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Primary Component Carrier Selection and Physical Cell ID Assignment are two important self-configuration problems pertinent
to LTE-Advanced. In this work, we investigate the possibility to solve these problems in a distributive manner using a graph
coloring approach. Algorithms based on real-valued interference pricing of conflicts converge rapidly to a local optimum, whereas
algorithms with binary interference pricing have a chance to find a global optimum. We apply both local search algorithms and
complete algorithms such as Asynchronous Weak-Commitment Search. For system level performance evaluation, a picocellular
scenario is considered, with indoor base stations in office houses placed in a Manhattan grid. We investigate a growing network,
where neighbor cell lists are generated using practical measurement and reporting models. Distributed selection of conflict-free
primary component carriers is shown to converge with 5 or more component carriers, while distributed assignment of confusion-
free physical cell IDs is shown to converge with less than 15 IDs. The results reveal that the use of binary pricing of interference
with an attempt to find a global optimum outperforms real-valued pricing.

1. Introduction

Self-organization is a wide ranging research and stan-
dardization trend in modern networking. In the scope of
wireless networking, research on Self-Organized Networks
(SONs) ranges from general principles of cognitive and ad
hoc network to concrete problems in standardization and
implementation of near future mobile networks [1, 2]. Here,
we concentrate on a specific SON problem of current interest
for the standardization of the next release of the Evolved Uni-
versal Terrestrial Radio Access Network (E-UTRAN), a.k.a.
Long Term Evolution (LTE). This release, being standardized
by the 3rd Generation Partnership Project (3GPP), is known
as LTE-Advanced (LTE-A), being standardized by the 3rd
Generation Partnership Project (3GPP).

New features of next-generation wireless networks will
have an impact on SON, resulting in new use cases and
requirements. Of particular interest are Local Area deploy-
ments of femto-and picocells. One of the four evaluation

scenarios for IMT-Advanced is an indoor scenario [3]. This
lends relevance to studying not only automated networking
functions, but also autonomous functions. In this paper,
we concentrate on two autonomous self-configuration func-
tions, which can be mapped to a graph coloring problem.

The first problem we address is Primary Component
Carrier Selection. In 3GPP discussions, carrier aggregation
is an essential feature of LTE-A [4]. This leads to the problem
of component carrier selection—an individual Base Station
(BS) may potentially not operate on all the aggregated
carriers, but just on a subset of them. A viable alternative
for robust operation is that each BS selects one carrier as
a primary carrier, on which the BS has a full set of control
channels with full coverage [5, 6]. The Primary Component
Carrier Selection (PCCS) problem as such is a direct relative
to the well-studied frequency assignment problem [7]. In [5,
6], an autonomous version PCCS was discussed. Another use
case for self-configuration, discussed in [1, 8], is automated
Physical Cell ID (PCI) assignment. In LTE, the physical cell
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ID is needed to distinguish the signal of one BS from the
signal of another. Accordingly, neighboring BSs should not
have the same PCI. Moreover, to avoid confusion in Hand-
Over (HO), a cell should not have two neighbors with the
same PCI. Thus the PCI configuration problem becomes a
graph coloring problem on the graph of two-hop neighbors.
Graph coloring aspects of PCI assignment in LTE have been
addressed in [9], where a centralized approach was discussed.
A distributed solution based on reserving part of the ID-
space to be used for newly switched on cells, was considered
in [8]. Apart from [8], to the best of our knowledge, the prob-
lem has not been addressed in a distributed manner before.

We investigate simple distributed graph coloring algo-
rithms for both applications addressed. Performance is
analyzed for indoor environments based on office houses
of the type discussed in [10], placed in a Manhattan grid.
A realistic model on UE measurements and reporting is
used. Neighbor relations between BSs are determined by
handover measurements performed by the User Equipments
(UEs). We investigate a dynamical network setting, where
the network grows by adding BSs, one by one. When a new
BS is added, it self-configures, based on measurements and
discussions with the neighbors. We observe that when the
measurement and reporting load of the UEs is small, it is
beneficial to base distributed decisions on binary conflicts,
not real interference couplings. Also, we find the minimum
number of component carriers and physical cell IDs that are
required for these distributed algorithms to converge.

This paper is organized as follows. In Section 2,
we discuss the self-configuration problems addressed. In
Section 3, we discuss simple distributed graph coloring
algorithms, and their properties. In Section 4, system and
network models are presented. Section 5 discusses results for
Primary Component Carrier Selection, and Section 6 is on
Physical Cell ID Assignment. Finally, conclusions are given
in Section 7.

2. Self-Configuration Problems and Coloring

2.1. Autonomous Primary Component Carrier Selection. In
carrier aggregation, an operator aggregates a number of
component carriers for LTE-A operation. The component
carriers may have any of the allowed LTE bandwidths (1.4,
3, 5, 10, 15, or 20 MHz), and they may be either contiguous
or noncontiguous [4]. It is natural to take one of the
component carriers as a primary one in each cell [5, 6].
This primary carrier serves mobility purposes, and has
accordingly a full set of control channels with maximum
coverage. The other carriers may be used to boost the data
rate, when needed. From the perspective of guaranteeing
control channel coverage, the selection of the primary
component carrier becomes a classical frequency assignment
problem (FAP) [7]. When no other issues than interference
is taken into account, and each resource is indistinguishable
(i.e., there are no specific channel-related reasons for a BS
to favor one carrier more than another), FAP is equivalent
to graph coloring. However, when the problem is addressed
in an autonomous manner, such as in [6], the local decision

makers (BSs) may have more local information at hand for
making the decision. Thus the coloring problem may be
addressed based on real-valued interference costs, not just on
conflicts, as in the classical approaches. For example, in [6],
each BS selects the primary component carrier according to
real-valued interference information of the neighbors.

Here, we address Primary Component Carrier Selection
as a distributed graph coloring problem. According to the
discussion in [4], the relevant number of colors for this case
is less than ten.

2.2. Autonomous Physical Cell ID Assignment. In LTE, the
physical cell ID NID determines the structure of many
channels used in the cell. The ID itself is given by the
synchronization channel, and there are 504 different ones. An
important use of PCI is to separate cells in handover (HO)
measurements. To guarantee proper cell search and handover
performance, the PCI assignments should be:

(i) conflict-free: the PCI should be unique in the cell
area—no neighbors that the UEs may synchronize to
and consider as HO candidates should have the same
PCI;

(ii) confusion-free: a cell should not have two neighbors
with the same PCI—this guarantees that outward
handovers are treated in a proper manner.

Conflict freeness makes the PCI assignment problem
a graph coloring problem on the graph of neighbors.
Confusion freeness makes it a graph coloring problem on
the graph of two-hop neighbors. As any two neighbors
of a cell should not have the same PCI, this means that
no cell should have a two-hop neighbor (a neighbor of
a neighbor) with the same PCI [9]. The space of PCIs
may be divided into smaller parts for multiple reasons. For
example, parts of the PCI space may be reserved for different
layers (macro/micro/femto layers), or part of the space
may be restricted for newly switched on, or reconfiguring
BSs [8]. In addition, the PCI explicitly determines the
structure of the downlink (DL) and uplink (UL) reference
signals [11], and this may lead to a much tighter problem
for PCI assignment. Related to downlink, there are six
different subcarrier groups that downlink reference signals
may be mapped to. The subcarrier shift is determined by
NID mod 6. In normal shared channel operation there may
not be significant differences related to which subcarriers
neighboring BSs have their reference signals on. However,
if Collaborative Multipoint transmission (CoMP) with joint
beamforming [4] is employed, the reference signal placement
becomes an issue. In joint beamforming CoMP, a UE may
receive a joint transmission from multiple BSs. In this case, it
should be capable of reliable estimation of the channel from
these BSs. This requires reference signals to be orthogonal. If
orthogonality is achieved in the frequency domain, as in LTE,
neighboring BSs should have different subcarrier shifts, and
accordingly different NID mod 6.

The uplink reference signals are grouped into 30
sequence groups, so that sequences with most severe cross-
correlations are grouped into the same group. It is desirable
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that neighboring cells use different sequence groups, so that
it can be guaranteed that reference signals in neighboring
cells have good cross-correlation properties. In addition,
group hopping is possible. The group used by a cell at
any time is determined by NID mod 30, and accordingly,
neighboring cells should have differing NID mod 30. Based
on this, we observe that PCI assignment in LTE may require
conflict freeness with 30 colors, and with CoMP, conflict
freeness with 6 colors. For confusion freeness, a larger space
of colors is possible. It is worthwhile to investigate, how many
PCIs are needed to guarantee confusion-free autonomous
PCI assignment.

3. Distributed Graph Coloring Algorithms

Much of the previous work on distributed graph coloring
algorithms concentrates on finding colorings with Δ + 1 or
O(Δ) colors, where Δ is the largest number of neighbors
of any node. For these cases, rapidly converging distributed
algorithms exist, both deterministic and stochastic, and the
convergence characteristics can be analyzed in closed form;
see [12] and references therein. For more greedy cases, when
the number of colors is smaller than Δ, generic constraint
satisfaction algorithms may be used. In the survey paper
[13], three algorithms proposed by Yokoo and Hirayama
are discussed. Distributed Breakout (DBO) is an algorithm
based on local reasoning that is capable of breaking out
from a local minimum. Asynchronous Backtracking (ABT)
and Asynchronous Weak-Commitment Search (AWC) are
complete algorithms that are able to satisfy all constraints if
possible. In [14], Distributed Stochastic Algorithms (DSAs)
are considered, and shown to outperform DBO. DSAs are
synchronous algorithms belonging to the wide class of local
search algorithms; see [15] for a review.

We want to perform the allocation of the resources so
that the BSs execute a routine asynchronously, that is, one
at a time, and the order in which they do this is random but
fixed. This models an operation where each BS updates its
decision at regular intervals, according to a clock which is
not synchronized with its neighbors. Also, the time it takes
to communicate the change to the neighbors is assumed to
be negligible compared to the update interval. Accordingly,
we will select a few asynchronous local search algorithms, as
well as AWC and ABT, for evaluation.

3.1. Local Search Algorithms. In this paper, four simple
distributed local search algorithms will be used for graph col-
oring. The considered algorithms can be classified according
to two characteristics.

The first classification is related to the type of interference
pricing. When real-valued interference couplings are used, a
real-valued price may be considered between neighbors using
the same resource [16, 17]. In contrast, when binary conflicts
are considered, the decisions are made based on the number
of conflicting neighbors only, not based on the strength of
the conflicts.

A second classification is according the number of
alternatives tried by a node, when updating which resource to

use. The first alternative is a random selection of resource, as
in Monte Carlo algorithms; see [18]. The BS randomly selects
one of the resources not used by itself at the moment. It starts
to use the new resource, if the price (interference price, or
number of conflicts), is less than or equal to the price with
the earlier resource. In a multiple-try algorithm (e.g., [14]),
the node calculates the price for all resources, and randomly
selects one of the resources with the lowest price. The binary
algorithms have an Absorbing Local Optimum, that is, the
BS does not change its resource once it is in a conflict-free
state [14, 19]. The motivation for this is that in a global
optimum of a graph coloring problem, each node sees a local
optimum. With this method, unnecessary reconfigurations
of the BSs are avoided. In addition, when a node is not in
a local optimum, we allow plateau moves. This means that
if the price of the tested resource, or with multiple-try, the
lowest price of all resources, is the same as the price of the
resource being used, the node changes the resource. This
allows the algorithm to break out from a local optimum and
search for a global optimum, as discussed in [14, 15].

The resulting four algorithms are called

(i) Bin: binary pricing, random candidate resource selec-
tion,

(ii) Real: real pricing, random candidate resource selec-
tion,

(iii) BinMulti: binary pricing, all candidate resources con-
sidered, random selection among the best candidates,

(iv) RealMulti: real pricing, all candidate resources con-
sidered, random selection among the best candidates.

The real-pricing algorithms with random, and best can-
didate selection are known from [16, 17], respectively. The
binary multiple-try algorithm is an asynchronous version
of DSA-D of [14] with p = 1. The simplest algorithm,
binary pricing with random candidate selection, is to our
knowledge not known in the literature as a distributed
algorithm. Similar principles are used when solving problems
in statistical physics using the so-called zero-temperature
Markov Chain Monte Carlo algorithm [18]. The four local
search algorithms can be compactly described as follows. Let
G(V, E) be a graph where the BSs are the vertices v ∈ V,
E is the set of edges, and w(v, v′) is the weight of an edge
connecting v and v′. For real-valued pricing, w ∈ R, whereas
for binary pricing, w ∈ {0, 1}. The set of neighbors of v is
Nv = {v′ | w(v, v′) > 0}, and the set of colors is C. If v uses
color cv, the local interference price experienced by v is

Pv(cv) =
∑

v′∈Nv

δ(cv, cv′)w(v, v′), (1)

where δ is the Kronecker delta symbol. When v starts
executing the routine, its color is cv. The candidate new color
is

c̃v =
⎧
⎪⎨
⎪⎩

rand(C¬{cv}), for random selection,

rand arg min
c∈C

Pv(c), for multiple try,
(2)
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Figure 1: Layout of four-building scenario in the WINNER 2 office
Manhattan path loss model. Red dots represent pico-cell BSs.

where rand(X) selects a random element from the set X. The
color after execution is

⎧
⎨
⎩
c̃v, if Pv(c̃v) ≤ Pv (cv), Pv(cv) > 0,

cv, otherwise.
(3)

3.2. Complete Constraint Satisfaction Algorithms. For com-
parison, we consider two complete constraint satisfaction
algorithms discussed in [13]. Both utilize global IDs to
break the symmetry between agents, and operate in principle
on a complete search tree. In Asynchronous Backtracking,
priority values of agents follow global IDs and agents com-
municate their current values to neighbors asynchronously,
using messages. Preceding agents in alphabetical order
have higher priority. Agents try to find value assignments
consistent with higher priority agents. If no such value exists,
new constraints are generated and communicated to a higher
priority agent, which then attempts to change its assignment.
A value once selected is not changed unless lower priority
agents force it. This makes a wrong value selection very
expensive for large scale problems.

Asynchronous Weak-Commitment Search is based on a
message passing principle similar to ABT. AWC improves
on ABT by making use of a minimum conflict heuristic
and dynamic reordering of agents (i.e., changing priorities)
to minimize the number of constraints generated. This
often enables recovery from bad value selection without an
exhaustive search.

In ABT and AWC, a constraint received from a lower
priority agent may involve the state of an agent that is not
a neighbor of the receiving agent. To handle this, ABT and
AWC require a protocol of establishing new communication
links between agents, so that information pertinent to
constraints is available at the agents. For more details on
these algorithms, see [13].

For larger networks, a preprocessing step of graph
partitioning may be used first to divide the graph into a set of
smaller loosely connected ones, hence, enabling an efficient
framework for obtaining the solution to underlying smaller
Constraint Satisfaction Problems in a concurrent way. This
approach is investigated in [20].

Table 1: Noise level parameters.

Transmit power P 20 dBm

Noise figure 9 dB

Signal bandwidth 20 MHz

BW efficiency 0.9

4. System Model

For performance analysis of the discussed algorithms for
both Primary Component Carrier Selection and automated
PCI configuration, in a picocellular network, an office
building path loss model in a Manhattan grid has been
constructed. The nodes correspond to base stations or
cells, and the edges are weighted by real or binary-valued
interferences. The path loss model and operation of BSs and
UEs is discussed in following subsections.

4.1. Path Loss Model. The main propagation characteristics
are according to the Winner path loss models in [10].
We consider both intra- and interbuilding interference by
placing a number of multiple-floor buildings in a Manhattan
grid; see Figure 1. The buildings model modern office
buildings comprising of rooms and corridors. Propagation
inside the buildings is modeled according to the Winner
A1 model of [10], and propagation between the buildings
is modeled as the Manhattan-grid path loss model B1 of
[10]. Distance dependent path loss is calculated from the
parameters A,B,C as

PL = A log10(d) + B + C log10

(
fc
5

)
+ X + FL, (4)

where d is the distance between the transmitter and receiver,
fc is the carrier frequency, X is the wall and window loss, and
FL is the floor loss.

As we are interested in the performance of a large system,
we have chosen the buildings to have many floors. Also, we
consider wrap-around boundary conditions in all directions
(including the floor-dimension). The modeled system thus
consists of a Manhattan grid of very tall buildings, and is
essentially three-dimensional.

In addition to distance-dependent path loss, we consider
shadow fading, according to [10]. It is assumed that the
measurements UEs are performing are averaged over the
channel coherence time. Accordingly, no fast fading is
modeled. Parameters determining the thermal noise level can
be found in Table 1. The parameters model a picocellular
transmitter utilizing a full LTE bandwidth.

4.2. Model of UE Measurements and Reporting. To have a
realistic model of the information that the BSs base their
decisions on, we assume that the UE selects the strongest
BS to be the serving BS, and reports some of the strongest
interferers to the serving BS. If the measurement capabilities
of the UEs are taken into account, not all UEs will be able
to measure all BSs. We model this with a synchronization
threshold Hsynch, which is a threshold in SINR under which
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Table 2: Neighbor relation parameters.

Synch threshold Hsynch = −7 dB

Reporting load Lrep = 1

UEs per room 1

UEs per corridor 5

Cell selection best C/I

a UE is not able to synchronize to a BS. This threshold is
determined by the synchronization sequences used in the
standard, and UE implementation. For LTE, a typical value
would be −7 dB. The measurement and reporting load of
the UE is taken into account by limiting the number of
neighboring BSs that the UE should measure and report to
the serving BS to a small number Lrep.

4.3. Model of BS Operation. We model the situation where
the BSs collect information from their area for a sufficient
time, before they start changing the network configuration.
We consider the spatial coherence properties of shadow
fading to be such that shadow fading is constant within
a room. Thus we consider that sufficient statistics of the
network is collected when there is one sample per indepen-
dent shadow fading realization, meaning one UE per room.
To consider a constant UE density, we assume 5 UEs per
corridor. The parameters determining the neighbor relations
are summarized in Table 2.

Once the BS has gathered sufficient information, it
decides a cost for the interference caused by another BS to
the UEs it serves. For each interferer, the BS has statistics of
the interference produced, according to the received reports.
In our model, the BS simply considers the worst interference
caused by the interferer to any of its served UEs as the
interference cost caused by that interferer. The interferences
caused to different UEs are measured in terms of the Carrier-
to-Interference ratio measured when synchronized to the
interferer—the signal power from the interferer divided by
the signal power from all other BSs (including the serving
one).

4.4. Neighbor Relation and Interference Coupling. The neigh-
bor relation between the cells is determined on a per-drop
basis. Each drop represents a network configuration with
fixed shadow fading, and a fixed neighbor relation. These
relations are determined per drop as follows.

(i) 50 UEs are dropped per floor, evenly distributed in
rooms and corridors.

(ii) UEs perform cell selection; serving cell is cell with
best C/I.

(iii) Each UE selects primary HO candidate, BS with
second best C/I.

(iv) If C/I of primary HO candidate is above the
synchronization threshold Hsynch, synchronization
to primary HO candidate is considered successful.
Otherwise the UE has no HO candidate.

(v) All BSs that are primary HO candidates of a UE
served by the BS, are considered neighbors of the BS.

(vi) The interference coupling between a cell and its
neighbor is the highest interference (relative to the
carrier power) caused by this neighbor to a UE
served by the cell. The interference coupling of non-
neighboring cells is 0.

The resulting distribution of the number of neighbors
per cell arising from the used neighbor definition can be
found in Figure 2(a). For component carrier selection, and
PCI conflict freeness, the number of neighbors is essential.
For PCI confusion freeness, a BS should have no two-hop
neighbors with the same ID, accordingly, the distribution
of two-hop neighbors is relevant. This is depicted in
Figure 2(b). The distributions are collected over 500 drops.
It should be noted that in the simulated scenario, there are
96 BSs, and in one building, there are 24 BSs. The median
number of neighbors is 3, and the median number of two-
hop neighbors is 9.

4.5. Model of Network Growth. Performance is estimated in
a growing network. First a randomly selected subset of 86
of the total 96 BSs in the network scenario are switched
on. These are colored with a carrier/PCI according to the
problem investigated in a conflict and, for PCI, confusion-
free manner. The remaining 10 BSs in the network are then
switched on, one-by-one. When a BS is switched on, it
first selects a color, and then starts to execute a distributed
carrier/PCI selection algorithm.

5. Graph Coloring for Primary Component
Carrier Selection

In this section, we compare the performance of network
algorithms employing different distributed graph coloring
methods for Primary Component Carrier Selection. The idea
is to share a small number of resources, which represents a
component carrier that a LTE-A system may use, as efficiently
as possible. Each cell selects a primary carrier. The output of
the algorithm is measured by the distribution of SINR expe-
rienced at the nodes, once the primary carrier is distributed.
The traffic model is static, and for simplicity it is assumed
that there is no secondary usage of the resources. The aim
is to analyze the characteristics of the different classes of
graph coloring algorithms discussed above, especially related
to their local versus global optimization characteristics. The
performance metrics evaluated are the following.

(i) Probability of convergence and number of iterations:
whether or not the network will be able to find
a conflict-free state. In such a state, there are no
conflicts above Hsynch (real-valued or binary).

(ii) Number of cell reboots per added BS: when BSs
running a routine of a distributed network algorithm
are able to find a conflict-free primary component
carrier configuration, the number of times any BS has
changed its carrier in the process is measured. This
should be a small number, preferably less than one.
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Figure 2: The distribution of the number of neighbors (a) and the number of two-hop neighbors (b).

(iii) The resulting Carrier-to-Interference (C/I) ratios of
the selected primary component carriers. This is the
most important measure in this case.

The algorithms used are the local search algorithms
discussed in Section 3, two alternatives related to pricing,
real-valued or binary, and two alternatives related to selecting
a new resource to try: random or multiple try.

After switching on, a BS randomly selects a primary
component carrier, starts serving UEs and collecting HO
measurements. Once this is done, it starts executing a
distributed graph coloring algorithm. The algorithm is run
until it converges (to a local optimum for real-valued
pricing, or to a global optimum for binary pricing), or until
1000 iterations have been done. An iteration is a cycle during
which all BSs try to update the resource used once. After that,
statistics of the experienced Carrier-to-Interference (C/I)
ratios experienced by the users in the system are gathered.
Based on these statistics, metrics for comparing system
performance can be evaluated.

In Figure 3, the convergence properties are plotted.
It can be seen that the binary algorithms converge with
5 component carriers whereas the real-valued algorithms
require 7. This shows that the real-valued algorithms have
a significant probability to get stuck in local minima in the
modeled scenario. In Figure 4(a), the number of cell reboots
per added BS is plotted. This plot is in good accordance with
the plots in 3. The CDFs obtained using synchronization
threshold Hsynch = −7 dB are shown in Figure 4(b). From
the figure it is visible that binary-pricing algorithms perform
better than real-valued pricing ones, especially for users in
the low C/I region.

In this case, the reporting load of the UEs was low, and
the BSs have little information to base their decisions on.
Thus, when the interference couplings are only statistically
related to the typical user’s C/I situation, using binary-valued
pricing with plateau moves to attempt global optimization

outperforms local optimization based on real-valued inter-
ference.

6. Graph Coloring for Automated Physical
Cell ID Assignment

6.1. Performance of Distributed Algorithms. Performance is
evaluated in the picocellular indoor office environment
discussed in Section 4. The target is to find a number of PCIs
that is sufficient to allow newly entering cells to configure
their PCI in a confusion-and conflict-free manner, with a
low level of cell-reboots required. The primary performance
metrics are the same as in the previous section, except that
instead of conflict freeness, confusion freeness is the target.
Also, the C/I distribution is not considered. It is meaningless,
as HO confusion is by definition a binary effect. The four
distributed local search algorithms discussed in Section 3
are evaluated. In addition, the complete ABT and AWC
constraint satisfaction algorithms are used.

For confusion freeness, we need to determine the prices
used in the graph of two-hop neighbors. With binary pricing,
the only issue is whether or not there is a confusion, that is,
the binary and constraint satisfaction algorithms run directly
on the two-hop neighbor graph. With real-valued pricing, a
real interference distance is calculated for two-hop neighbors
as the sum of the dB-scale real-valued interference price of
both hops.

Additionally, the confusion couplings and their prices are
assumed to be symmetrized. This can be understood as a
by-product of the negotiations required to collect confusion
information at the decision making node. For symmetriza-
tion purposes, or for the operation of the algorithm itself, a
signaling channel between the neighboring cells is needed.
In LTE systems, the X2 interface provides a natural candidate
for this.

After the BS is switched on, it first scans for the syn-
chronization channels of its neighbors, performing so-called
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Figure 3: Convergence properties versus number of PCIs for different autonomous Primary Component Carrier Selection algorithms. (a)
Convergence probability. (b) Number of iterations for convergence (only converged drops considered).
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Figure 4: Performance of Primary Component Carrier Selection algorithms. (a) Number of cell reboots versus number of PCIs (only
converged drops considered). (b) C/I CDFs for five component carriers.

over-the-air measurements. It finds neighbors with a C/I
aboveHsynch. It selects a PCI randomly from the space of PCIs
available, avoiding the ones that are used by the neighbors it
is able to synchronize to. Note that this does not guarantee
conflict freeness with first-hop neighbors, as the set of
neighbors a BS can reliably synchronize to is smaller than
the set of neighbors. After selecting an initial color, the BS
starts serving UEs, collects HO candidate information from
them, and performs an Automated Neighbor Relation (ANR)
function to establish a connection with the neighboring BSs.

If the BS selected a PCI causing a conflict with a neighbor, it
is assumed that the neighbors of the conflicting pair are able
to identify the conflict by ANR.

With an initial PCI chosen and neighbor relations
established, conflict and confusion resolution is performed;
a routine of a networking algorithm is executed at each node.
If a confusion-free PCI configuration is identified, the results
are stored, and a new BS is switched on. The algorithm
runs until it converges, or until 1000 iterations have been
done.



8 Journal of Electrical and Computer Engineering

Related to conflict freeness, conclusions may be drawn
from the analysis in the previous section. Thus, for example,
a conflict-free assignment of PCI modulo 6, should be pos-
sible with the algorithms considered. This may be relevant
for DL pilot orthogonalization, as discussed in Section 2.
Considering confusion freeness, convergence probabilities
for different number of PCIs are shown in Figure 5(a). As
the maximum number of two-hop neighbors observed in
the network is 26, it can be seen that it is possible to find a
confusion-free PCI configuration with a significantly smaller
number of PCIs. All algorithms except the random-try real-
pricing algorithm converge within 1000 iterations for NPCI =
15. The complete ABT algorithm performs worse than the
best local search algorithms. The reason for this is that ABT
relies on exhaustive search with a fixed ordering of the agents
to find the solution, which is not possible with the limited
number of iterations considered here, when the number of
colors is small. Recall that the largest number of states in the
system is an astronomical N96

PCI.
AWC performs much better than ABT, and is clearly the

best algorithm when it comes to convergence. AWC avoids
exhaustive search by dynamic updating of priorities and
minimum conflict heuristics. The binary-pricing algorithms
are able to find a converged PCI for NPCI = 12, as opposed to
the multiple-try real-price algorithm NPCI = 15, indicating a
gain of ∼25%. From this, it is evident that when the target
is to achieve confusion freeness, the property of the real-
pricing algorithms to get stuck in a local optimum leads to
nondesirable results.

In Figure 5(b), the average number of iterations for
convergence is reported, where converged drops only are
considered. It is notable that ABT and AWC do not fall down
as rapidly as the local search algorithms with high NPCI. The
reason for this is the use of global IDs to prioritize in conflict
situation, which forces the nodes to negotiate for a longer
time to identify the node that should solve the conflict.

The number of cell reboots for converged drops are
plotted in Figure 6. The multiple-try algorithms require a
clearly lower number of reboots than the algorithms selecting
a new PCI candidate randomly. This is natural, as the
multiple-try algorithms always find a confusion-free PCI
if available, and accordingly converge more rapidly. When
comparing the number of reboots (for the converged drops)
for the real- and binary-pricing algorithms, it can be seen
that when the random-try real-pricing algorithm is able
to find the global optimum, it does it with less reboots
than the random-try binary algorithm. With the multiple-try
algorithms, there is no difference in the number of reboots
between the binary and real-pricing algorithms in the cases
that all drops converge. Comparing to ABT and AWC shows
that just as in the case of the number of iterations, these
require more reboots than the best local search algorithms.

It should be noted that the fact that the number of
reboots does not asymptotically vanish is due to the random
initial selection of PCI for the switched on cell. There
is always a nonzero probability that this initial selection
is conflicting/confused with a neighbor/two-hop neighbor.
However, the results in Figure 6 tell us that it is counterpro-
ductive to reserve a part of the PCI space for switching-on

cells, as suggested in [8]. If that is done, there is always at
least one cell reboot per added BS. Here, we see that with
a sufficiently large space of PCIs, one get to significantly
smaller number of reboots.

As a summary, these results point to a tradeoff when
selecting a distributed confusion resolution algorithm. If one
is extremely greedy related to the number of PCI’s, one
has to rely on the complete AWC algorithm, which requires
an additional protocol to establish communication between
cells that are not two-hop neighbors. If one is moderately
greedy, one may do with a multiple-try local search algorithm
based on binary confusion pricing.

6.2. Analysis of PCIs Required for Convergence. Here, we try
to understand the relationships of the distributions of the
number of neighbors and the number of two-hop neighbors
in Figure 2, and how they affect the number of PCIs required
for confusion freeness. These PDFs are crucial statistics for
the behavior of different algorithms, and they are scenario-
specific. In the scenario investigated here, for conflict
freeness, we need at least 5 PCIs. To realize a confusion-
free PCI configuration, we make a trivial observation from
the PDF distributions that this can be achieved if we have
27 PCIs. With this number, which is close to the 30 different
modulo 30 uplink sequence groups defined in LTE, we can
easily configure the network in a distributed manner even
in the worst scenario. However, reducing the number of
required PCIs (or PCI groups) will allow certain flexibility
on system design, as argued in Section 2. A more aggressive
and yet straightforward observation is to take the mean value
of the distribution as an estimation of the required PCIs.
In the PDF of two-hop neighbors, we have the mean value
around 10, while 11–15 PCIs are needed for convergence in
our numerical results. By definition, two-hop neighbors are
neighbors of the neighbors, implying that the distributions in
Figure 2 are correlated. A node with more one-hop neighbors
is likely to have more two-hop neighbors. We utilize this
property for further discussion on the required number of
PCIs.

For cells with different numbers of one-hop neighbors,
it is more geometrically uniform if these cells are evenly
distributed in the considered scenario. This means that for
any cluster of cells, their statistics would be close to the
statistics of the whole scenario. If this is the case, one can use
first-order analysis to estimate the required number of PCIs.
With uniform geometry, we can assume that each neighbor
will on average introduce X new two-hop neighbors

X = N1h · p, (5)

where N1h is the mean number of one-hop neighbors and p
is the probability of being a new two-hop neighbor. Using
first-order moments of the distribution of one- and two-hop
neighbors, one can train p by solving

N2h =
(
N1h − 1

)
+
(
N1h − 1

)
·X, (6)

where N2h is the mean number of two-hop neighbors. In
(6), the first N1h − 1 comes from the fact that your first
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Figure 5: Convergence properties versus number of PCIs for different autonomous PCI configuration algorithms. (a) Convergence
probability. (b) Average number of iterations (only converged drops considered).
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Figure 6: The number of cell reboots versus number of PCIs
for different autonomous PCI configuration algorithms (only
converged drops considered).

neighbor’s neighbors are all new two-hop neighbors except
for yourself. The second N1h−1 considers the remaining one-
hop neighbors.

After training p, the required PCIs can be estimated by
calculating the additionally needed PCIs, out of those for
avoiding conflict. We thus have the number of required PCIs
as

NPCI = Nmax,1h +
(
Nmax,2h −Nmax,1h

) · p, (7)

where Nmax,1h and Nmax,2h are the maximum number of one-
and two-hop neighbors, respectively.

On the other hand, if the statistics of clusters of cells
is not similar with each other, cells with similar number of
neighbors are geometrically closer to each other. In terms
of PDF of two-hop neighbors, the higher end represents the
statistics of a cluster with high number of one-hop neighbors.
Thus, the tail at the higher end is weaker, as is the case in two-
hop neighbor distribution of Figure 2. Besides, if we follow
the same method as for uniform geometric case, one would
see that p is higher than 1, indicating that the mean value
of one-hop neighbors is not sufficient to support the mean
value of two-hop neighbors. To accommodate this difference,
we use similar procedure as uniform geometric case but use
Nmax,1h instead of N1h in training p. This will enhance the
fact that the higher end of two-hop PDF corresponds to cell
clusters where each cell has higher number of neighbors. This
results in p = 0.3 and therefore, the required number of PCIs
is according to (7) is 12.

With this mechanism, it may be possible to develop
a SON algorithm to determine the minimum number of
PCIs required for confusion freeness just based on collecting
statistics of the number of neighbors from the base stations.

7. Conclusion

We evaluated the use of distributed graph coloring algo-
rithms for two self-configuration problems, pertinent to
LTE-A; Primary Component Carrier Selection and Physical
Cell ID Assignment.

Simple distributed algorithms based on local search were
used for the self-configuration tasks. Real-valued coloring
algorithms are based on a real interference price. Distributed
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versions of such algorithms converge rapidly to a local
optimum, where they are stuck. Discretizing the interference
prices to binary conflicts, simple local search algorithms
are able to move around on plateaus where the number
of conflicts is constant, and then potentially find a globally
optimum, conflict-free state.

For evaluating the distributed algorithms, an office
Manhattan scenario was used. It was observed that despite
the a priori high connectivity of the BSs, Autonomous
Primary Component Carrier Selection works with a number
of component carrier that is roughly half of the maximum
number of neighbors, and Autonomous PCI Assignment
works with a number of PCIs that is roughly half of the
maximum number of two-hop neighbors. This is much
less than the usually considered practical lower limit for
distributed graph coloring, which is slightly larger than the
order of the maximum number of neighbors [12].

Related to component carrier selection, the results lead
to a conclusion that dividing a 100 MHz LTE-A system
bandwidth to five component carriers of 20 MHz is a viable
strategy, even if autonomous selection should be done.

For Physical Cell ID assignments, the results show that
the space of PCIs can be significantly reduced without
jeopardizing confusion freeness. For example, if a SON
protocol for guaranteeing confusion-free PCI assignment
is designed, it may well be designed to operate on a PCI
modulo 30 basis, so that the reuse of UL reference signal
sequence groups is automatically distributed to far-away
cells. The results show that there is no gain from reporting
other than binary confusion prices. Moreover, when NPCI

is large enough (larger than 14 in this example), it is
counterproductive to have a space of temporary PCIs. Just
selecting from the space of all PCIs randomly, the expected
number of cell reboots is well below 1, which is the minimum
when a temporary PCI is used. The price for this is that
there is a small possibility that a cell which is not newly
switched on has to change its PCI. Local search algorithms
were contrasted to complete algorithms, that are distributed
realizations of a search tree. It was observed that the best
complete algorithm outperforms local search algorithms,
when the number of PCIs is very small.
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[10] P. Kyösti et al., “Winner II channel models,” Tech. Rep. D1.1.2
V1.2, 2007, http://www.ist-winner.org.

[11] 3GPP, “Evolved universal terrestrial radio access; physical
channels and modulation (release 8),” Tech. Rep. TS 36.211
v8.6.0, 2009.

[12] F. Kuhn and R. Wattenhofer, “On the complexity of distributed
graph coloring,” in Proceedings of the 25th Annual ACM
Symposium on Principles of Distributed Computing (PODC
’06), pp. 7–15, July 2006.

[13] M. Yokoo and K. Hirayama, “Algorithms for distributed
constraint s: a review,” Autonomous Agents and Multi-Agent
Systems, vol. 3, no. 2, pp. 185–207, 2000.

[14] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg, “Distributed
stochastic search and distributed breakout: properties, com-
parison and applications to constraint optimization problems
in sensor networks,” Artificial Intelligence, vol. 161, no. 1-2, pp.
55–87, 2005.

[15] P. Galinier and A. Hertz, “A survey of local search methods for
graph coloring,” Computers and Operations Research, vol. 33,
no. 9, pp. 2547–2562, 2006.

[16] J. O. Neel and J. H. Reed, “Performance of distributed dynamic
frequency selection schemes for interference reducing net-
works,” in Proceedings of the IEEE Military Communications
Conference (MILCOM ’06), October 2006.

[17] B. Babadi and V. Tarokh, “A distributed asynchronous algo-
rithm for spectrum sharing in wireless ad hoc networks,”
in Proceedings of the 42nd Annual Conference on Information
Sciences and Systems (CISS ’08), pp. 831–835, March 2008.

[18] M. Kardar, Statistical Physics of Fields, Cambridge University
Press, Cambridge, Mass, USA, 2007.

[19] M. Alava, J. Ardelius, E. Aurell et al., “Circumspect descent
prevails in solving random constraint satisfaction problems,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 105, no. 40, pp. 15253–15257, 2008.

[20] M. A. Salido and F. Barber, “Distributed CSPs by graph
partitioning,” Applied Mathematics and Computation, vol. 183,
no. 1, pp. 491–498, 2006.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


