity modeling.

TheOrderedmultiple choice model assumes the relation-
ship:

𝐽

∑
𝑗=1

𝑃𝑛 (𝑗) = 𝐹 (𝛼𝑗 − 𝛽𝑗𝑋𝑛, 𝜃) , 𝑗 = 1, . . . , 𝐽 − 1,

𝑃𝑛 (𝐽) = 1 −
𝐽

∑
𝑗=1

𝑃𝑛 (𝑗) ,

(1)

where 𝑃𝑛(𝑗) is the probability that alternative 𝑗 happens
in accident 𝑛 (𝑛 = 1, . . . , 𝑁), 𝛼𝑗 is an alternative specific
constant, 𝑋𝑛 is a vector of the attributes of accident 𝑛, 𝛽𝑗 is
a vector of estimable coefficients, and 𝜃 is a parameter that
controls the shape of probability distribution 𝐹. Therefore,

𝐹, can have various shapes of distribution based on different
value of 𝜃.

The Ordered Probit model, which assumes standard nor-
mal distribution for 𝐹 is the most commonly used Ordered
multiple choice model [16]. The Ordered Probit model has
the following form:

𝑃𝑛 (1) = Φ (𝛼1 − 𝛽𝑗𝑋𝑛) ,

𝑃𝑛 (𝑗) = Φ (𝛼𝑗 − 𝛽𝑗𝑋𝑛)

− Φ (𝛼𝑗−1 − 𝛽𝑗𝑋𝑛) , 𝑗 = 2, . . . , 𝐽 − 1,

𝑃𝑛 (𝐽) = 1 −
𝐽−1

∑
𝑗=1

𝑃𝑛 (𝑗) ,

(2)

where 𝑃𝑛(𝑗) is the cumulative standard normal distribution
function. For all the probabilities to be positive, wemust have
𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛼𝐽−1.

4.2. Support Vector Machine Model. Support vector machine
(SVM) is a type of learning algorithms based on statistical
learning theory, which can be adjusted to map the input-
output relationship for the nonlinear system [17–19]. SVM
has been widely used in transportation modeling; for exam-
ple, Bolbol et al. [20] employed SVM classification in travel
behavior analysis, Apatean et al. [21] used it in road obstacle
classification, and Abdel-Aty and Haleem [22] applied it to
analyze angle crashes at unsignalized intersections. Previous
studies indicate that SVM can conduct discrete choice mod-
eling with acceptable accuracy. Therefore, it is chosen to be
employed to model accident severity in this paper.

Given a set of input-output data pairs 𝐷 =
(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑙, 𝑦𝑙) (𝑥𝑖 ∈ 𝑋 ⊆ 𝑅𝑚, 𝑦𝑖 ∈ 𝑌 ⊆ 𝑅𝑛, and
𝑙 being the number of training samples, that are randomly
and independently generated from an unknown function,
SVM estimates the function using the following equation
[23]:

𝑓 (𝑥) = 𝑤 ⋅ Φ (𝑥) + 𝑏 𝑤, 𝑥 ∈ 𝑅𝑚, 𝑏 ∈ 𝑅𝑛, (3)
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Table 1: Variables and statistics based on survey data.

Factors Variables Values Percentage (%) Variables Values Percentage (%)

Accident
severity

Number of fatalities: Nof
0 89.59

Number of injuries:
Noi

0 9.86
[1, 2] 10.38 [1, 3) 85.89

More than 3 0.03 [3, 11) 4.14

Property damage (yuan):
Pd

Less than 1000 61.18 Over 11 0.11
[1001, 30000) 37.19
Over 30000 1.63

Duration Duration
(Continuous value)

Mean (min)
192.95

Standard
deviation 111.63

Accident
characteristics

Motor-vehicle-only
accident: Mvoa

Yes 57.41 Vehicle fire: Vf Yes 8.93
No 42.59 No 91.07

Head-on type collision:
Hotc

Yes 8.93 Weekend or festival:
Wof

Yes 38.60
No 91.07 No 61.40

Rear-end type collision:
Retc

Yes 19.64 Vehicle rollover: Vr Yes 26.79
No 80.36 No 73.21

Time of day: Tod
[00:00, 6:00) 6.24 Number of lanes

blocked: Nolb

0 3.57
[6:00, 18:00) 69.12 1 62.50
[18:00, 24:00) 24.64 over 1 33.93

Vehicle
characteristics

Bus involved: Bi Yes 16.07 Hazardous material
involved: Hmi

Yes 1.79
No 83.93 No 98.21

Truck involved: Ti Yes 89.29 Disabled vehicles
involved: Dvi

Yes 27.27
No 10.71 No 72.73

Debris involved: Di Yes 53.57
No 46.43

Environmental
factors Weather conditions: Wc

Sunny 89.48
Visibility distance
(meter): Vd

Less than 50 8.90
Fog 0.23 [50, 100) 22.70
Sleet 5.97 [100, 200) 19.86
Other 4.32 Over 200 48.54

Road
environment
factors

Number of lanes in each
direction: Nol

2 33.92 Motor vehicle lanes 71.68
3 51.79 Bike lane 6.60

Over 3 14.29 Accident location
(horizontal): Alh

Shared motor
vehicle and bike

lane
13.71

Pavement condition: Pc

Asphalt 96.95 Sidewalk 2.22
Cement 2.85 Crosswalk 3.42

Sand and gravel 0.07 Other 2.37

Soil 0.07 Regular road
section 60.01

Other 0.06 Accident location
(vertical): Alv

Four-way
intersection 20.43

Roadway surface
condition: Rsc

Dry 85.16

Other road
sections (narrow
carriageway and
tunnel, etc.)

1.09

Wet 6.38 Other intersections 18.47
Slippery (snowy

or icy
conditions)

6.76 Road geometrics: Rg Flat and straight 98.57

Other 1.70 Hill or bend 1.43

Traffic signal control: Tsc Yes 17.46
No 82.54

Emergency
services

Police services: Ps Yes 71.43 Fire and rescue
services: Frs

Yes 16.07
No 28.57 No 83.93

Tow services: Ts Yes 98.21 Emergency medical
services: Ems

Yes 33.93
No 1.79 No 66.07



Mathematical Problems in Engineering 5

where Φ(𝑥) represents the high-dimensional feature spaces
which are nonlinearly mapped from the input space 𝑥, 𝑤
denotes a parameter vector, and 𝑏 is the threshold [24, 25].

If the domain of output space𝑦only takes category values,
that is, −1 and +1, the learning problem then refers to support
vector classification (SVC) [26].

For classification about the training data𝐷, SVM’s linear
soft-margin algorithm is used to solve the following primal
quadratic programming problem:

min
𝑤,𝑏,𝜉

1
2
‖𝑤‖22 + 𝐶

𝑙

∑
𝑖=1

𝜉𝑖

s.t. 𝑦𝑖 (𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑙,

(4)

where 𝐶 is a penalty parameter and 𝜉𝑖 are the slack variables.
The goal is to find an optimal separating hyperplane,

𝑤𝑇𝑥𝑖 + 𝑏 = 0, (5)

where 𝑥 ∈ 𝑅𝑚. The Wolfe dual, that is, (4), can be expressed
as

max
𝛼

𝑙

∑
𝑗=1

𝛼𝑗 −
1
2

𝑙

∑
𝑖=1

𝑙

∑
𝑗=1

𝑦𝑖𝑦𝑗 (𝑥𝑖 ⋅ 𝑥𝑗) 𝛼𝑖𝛼𝑗

s.t.
𝑙

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑙,

(6)

where 𝛼 ∈ 𝑅𝑙 are lagrangian multipliers. The optimal
separating hyperplane of (5) can be given by

𝑤 =
𝑙

∑
𝑖=1

𝛼∗
𝑖
𝑦𝑖𝑥𝑖, 𝑏 = 1

𝑁𝑠V
(𝑦𝑗 −

𝑁
𝑠V

∑
𝑖=1

𝛼∗
𝑖
𝑦𝑖 (𝑥𝑖 ⋅ 𝑥𝑗)) , (7)

where 𝛼∗ is the solution of (6) and𝑁𝑠V represents the number
of support vectors such that 0 < 𝛼 < 𝐶. A new sample is
classified as +1 or−1 according to the finally decision function
𝑓(𝑥) = sgn((𝑤 ⋅ 𝑥) + 𝑏).

In order to conduct multiclass classification (as SVC
model is originally designed for binary classification), one-
against-one method will be employed in this paper [27, 28].

4.3. Estimation Results. By using Stata and Matlab, the
severity predictionmodels based onOrderedProbit and SVM
are estimated, respectively. The estimation results as well as
the prediction accuracies are shown in Table 2.

The last row shows the hit ratio for all the models. In
general, higher value of hit ratio represents higher goodness-
of-fit of the model. As all the hit ratio values of the Ordered
Probit models are higher than that of SVM models, Ordered
Probit-based models are chosen as the severity prediction
models.

The results indicate that hazardous material involved in
the accident, weather, and accident location are significant
in all the three models. According to the estimation results,

hazardous material involved will increase the probability of
high property damage. The reason is that hazardous material
will increase the probability of occurrence of fire or even
explosion, which leads to high damage to the vehicles and
goods.

Some of the variables have impact on only one or two
indicators. For example, bus involved, truck involved, time
of day, and traffic signal control are crucial to number of
fatalities and injuries. The more buses or trucks are involved,
the more fatalities and injuries the accident will cause. In
addition, the factors of road geometrics, vehicle fire, and
vehicle rollover are important for number of fatalities, while
roadway surface condition has effect on number of injuries.
The results also indicate that disabled vehicles involved,
debris involved, visibility distance, pavement condition, and
motor-vehicle-only accident are significant for property dam-
age. The more disabled vehicles or debris is involved in the
accident, the more property damage the accident will lead
to. As for motor-vehicle-only accident, the results reveal that
accidents with only vehicles involved cause more property
damage than that with pedestrian or non-motor-vehicles
involved.

5. Accident Duration Modeling

5.1. AFTModel and KM Estimator. As suggested by Nam and
Mannering [5] and Stathopoulos and Karlaftis [29], hazard-
based duration models have an advantage in that they allow
the explicit study of duration effects of accidents (i.e., the
relationship between how long an accident has lasted and the
likelihood of it ending soon). Thus, hazard-based duration
models, in particular the accelerated failure time (AFT)
metric, were utilized in this study to model the accident
duration. The reason that we choose AFT model is that,
compared with other forms of hazard-based model, AFT
model is predominately fully parametric; that is, a probability
distribution is specified and it is also less affected by the
choice of probability distribution [30, 31], and the results of
AFT model are easily interpreted [32].

Let 𝑇 be a nonnegative random variable representing the
accident duration. The hazard at time 𝑡 on the continuous
time-scale ℎ(𝑡) is defined as the instantaneous probability
that the duration under study will end in an infinitesimal
time period Δ𝑡 after time 𝑡, given that the duration has not
elapsed until time 𝑡. Amathematical definition for the hazard
function is as follows:

ℎ (𝑡) = lim
Δ→0+

𝑃 (𝑡 ≤ 𝑇 < 𝑡 + Δ | 𝑇 > 𝑡)
Δ

. (8)

Let 𝑓(⋅) and 𝐹(⋅) be the density and cumulative distri-
bution function for 𝑇, respectively. Then the probability of
ending in an infinitesimal interval of range Δ𝑡, after time 𝑡 is
𝑓(𝑡)Δ𝑡. And the probability that the process lasts for at least 𝑡
is given by the survival equation

𝑆 (𝑡) = 𝑃 (𝑇 > 𝑡) = 1 − 𝐹 (𝑡) . (9)



6 Mathematical Problems in Engineering

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150 200 250 300 350 400 450 500
Accident duration (min)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Figure 3: Survival curve of accident duration.
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Figure 4: The estimated survival curve of accident duration.

Thus, the hazard function can be further expressed as

ℎ (𝑡) =
𝑓 (𝑡)
𝑆 (𝑡)

= 𝑑𝐹 (𝑡) /𝑑𝑡
𝑆 (𝑡)

= −𝑑𝑆 (𝑡) /𝑑𝑡
𝑆 (𝑡)

= −𝑑 ln 𝑆 (𝑡)
𝑑𝑡

. (10)

The distribution of the hazard can be assumed to be one
of many parametric forms or to be nonparametric. Because
the distribution of the accident duration is unknown, one of
the nonparametricmethods, theKaplan-Meier (KM)product
limit estimator, is conducted to explore the covariates effects
and the potential distribution.

As a nonparametric method, the KM estimator, produces
an empirical approximation of survival and hazard but hardly
takes any covariate effects into consideration. It is similar to
an exploratory data analysis. Denoting the distinct failure
times of individuals 𝑛 as 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑚, the KM
estimator of survival at time 𝑡𝑖 is computed as the product
of the conditional survival proportions:

𝑆𝐾𝑀 (𝑡𝑖) =
𝑖

∏
𝑘=1

𝑟 (𝑡𝑘) − 𝑑 (𝑡𝑘)
𝑟 (𝑡𝑘)

, (11)

where 𝑟(𝑡𝑘) is the total number of accidents at risk for ending
at 𝑡𝑘 and 𝑑(𝑡𝑘) is the number of accidents stopping at 𝑡𝑘.

By using the KM estimator, the survival function curves
of the accident duration are estimated, which are shown in

Figure 3. The results indicate that the survival probability
decreases with duration, which implies an accelerated fail-
ure time model with Weibull or Exponential distribution
should be employed. Therefore, the AFT model is developed
to examine the linkages between duration and covariates
relative to accident information.

The AFT model permits the covariates to affect the
duration dependence. Its survival function is given as

𝑆 (𝑡) = 𝑆0 [𝑡 ⋅ exp (−𝛽󸀠𝑋)] , (12)

where 𝑆0(⋅) is the baseline survival function.The correspond-
ing hazard function is

ℎ (𝑡) = −𝜕𝑆 (𝑡) /𝜕𝑡
𝑆 (𝑡)

= ℎ0 [𝑡 ⋅ exp (−𝛽󸀠𝑋)] exp (−𝛽󸀠𝑋) . (13)

The AFT model can be expressed as a log-linear model:

ln 𝑡 = 𝛽󸀠𝑋 + 𝜀. (14)

Assuming that the randomerror 𝜀 follows either aWeibull
distribution or an Exponential distribution, one can get two
kinds of AFT models, and both of them are often used in
duration analysis.

5.2. Estimation Results. Assuming that the random error
in (14) follows a Weibull distribution and an Exponential
distribution, respectively, the accident duration models are
established. The models are estimated by employing maxi-
mum likelihood estimation (MLE), and the estimation results
are shown in Table 3.

The Mean absolute percentage error (MAPE), which
looks at the average percentage difference between predicted
values and observed ones, is adopted to examine the accuracy
of the developed duration predication model. MAPE is
calculated as

MAPE = 1
𝑛

𝑛

∑
𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 𝑖 − 𝑃𝑖
𝐴 𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (15)

where 𝐴 𝑖 is the observed value and 𝑃𝑖 is the predicted value
for observation 𝑖.

The MAPE value of Weibull distribution (0.22) is less
than that of the Exponential distribution (0.23), indicating
that the values predicted by the AFT model with the Weibull
distribution is more close to the actual accident duration [3].
Therefore, the Weibull distribution function is chosen.

The estimation results indicate that most of the results
were consistent with the theoretical expectation. According
to the results, the variables with respect to accident severity
significantly affect accident duration: the more fatalities and
injuries occur in the accident, the longer duration it will lead
to. This supports the necessity of combining predictions of
accident severity and duration in one model system. Besides,
accident type is revealed to be crucial to duration: comparing
with other types of accidents, the duration of rear-end type
collision is 37% shorter, while that of rollover is 28% longer.
The results also show that the duration of accident involving
bus, truck, debris, or hazard material is 60%, 58%, 55%,
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Table 2: Estimation results of severity prediction models.

Variables
Fatality model Injury model Property damage model

SVM Ordered Probit SVM Ordered Probit SVM Ordered Probit
Coef. Z-stat. Coef. Z-stat. Coef. Z-stat.

Dvi — — — — — — √ 0.23 1.99
Bi √ 0.75 8.82 √ 0.28 4.37 — — —
Ti √ 0.64 7.93 √ 0.29 4.61 — — —
Di — — — — — — √ 0.11 2.00
Hmi √ 0.04 1.34 √ 0.04 1.65 √ 0.21 1.96
Tod √ 0.12 2.94 √ 0.04 1.21 — — —
Wc √ 0.12 2.3 √ −0.05 −2.3 √ 0.04 2.46
Vd — — — — — — √ 0.10 5.92
Tsc √ 0.03 2.31 √ −0.02 −1.56 — — —
Alh √ −0.03 −1.44 √ 0.04 2.71 √ −0.03 −2.12
Alv √ −0.11 −6.88 √ 0.06 5 √ −0.13 −12.16
Rsc — — — √ 0.11 4.03 — — —
Rg √ −0.26 −1.71 — — — √ −0.18 −2.01
Pc — — — — — — √ −0.18 −2.09
Vf √ 0.73 7.70 — — — √ 0.13 1.98
Vr √ 0.04 1.32 — — — — — —
Mvoa — — — — — — √ 0.45 11.66
𝛼1 — 0.63 — — −0.68 — — 0.06 —
𝛼2 — 2.79 — — 2.36 — — 1.99 —
𝛼3 — — — — 3.71 — — — —
Hit ratio (%) 89.21 89.59 86.50 86.89 59.57 62.66

Table 3: Estimation results of accident duration model.

Variables Weibull distribution Exponential distribution
Coef. z-stat. Coef. z-stat.

Constant 5.12 13.99 4.71 11.76
Nof 0.51 4.14 0.51 1.43
Noi 0.33 4.45 0.34 1.28
Pd −0.13 −1.01
Retc −0.37 −2.62 — —
Vr 0.28 2.06 — —
Nolb 0.24 4.48 0.25 1.64
Bi 0.60 4.01 0.41 1.07
Ti 0.58 3.12 — —
Di 0.55 5.28 0.45 1.35
Hmi 0.88 2.89 — —
Wof −0.14 −1.49 — —
Alv −0.57 −4.55 −0.43 −1.06
Nol −0.18 −2.81 — —
Ts 0.38 1.35 — —
𝛾 (shape parameter) 0.26 — — —
Prob > 𝜒2 0 0.0067

or 88% longer than that of other accidents, respectively.
Besides, according to the results, the accident which occurs
in weekend or festival is found to be associated with shorter
duration.The reason is that the traffic volume in nonworking
day is lower than that inworking day. As for accident location,

Table 4: Goodness of fit index and estimated distribution statistics
of accident duration model.

Model statistics Mean
(min) Variance Maximum

(min)
Minimum
(min)

MAPE
value

Observed value 192.95 111.63 510 20 0.22
Predicted value 188.38 84.52 327.14 53.03

the results reveal that the accident occurs at regular road
section or 4-way intersection results in longer duration than
that occuring at other locations. The reason may be that the
traffic volume is higher at regular road section or intersection.
Regarding emergency services, the accident which needs tow
services has longer duration. Moreover, as the number of
lanes occupied in the accident increases, duration increases.

By using the accident duration model, the survival curve
of duration is estimated, which is shown in Figure 4. Compar-
ing with observed value, the prediction accuracy of accident
duration model is shown in Table 4.

6. Conclusions

In this paper, a severity prediction model system was con-
structed by employing Ordered Probit model, and a duration
prediction model was established by applying Hazard model.
Accident severity, including number of fatalities, number of
injuries, and property damage, as well as accident duration
was forecasted with the models.
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Study results can be applied to severity and duration
prediction, which are essential steps in accident response
process. By comparing SVM and Ordered Probit model,
it also makes a methodological contribution in enhancing
prediction accuracy of severity estimation. In addition, by
identifying the key effects of related factors on accident
severity and duration, the results provide useful clues for
government to take effective measures in order to reduce
accident impacts and improve traffic safety.

One limitation of current study is that some factors, such
as characteristics of the driver, passenger and pedestrian, and
traffic condition, which have potential effects on accident
severity and duration, are not considered because of the lack
of suitable data. Further study should be done to collect
the related information and investigate the impacts of these
factors.
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