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Usually, when parameter identification is applied, there are some gains related to the identification algorithm whose value must be
carefully adjusted in order to obtain a good performance of the algorithm. However, when performing closed loop identification,
there are some other constants that in general are not taken into account for the identification algorithm: the controller gains,
whichmay appear inside the identification algorithm, specifically in the regressor vector, which is very important for the parameter
convergence according to the persistence of excitation condition. Therefore, the effect of these gains on the estimated parameters
should be analyzed so that better estimates can be obtained. This paper addresses the behavior of the parameter estimates for a
closed-loop identification methodology applied to a DC servomechanism with a bounded perturbation signal and a PD controller.
It is shown that, with this perturbation, the parameter estimates converge to a regionwhose size can bemodified not only by varying
the identification algorithm gains but also by modifying the P and D controller gains in a suitable way.

1. Introduction

It is well known that servomechanisms are fundamental
in modern robotic and mechatronic systems for industrial
applications where high speed and high precision are of
prime importance. On the other hand, in order to apply
model-based tuning methods it is necessary to apply an
identification algorithm to the servomechanism and, if it
is required, to design a high performance controller where
a small steady state tracking error and high precision are
necessary. Besides, the system parameters are also important
to know if the system itself behaves as it should, for example,
by evaluating its performancewith some specified test signals.
Thus, parameter identification plays a very important role for
designing a controller as pointed out from several points of
view [1–4].

For a DC servomechanism, there are several techniques
that may be applied for identifying its parameters, when
the servomechanism operates in open loop and in closed
loop. However, it is important to note that if the variable
of interest is the servo position, then a linear model of

a servomechanism contains a pole on the imaginary axis,
thus making the system not BIBO stable, that is, a bounded
input applied to the servomechanism would not produce a
bounded position and this may lead to undesired effects,
for example, in robotic applications. Therefore, for security
reasons, parameter identification should be performed in
closed loop.

One way to characterize the system identification algo-
rithms is [5, 6] (i) direct methods and (ii) indirect methods.
Many of the identification procedures using a linear con-
troller [7–9] fall into the category of direct methods; that is,
the parameter identification procedures are applied without
regard to the controller being used to close the loop. On the
other hand, if a technique takes into account the controller
structure, then it falls into the category of indirect methods.

As mentioned before, for security reason it is better to
estimate the system parameters with the system working
in closed loop. One way to perform closed loop parameter
identification of a servomechanism is with the relay-based
techniques [10–12], which are widespread for servo identifi-
cation. The idea with this methodology is to close the loop
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through a relay in order to obtain a sustained oscillation
and then the values of the frequency and amplitude allows
identifying a model of the system.The relay based techniques
mayworkwell; however, the reference signal used for exciting
the system becomes constant in many time instants, and
then no control is being applied in that time and then the
effect of the disturbances may affect the estimates obtained
with this methodology. Besides, tuning of the relay controller
can be cumbersome and no one of the reviewed methods
takes explicitly into account the disturbances affecting the
servomechanism.

References [7–9, 13–15] propose methods for closed loop
identification of position-controlled servos where the loop
is closed using a linear controller. The approach proposed
in [13, 14] uses a PD controller to close the loop and an
on-line gradient algorithm allows estimating a linear and
nonlinear model of a servomechanism. Also, in [15] a two-
step identificationmethod for estimating the four parameters
of a nonlinear model of a position control servomechanism
is presented, where the proposed identification scheme relies
on the theory of operational calculus. However, the effect of
perturbations is considered only for constant values. On the
other hand, a common technique used for identifying DC
servomechanisms is based on the least squares algorithm. In
[16], an approach for identifying a DC motor is presented
considering the Coulomb friction and dead zone using a
recursive discrete time least squares algorithmwith forgetting
factor using a Hammerstein model for the motor. In [17],
second-order sliding modes approach is applied for estimat-
ing the parameters of aDCmotor operating in open-loop and
closed loop, while in [18] the inertia of a second-order model
of a DC servomechanism driving a human assistive system is
identified using Bode plots obtained from input-output mea-
surements. Finally, another interesting approach is presented
in [2, 4], where an online algebraic identification method is
proposed. Besides, [19, 20] show how this methodology can
be used for parameter identification of a DC motor and also
this methodology was used and modified in [21] introducing
a batch least squares algorithm for estimating the parameters
of an induction motor.

All the previousworks consider in general the importance
of some gains related with the identification algorithm for
closed-loop identification. However, in some cases (as that
presented in [13, 14]) the controller gains get involved in
with some important elements for the identification scheme,
for example, in the regressor vector. In this case, it has not
been analyzed which effect actually has such gains in the
parameter identification procedure and how the parameter
estimates will behave when a disturbance is affecting the
system.Then, this work presents the analysis of a closed loop
identification algorithm for a perturbed position-controlled
DC servomechanism where a PD controller closes the
loop and achieves stability without knowledge about the
servomechanism parameters. Theoretical results show that,
when the perturbation signal is identically zero, exponential
convergence can be claimed, and in the presence of a
bounded perturbation it is possible to obtain a region Ω𝛿

where the parameter estimates belong. What’s more, it will
be shown that this region can be made arbitrarily small if

the controller gains are tuned properly. Some simulations
depict the behavior of the region Ω𝛿, showing the effect that
the controller gains have on the estimated parameters. The
paper is organized as follows. Section 2 is devoted to present
preliminary theoretical results of passivity based control,
adaptive control, and the general description of the DC ser-
vomechanism. Section 3 presents the analysis for closed loop
identification of the servomechanism when no disturbances
are affecting the system and the exponential stability of the
overall identification scheme is shown. Section 4 extends
the analysis for the perturbed case and Section 5 deals with
the analysis of the results. Finally, Section 6 gives some
concluding remarks.

2. Preliminary Results

The closed loop identification analysis that will be presented
is based on some results related with passivity theory and
adaptive control, and thus the following results are worth
presenting.

2.1. Passivity and Adaptive Control. As pointed out before,
the aim of this work is to show the convergence properties
of the identification algorithm with respect to the value of
the controller gains. To this end it will be necessary to use
the observability property given in [22] and some results of
passivity and stability that will be described in the following.

Let us consider the linear time-varying system
[𝐶(𝑡), 𝐴(𝑡)] defined by

𝑥̇ = 𝐴 (𝑡) 𝑥 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑦(𝑡) ∈ 𝑅

𝑚, while 𝐴(𝑡) ∈ 𝑅
𝑛×𝑛 and

𝐶(𝑡) ∈ 𝑅
𝑚×𝑛 are piecewise continuous functions. A system

[𝐶(𝑡), 𝐴(𝑡)] is said to be uniformly completely observable
(UCO) [22] if there exist strictly positive constants {𝛽1, 𝛽2, 𝛿}
such that, for all 𝑡0 ≥ 0, 𝛽1𝐼 ≤ 𝑁(𝑡0, 𝑡0 + 𝛿) ≤ 𝛽2𝐼, where
𝑁(𝑡0, 𝑡0 + 𝛿) ∈ 𝑅

𝑛×𝑛 is the so-called observability Gramian as

𝑁(𝑡0, 𝑡0 + 𝛿) = ∫

𝑡0+𝛿

𝑡0

Φ
𝑇
(𝜏, 𝑡0) 𝐶

𝑇
(𝜏) 𝐶 (𝜏)Φ (𝜏, 𝑡0) 𝑑𝜏,

(2)

where Φ(𝜏, 𝑡0) is the state transition matrix associated with
𝐴(𝑡). Now, assume that, for all 𝛿 > 0, there exists 𝑘𝛿 > 0 such
that, for all 𝑡0 ≥ 0, ∫

𝑡0+𝛿

𝑡0
‖𝐾(𝜏)‖

2
𝑑𝜏 ≤ 𝑘𝛿, where the matrix 𝐾

corresponds to the system under output injection as

𝑤̇ = {𝐴 (𝑡) + 𝐾 (𝑡) 𝐶 (𝑡)} 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑡) 𝑤 (𝑡) ,

(3)

with𝑤(𝑡) ∈ 𝑅𝑛,𝐾(𝑡) ∈ 𝑅𝑛×𝑚, and 𝑧(𝑡) ∈ 𝑅𝑚.Then, the system
[𝐶, 𝐴] is UCO if and only if [𝐶, 𝐴 + 𝐾𝐶] is UCO, where the
term 𝐾𝐶 stands for the output injection term as indicated in
[22]. Moreover, if the observability Gramian of the system
[𝐶, 𝐴] satisfies the previous upper and lower bounds on 𝑁,
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then the observability Gramian of the system [𝐶, 𝐴 + 𝐾𝐶]

satisfies these inequalities with identical 𝛿 and

𝛽
󸀠

1
=

𝛽1

(1 + √𝑘𝛿𝛽2)

, 𝛽
󸀠

2
= 𝛽2 exp (𝑘𝛿𝛽2) . (4)

Now assume that 𝑓(𝑡, 𝑥) : 𝑅+ × 𝑅𝑛 → 𝑅
𝑛 has continuous

and bounded first partial derivatives in 𝑥(𝑡) and is piecewise
continuous in 𝑡 for all 𝑥 ∈ 𝐵ℎ, 𝑡 ≥ 0. Then, the following
statements are equivalent [22].

(1) 𝑥 = 0 is an exponentially stable equilibrium point of
𝑥̇ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0.

(2) There exists a function 𝑉(𝑡, 𝑥) and some strictly
positive constants ℎ󸀠, 𝛼1, 𝛼2, 𝛼3, and 𝛼4 such that, for
all 𝑥 ∈ 𝐵ℎ󸀠 and 𝑡 ≥ 0, 𝛼1‖𝑥‖

2
≤ 𝑉(𝑡, 𝑥) ≤ 𝛼2‖𝑥‖

2,
𝑉̇(𝑡, 𝑥)| ̇𝑥=𝑓(𝑡,𝑥) ≤ −𝛼3‖𝑥‖

2, and |𝜕𝑉(𝑡, 𝑥)/𝜕𝑥| ≤ 𝛼4‖𝑥‖.

Now, if there exists a function𝑉(𝑡, 𝑥) and strictly positive
constants 𝛼1, 𝛼2, 𝛼3, and 𝛿, such that, for all 𝑥 ∈ 𝐵ℎ,
𝑡 ≥ 0: 𝛼1‖𝑥‖

2
≤ 𝑉(𝑡, 𝑥) ≤ 𝛼2‖𝑥‖

2, 𝑉̇(𝑡, 𝑥)| ̇𝑥=𝑓(𝑡,𝑥) ≤

0 and ∫𝑡+𝛿
𝑡

𝑑𝑉(𝜏, 𝑥(𝜏))/𝑑𝜏|
̇𝑥=𝑓(𝑡,𝑥)

𝑑𝜏 ≤ −𝛼3‖𝑥‖
2 then, 𝑥(𝑡)

converges exponentially to zero.
Finally [23], the state equation [𝐴, 𝐵, 𝐶,𝐷] is a minimal

realization of a proper rational function 𝑔(𝑠) if and only if
(𝐴, 𝐵) is controllable, (𝐴, 𝐶) is observable, or if and only
if dim(𝐴) = deg(𝑔(𝑠)), where 𝑔(𝑠) = 𝑁(𝑠)/𝐷(𝑠) and
deg(𝑔(𝑠)) = deg(𝐷(𝑠)).

In the next definitions, let us consider the system Π

defined as

Π :

{{

{{

{

𝑥̇ (𝑡) = 𝑓 (𝑥, 𝑢) ,

𝑥 (0) = 𝑥0 ∈ 𝑅
𝑛
,

𝑦 (𝑡) = 𝐻 (𝑥, 𝑢) ,

(5)

where 𝑥 ∈ 𝑅𝑛 is the state vector, 𝑢 ∈ 𝑅𝑚 the input, and 𝑦 ∈

𝑅
𝑚 the system output. Consider the set Ξ of 𝑛 dimensional

real valued functions 𝑓(𝑡) : 𝑅+ → 𝑅
𝑛 and define the set

𝐿2 = {𝑥 ∈ Ξ : ‖𝑓‖
2

2
= ∫
∞

0
‖𝑓(𝑡)‖

2
𝑑𝑡 < ∞}, with ‖ ⋅ ‖2 the

Euclidean norm. This set constitutes a normed vector space
with the field𝑅 and norm ‖ ⋅ ‖2. Let us introduce the extended
space 𝐿2𝑒 as

𝐿2𝑒 = {𝑥 ∈ Ξ :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2𝑇
= ∫

𝑇

0

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩

2
𝑑𝑡 < ∞, ∀𝑇} , (6)

where 𝐿2 ⊂ 𝐿2𝑒. In the same way, let us introduce the inner
product and the truncated inner product of functions 𝑢 and
𝑦 as

(𝑢, 𝑦) = ∫

∞

0

𝑢
𝑇
(𝑡) 𝑦 (𝑡) 𝑑𝑡,

(𝑢, 𝑦)
𝑇
= ∫

𝑇

0

𝑢
𝑇
(𝑡) 𝑦 (𝑡) 𝑑𝑡.

(7)

The system (5) is dissipative [24] with respect to the supply
rate 𝜔(𝑢, 𝑦) : 𝑅𝑚 × 𝑅𝑚 → 𝑅 if and only if there exists a

storage function: 𝑅𝑛 → 𝑅≥0, such that𝐻(𝑥(𝑇)) ≤ 𝐻(𝑥(0)) +
∫
𝑇

0
𝜔(𝑢(𝑡), 𝑦(𝑡))𝑑𝑡, for all 𝑢(𝑡), all 𝑇 ≥ 0, and all 𝑥0 ∈ 𝑅

𝑛. The
system is passive if its supply rate is given by (𝑢, 𝑦) = 𝑢𝑇𝑦. It
is input strictly passive (ISP) if there exists a positive constant
𝛿𝑖 such that the supply rate can be expressed as (𝑢, 𝑦) =

𝑢
𝑇
𝑦 − 𝛿𝑖‖𝑢‖

2, 𝛿𝑖 > 0. Finally, it is output strictly passive
(OSP) if there exists a positive constant𝛿0 such that the supply
rate can be expressed as (𝑢, 𝑦) = 𝑢

𝑇
𝑦 − 𝛿𝑜‖𝑦‖

2, 𝛿𝑜 > 0.
The system (5) is called 𝐿2 finite gain stable if there exists a
positive constant 𝛾 such that for any initial condition 𝑥0 there
exists a finite constant 𝛽(𝑥0)such that ‖𝑦‖2𝑇 ≤ 𝛾‖𝑢‖2𝑇+𝛽(𝑥0)
and one important result from [24] is that if Π : 𝑢 → 𝑦 is
OSP, then it is 𝐿2 stable.

A state space system 𝑥̇(𝑡) = 𝑓(𝑥), 𝑥 ∈ 𝑅
𝑛, is zero state

observable from the output 𝑦(𝑡) = ℎ(𝑥) if, for all initial
conditions 𝑥(0) ∈ 𝑅

𝑛, the output 𝑦(𝑡) ≡ 0 implies that
𝑥(𝑡) ≡ 0. It is zero state detectable if 𝑦(𝑡) ≡ 0 implies that
lim𝑥(𝑡) = 0 as 𝑡 → ∞.

Regarding the identification algorithms, the persistence
excitation (PE) condition is very important and its definition
is given now according to [22]: a vector 𝜙 : 𝑅

+
→ 𝑅

2𝑛 is
persistently exciting (PE) if there exist constants {𝛼1, 𝛼2, 𝛿} >
0 such that

𝛼1𝐼 ≤ ∫

𝑡0+𝛿

𝑡0

𝜙 (𝜏) 𝜙
𝑇
(𝜏) 𝑑𝜏 ≤ 𝛼2𝐼, ∀𝑡0 ≥ 0. (8)

Besides, let 𝑤 : 𝑅
+
→ 𝑅

2𝑛. If 𝑤 is PE, the signals {𝑤, 𝑤̇}
belong to the space 𝐿∞, and 𝑈 is a rational stable strictly
proper minimum phase transfer function, then 𝑈(𝑤) is PE.

Theorem 1 (small signal I/O stability, [22]). Consider the
perturbed system 𝑥̇ = 𝑓(𝑡, 𝑥, 𝑢), 𝑥(0) = 𝑥0 and the
unperturbed system 𝑥̇ = 𝑓(𝑡, 𝑥, 0), 𝑥(0) = 𝑥0, where 𝑡 ≥ 0,
𝑥 ∈ 𝑅

𝑛, and 𝑢 ∈ 𝑅
𝑚. Let 𝑥 = 0 be an equilibrium point of

the unperturbed system, that is, 𝑓(𝑡, 0, 0) = 0, for all 𝑡 ≥ 0.
Let 𝑓 be piecewise continuous in 𝑡 and have continuous and
bounded first partial derivatives in 𝑥 for all 𝑡 ≥ 0, 𝑥 ∈ 𝐵ℎ,
𝑢 ∈ 𝐵𝑐. Let 𝑓 be Lipchitz in u, with Lipchitz constant 𝑙𝑢, for
all 𝑡 ≥ 0, 𝑥 ∈ 𝐵ℎ, 𝑢 ∈ 𝐵𝑐. Let 𝑢 ∈ 𝐿∞. If 𝑥 = 0 is
an exponentially stable equilibrium point of the unperturbed
system, then the perturbed system is small-signal 𝐿∞ stable;
that is, there exist 𝛾∞, 𝑐∞ > 0, such that ‖𝑢‖∞ < 𝑐∞ implies
that ‖𝑥‖∞ ≤ 𝛾∞‖𝑢‖∞ < ℎ, where 𝑥 is the solution of 𝑓(𝑡, 𝑥, 𝑢)
starting at 𝑥0 = 0. There exists 𝑚 ≥ 1 such that, for all
‖𝑥0‖ < ℎ/𝑚, 0 < ‖𝑢‖∞ < c∞ implies that 𝑥(𝑡) converges to
a 𝐵𝛿 ball of radius 𝛿 = 𝛾∞‖𝑢‖∞ < ℎ; that is, for all 𝜑 > 0, there
exists 𝑇 ≥ 0 such that ‖𝑥(𝑡)‖ ≤ (1 + 𝜑)𝛿 for all 𝑡 ≥ 𝑇, along the
solutions of 𝑓(𝑡, 𝑥, 𝑢) starting at 𝑥0. Also for 𝑡 ≥ 0, ‖𝑥(𝑡)‖ < ℎ.

2.2. Model of the DC Servomechanism. The closed loop
identification analysis that will be presented considers the
model of a perturbed DC servomechanism described by the
following equation:

𝐽 ̈𝑞 + 𝑓 ̇𝑞 (𝑡) = 𝑘𝑢 (𝑡) + ]1 (𝑡) = 𝜏 (𝑡) + ]1 (𝑡) , (9)

where 𝐽, 𝑓, 𝑘, 𝑢, ]1, and 𝜏(𝑡) = 𝑘𝑢(𝑡) are the inertia, viscous
friction coefficient, amplifier gain, input voltage, perturbation
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signal, and torque input, respectively.The perturbation signal
may be due to possibly constant disturbances or parasitic
voltages appearing inside the amplifier. The model (9) can be
rewritten as

̈𝑞V (𝑡) = −𝑎 ̇𝑞 (𝑡) + 𝑏𝑢 (𝑡) + ] (𝑡) , (10)

where 𝑎 = 𝑓/𝐽 and 𝑏 = 𝑘/𝐽 are positive constants and
] = ]1/𝐽 and {𝑞(𝑡), ̇𝑞(𝑡)} are the servo angular position and
velocity, respectively. It is also assumed that the perturbation
signal is bounded, that is: ‖]1(𝑡)‖ ≤ 𝛽, 𝛽 ∈ 𝑅

+. In the
following it will be shown that there exists a regionΩ𝛿 where
the parameter estimates converge, even in the presence of
the perturbation signal ](𝑡). Furthermore, it will be shown
that the size of this region can be arbitrarily reduced by
increasing the controller gains employed for stabilizing the
servomechanism. This analysis will consider two cases.

(i) Closed loop identification of the unperturbed DC
servomechanism, where the main objective will be
to get a formula to estimate the system parameters
and show the condition under which the system is
exponentially stable.

(ii) Closed loop identification of the perturbed DC ser-
vomechanism where the existence of the region Ω𝛿
will be shown where the parameter estimates con-
verge, when a perturbation signal affects the system.

3. Closed-Loop Identification Algorithm:
Nonperturbed Case

This section describes the closed loop identification approach
and the way the parameter updating law is constructed.
Besides, it is proved that under some assumptions the overall
system is exponentially stable.Then, first the stability analysis
will be presented to ensure the asymptotic stability of the
closed loop system and the parameter error dynamics. Later,
the system exponential stability property will be established.

3.1. Stability Analysis and Parameter Convergence. The closed
loop identification analysis to be described is similar to that
presented in [14] and depicted in Figure 1. For this (unper-
turbed) case, it will be considered that ](𝑡) is identically zero,
leading to the following unperturbed servo model:

̈𝑞 (𝑡) = −𝑎 ̇𝑞 (𝑡) + 𝑏𝑢 (𝑡) . (11)

The closed loop identificationmethodology consists of select-
ing a model of (11) with the following dynamics:

̈𝑞𝑒 (𝑡) = −𝑎 ̇𝑞𝑒 (𝑡) + 𝑏̂𝑢𝑒 (𝑡) , (12)

where 𝑞𝑒(𝑡) is the estimated servo position, ̇𝑞𝑒(𝑡) the estimated
velocity, {𝑎, 𝑏̂} are the estimates of {𝑎, 𝑏}, and 𝑢𝑒 the control
law for the estimated model. Then, the loop is closed around
the real servomechanism and its model by using two PD
controllers, where the same gains are used for both of them.
Now let us define the output error 𝜀(𝑡) = 𝑞(𝑡) − 𝑞𝑒(𝑡),
and then this error and its time derivative are employed to

feed an identification algorithm which estimates the system
parameters and updates them in the estimatedmodel. All this
procedure is now theoretically summarized.

For closing the loop around the unperturbed system and
its model, let us consider the PD controllers u(t) and 𝑢𝑒(𝑡) as
follows: 𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) − 𝑘𝑑 ̇𝑞(𝑡) and 𝑢𝑒(𝑡) = 𝑘𝑝𝑒𝑒(𝑡) − 𝑘𝑑 ̇𝑞𝑒(𝑡),
where 𝑒(𝑡) = (𝑞𝑑(𝑡) − 𝑞(𝑡)), 𝑒𝑒(𝑡) = (𝑞𝑑(𝑡) − 𝑞𝑒(𝑡)), 𝑞𝑑(𝑡) is
the reference signal, and 𝑘𝑝 > 0, 𝑘𝑑 > 0 the proportional and
derivative controller gains which are used in both controllers.
Then, the system (11) in closed loop with 𝑢(𝑡) leads to the next
closed-loop dynamics (for the sake of simplicity, fromnowon
the time argument will be omitted) as

Σ1 : ̈𝑞 = − (𝑎 + 𝑏𝑘𝑑) ̇𝑞 + 𝑏𝑘𝑝𝑒, (13)

while the system (12) in closed loop with 𝑢𝑒(𝑡) leads to the
following dynamics:

Σ2 : ̈𝑞𝑒 = − (𝑎 + 𝑏̂𝑘𝑑) ̇𝑞𝑒 + 𝑏̂𝑘𝑝𝑒𝑒. (14)

By using the Routh-Hurwitz criterion, it is easy to show
that the control law 𝑢(𝑡) stabilizes the unperturbed servo
model (11). However, even when the system (13) is stable,
the same conclusion cannot be drawn for (14), because the
coefficients of this estimated model (i.e., 𝑎, 𝑏̂) are updated by
one identification algorithm to be described later, and then
these parameters are time varying; therefore, it is necessary to
analyze the stability of (14). From the definition of 𝜀(𝑡), it is
possible to evaluate its second time derivative and employing
(13) and (14), the error dynamics is established as follows:

..

𝜀 +𝑐 ̇𝜀 + 𝑏𝑘𝑝𝜀 = 𝜃
𝑇
𝜙, (15)

where 𝑐 = (𝑎 + 𝑏𝑘𝑑) > 0, 𝜃(𝑡) is the parameter error vector,
and 𝜙(𝑡) is the so-called regressor vector, where 𝜃 = 𝜃 − 𝜃 =
(𝑎 − 𝑎, 𝑏̂ − 𝑏)

𝑇, 𝜙(𝑡) = ( ̇𝑞𝑒, −𝑢𝑒)
𝑇, with 𝜃 being the estimate

of 𝜃. In order to analyze the behavior of the signals involved
in the error dynamics (15), passivity based arguments will be
used [24, 25]. To this end, let 𝑥 = (𝜀, ̇𝜀)𝑇 be the state vector of
(15) and consider the following storage function:

𝐻1 (𝑥) =
1

2
𝑥
𝑇
(
𝑏𝑘𝑝 𝜇

𝜇 1
)𝑥 = 𝑥

𝑇
𝑀𝑥, (16)

where 𝜇 ∈ 𝑅+. The choice of 𝐻1 will lead to concluding the
OSP property of (15). Then, taking the time derivative of𝐻1
along the trajectories of (15) leads to

𝐻̇1 = 𝜃
𝑇
𝜙 (𝜇𝜀 + ̇𝜀) −

𝑐

2
(𝜇𝜀 + ̇𝜀)

2
− (

𝑐

2
− 𝜇) ̇𝜀

2

− 𝜇(𝑏𝑘𝑝 −
𝜇𝑐

2
) 𝜀
2
.

(17)

It is easy to prove that 𝐻1 > 0 if 𝜇 < √𝑏𝑘𝑝. Besides, if
𝜇 < min{𝑐/2, 2𝑏𝑘𝑝/𝑐}, then the time derivative of 𝐻1 along
the trajectories of (15) yields 𝐻̇1 ≤ 𝜃

𝑇
𝜙(𝜇𝜀+ ̇𝜀)−𝑐(𝜇𝜀 + ̇𝜀)

2
/2;

that is, (15) defines an OSP operator 𝜃𝑇𝜙 → (𝜇𝜀 + ̇𝜀).
Moreover, it is well known that the feedback interconnection
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Figure 1: Blocks diagram for the identification algorithm.

of passive subsystems is passive [24], thusmaking an intuitive
to consider the parameter error dynamics as follows: Σ3 :

̇̃
𝜃 =

−Γ𝜙(𝜇𝜀+ ̇𝜀), withmatrix Γ = Γ𝑇 > 0.Then, by considering the
storage function𝐻2(𝜃) = 𝜃

𝑇
Γ
−1
𝜃/2, its time derivative along

the trajectories of Σ3 leads to 𝐻̇2 = 𝜃
𝑇
Γ
−1 ̇̃
𝜃 = (𝜇𝜀 + ̇𝜀)(−𝜃

𝑇
𝜙),

so that Σ3 defines the passive operator (𝜇𝜀 + ̇𝜀) → (−𝜃
𝑇
𝜙).

Finally, let us consider the feedback interconnection of (15)
with Σ3 given by

Σ{

..

𝜀 (𝑡) + 𝑐 ̇𝜀 (𝑡) + 𝑏𝑘𝑝𝜀 (𝑡) = 𝜃
𝑇
𝜙 (𝑡) ,

̇̃
𝜃 = −Γ𝜙 (𝜇𝜀 + ̇𝜀) .

(18)

Then, by considering the storage function for (18) as the sum
of 𝐻1 and 𝐻2, it is easy to prove that Σ is still OSP; thus, it
follows that (𝜇𝜀+ ̇𝜀) ∈ 𝐿2. Let us define the signal 𝑦(𝑡) = (𝜇𝜀+
̇𝜀) as the output for the interconnected system (18).Then, note
that 𝜀(𝑡) corresponds to the output of an exponentially stable
filterwhose input belongs to the𝐿2 space; therefore, 𝜀(𝑡) tends
to zero as 𝑡 → ∞ [26]. Therefore, it has been proved that
𝑞(𝑡) ∈ 𝐿∞ and 𝜀(𝑡) → 0 as 𝑡 → ∞, and thus 𝑞𝑒(𝑡) → 𝑞(𝑡)

as 𝑡 → ∞; that is, 𝑞𝑒(𝑡) ∈ 𝐿∞, and then it turns out that
the time varying system (14) is stable, as desired, although it
remains to prove that the parametric error converges to zero,
that is, that 𝜃(𝑡) converges to the real parameter vector 𝜃. To
this end, let us consider the state-space description of (15) as

𝑥̇ = 𝐴𝑥 + 𝐵𝑈,

𝑦 = 𝐶𝑥,

(19)

with:

𝐴 = (
0 1

−𝑏𝑘𝑝 −𝑐
) , 𝐵 = (

0

1
) ,

𝐶
𝑇
= (

𝜇

1
) , 𝑈 = 𝜃

𝑇
𝜙.

(20)

As described in [22], a necessary and sufficient condition for
parameter convergence in linear systems is the PE condition
of the regressor vector 𝜙(𝑡). However, the results presented
in [22] assume that all the signals in 𝜙(𝑡) come from a linear
time invariant system, which is not the case here because here
the regressor 𝜙(𝑡) has signals from the estimated model (14),
which is a time varying system. To overcome this technical
difficulty it is possible to consider the real regressor vector
𝜙
𝑇

𝑟
(𝑡) = ( ̇𝑞, −𝑢)

𝑇 which consists of signals from the real
servomechanism (13). Following the same procedure as that
presented in [22], it is not a difficult task to show that if 𝑐 > 𝜇,
then 𝜙𝑟(𝑡) will be PE. Now, let us consider the difference

𝜙𝑟 − 𝜙 = (
̇𝑞

−𝑢
) − (

̇𝑞𝑒

−𝑢𝑒
) = (

̇𝜀

𝑘𝑝𝜀 + 𝑘𝑑 ̇𝜀
) , (21)

and consider the Lyapunov function candidate 𝑉1 = 𝐻1 +

𝐻2. Clearly 𝑉1 > 0 if 𝜇 < √𝑏𝑘𝑝 and 𝑉̇1 ≤ −𝛽𝜀
2, 𝛽 =

(2/𝛼)(𝜇𝑏𝑘𝑝𝛼/2 − 𝜇
2
𝑐
2
/8), with 𝛼 = (𝑐 − 𝜇) > 0. Therefore,

if 𝜇 ≤ 4𝑏𝑘𝑝𝑐/(4𝑏𝑘𝑝 + 𝑐
2
), then 𝜀(𝑡) ∈ 𝐿2, and considering

the fact that 𝑦(𝑡) = (𝜇𝜀 + ̇𝜀) ∈ 𝐿2 permits concluding that
̇𝜀(𝑡) ∈ 𝐿2, which makes clear that (𝜙𝑟 − 𝜙) ∈ 𝐿2. Now, given
a PE signal 𝜔(𝑡) and a signal 𝑧(𝑡) ∈ 𝐿2, the sum (𝜔 + 𝑧) is
still PE [22]. Thus, 𝜙 = 𝜙𝑟 − (𝜙𝑟 − 𝜙) is PE as desired and
the convergence of 𝜃(𝑡) to zero can be claimed, that is, the
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estimated parameters converge to the real ones. Then, based
on the previous analysis, the following proposition follows.

Proposition 2. Consider the system (13) and assume that
𝜇 ≤ min{√𝑏𝑘𝑝, 2𝑏𝑘𝑝/𝑐, 4𝑏𝑘𝑝𝑐/(4𝑏𝑘𝑝 + 𝑐

2
)}. Then 𝜀, ̇𝜀 and the

parameter error vector 𝜃(t) converge to zero as time tends to
infinity.

From the previous result, asymptotic stability has been
proved for the closed loop system and identification
approach. However, in the identification framework usually
it is preferable to have a more robust stability condition,
that is, exponential stability to guarantee that the parameter
identification scheme will be robust against disturbances
which may affect the system, such as unmodeled dynamics
and measurement noise. Therefore, the next analysis will
establish the necessary conditions for the servomechanism to
be an exponentially stable system.

3.2. Exponential Convergence. As mentioned above, one
appealing and important property of the parameter identifi-
cation schemes is the exponential stability, because it guaran-
tees robustness of the identification algorithm in presence of
external disturbances or unmodeled dynamics. Thus, in the
following it will be proved which conditions must be satisfied
in order to make the system to be exponentially stable. First
recall the state space description given by (19). Clearly the
system (𝐴, 𝐵, 𝐶) is observable and controllable [23]; that is,
it is a minimal realization, if 𝜇 < 𝑐/2. Let us consider the
systems

Σ4 : {

̇̃
𝜃 = 0

𝑦2 = 𝜙
𝑇
(𝑡) 𝜃 (𝑡) ,

Σ5 : {

̇̃
𝜃 = −Γ𝜙 (𝜇𝜀 + ̇𝜀)

𝑦2 = 𝜙
𝑇
(𝑡) 𝜃 (𝑡) .

(22)

The last analysis proved that 𝜙(𝑡) is PE which turns out to be
equivalent to the UCO condition on the system Σ4 and so do
Σ5. Then, the main result of this section can be established as
follows.

Theorem 3. Given the system (18), assume that 𝜇 fulfills the
bound conditions of Proposition 2. Let w = (𝑥, 𝜃) be an
equilibrium point of Σ. Then w is an exponentially stable
equilibrium point.

Proof. Let w(𝑡) = (𝑥, 𝜃)
𝑇
= (𝜀, ̇𝜀,𝜃)

𝑇 be the state of (18) and
consider the following Lyapunov function candidate:

𝑉2 (w (𝑡)) = 𝐻2 (𝜃 (𝑡)) + 𝐻3 (𝑥 (𝑡)) , (23)

with𝐻2 as previously mentioned and𝐻3 defined as follows:

𝐻3 (𝑥 (𝑡)) =
1

2
𝑥
𝑇
𝑀2𝑥, 𝑀2 = (

𝑏𝑘𝑝 + 𝜇𝑐 𝜇

𝜇 1
) . (24)

Clearly,𝐻3 > 0 if the inequality 𝜇 < (𝑐+√𝑐2 + 4𝑏𝑘𝑝)/2 holds.
Besides, it is possible to show that

1

2
𝜆min (𝑀2) ‖𝑥‖

2
+
1

2
𝜆min (Γ)

󵄩󵄩󵄩󵄩󵄩
𝜃
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑉2 (w)

≤
1

2
𝜆max (𝑀2) ‖𝑥‖

2
+
1

2
𝜆max (Γ)

󵄩󵄩󵄩󵄩󵄩
𝜃
󵄩󵄩󵄩󵄩󵄩

2

.

(25)

Taking the time derivative of 𝑉2 along the trajectories of (18)
yields

𝑉̇2 = −𝑥
𝑇
(
𝜇𝑏𝑘𝑝 0

0 𝑐 − 𝜇
)𝑥. (26)

Let us define the diagonal matrix𝑄 = diag{𝜇𝑏𝑘𝑝, 𝑐 − 𝜇}; then
we have that 𝑉̇2 ≤ −𝑥

𝑇
𝑄𝑥 ≤ 0, where 𝑄 = 𝑄

𝑇
> 0 if 𝜇 < 𝑐.

Now assume that there exist strictly positive constants {𝛼3, 𝛿}
such that

∫

𝑡+𝛿

𝑡

𝑑

𝑑𝜏
𝑉2 (w (𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(18)

𝑑𝜏 ≤ −𝛼3‖w (𝑡)‖
2
. (27)

First note from (18) and the time derivative of 𝑉2 that

∫

𝑡+𝛿

𝑡

𝑑

𝑑𝜏
𝑉2 (w (𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(18)

≤ −
𝜆min (𝑄)

𝜇2 + 1
∫

𝑡+𝛿

𝑡

󵄨󵄨󵄨󵄨𝑦 (𝜏)
󵄨󵄨󵄨󵄨

2
𝑑𝜏, (28)

and then (27) will be valid if, for 𝛼3 > 0, the following
inequality holds:

𝜆min (𝑄)

𝜇2 + 1
∫

𝑡0+𝛿

𝑡0

󵄨󵄨󵄨󵄨𝑦 (𝜏)
󵄨󵄨󵄨󵄨

2
𝑑𝜏 ≥ 𝛼3 (

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

) ,

(29)

for all 𝑡0 ≥ 0 and w(𝑡0). Now consider the following system:

𝑥̇ = 𝐴𝑥 + 𝐵𝑈,
̇̃
𝜃 = 0, 𝑦 = 𝐶𝑥. (30)

Let us consider the UCO property of Σ5 with𝐾 = −Γ(𝜇𝜀 + ̇𝜀).
It is clear that, for the UCO condition,

𝑘𝛿 = ∫

𝑡0+𝛿

𝑡0

Γ
𝑇
(𝜇𝜀 + ̇𝜀)

2
Γ 𝑑𝜏 ≤ ∫

𝑡0+𝛿

𝑡0

𝜆
2

max (Γ) (𝜇𝜀 + ̇𝜀)
2
𝑑𝜏.

(31)

Also we know that (𝜇𝜀 + ̇𝜀) ∈ 𝐿2; thus, there exists a positive
constant 𝜅 > 0 such that 𝑘𝛿 ≤ 𝜅𝜆

2

max(Γ) . What’s more, the
output of (19) is given by

𝑦 (𝑡) = 𝐶
𝑇
𝑒
𝐴(𝑡−𝑡0)𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝐶
𝑇
𝑒
𝐴(𝑡−𝜏)

𝐵𝜙 (𝜏) 𝑑𝜏𝜃 (𝑡0) (32)

because from (30) we note that the vector 𝜃 is constant. Let
us define the signals 𝑧1(𝑡) and 𝑧2(𝑡) as follows:

𝑧1 (𝑡) = 𝐶
𝑇
𝑒
𝐴(𝑡−𝑡0)x (𝑡0) ,

𝑧2 (𝑡) = ∫

𝑡

𝑡0

𝐶
𝑇
𝑒
𝐴(𝑡−𝜏)

𝐵𝜙 (𝜏) 𝑑𝜏𝜃 (𝑡0) .

(33)
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From the stability analysis of Section 3 it was concluded that
{𝜙(𝑡), ̇𝜙(𝑡)} ∈ 𝐿∞ and that 𝜙(𝑡) is PE. Thus, it is clear that
[22] 𝜙𝑓(𝑡) = ∫

𝑡

𝑡0
𝐶
𝑇
𝑒
𝐴(𝑡−𝜏)

𝐵𝜙(𝜏)𝑑𝜏 is PE. Therefore, there

exist positive constants {𝛼1, 𝛼2, 𝜎} such that 𝛼1‖𝜃(𝑡0)‖
2

≤

∫
𝑡1+𝜎

𝑡1
𝑧
2

2
(𝜏)𝑑𝜏 ≤ 𝛼2‖𝜃(𝑡0)‖

2

for all 𝑡1 ≥ 𝑡0 ≥ 0 and 𝜃(𝑡0).
Moreover, because matrix 𝐴 is stable there exist positive
constants {𝛾1, 𝛾2} such that ∫

∞

𝑡0+𝑚𝜎
𝑧
2

1
(𝜏)𝑑𝜏 ≤ 𝛾1‖𝑥(𝑡0)‖

2
𝑒
−𝛾2𝑚𝜎

for all 𝑡0 ≥ 0, 𝑥(𝑡0) and an integer 𝑚 > 0 to be defined later.
Because (𝐴, 𝐶) is observable there exists 𝛾3(𝑚𝜎) > 0 with
𝛾3(𝑚𝜎) increasing such that∫

𝑡0+𝑚𝜎

𝑡0
𝑧
2

1
(𝜏)𝑑𝜏 ≤ 𝛾3(𝑚𝜎)‖𝑥(𝑡0)‖

2

for all 𝑡0 ≥ 0, 𝑥(𝑡0) and 𝑚 > 0. Let 𝑛 > 0 be another integer
to be defined and 𝛿 = (𝑚 + 𝑛)𝜎. Then

∫

𝑡0+𝛿

𝑡0

󵄨󵄨󵄨󵄨𝑦 (𝜏)
󵄨󵄨󵄨󵄨

2
𝑑𝜏

≥ ∫

𝑡0+𝑚𝜎

𝑡0

𝑧
2

1
(𝜏) 𝑑𝜏 − ∫

𝑡0+𝛿

𝑡0+𝑚𝜎

𝑧
2

1
(𝜏) 𝑑𝜏

+ ∫

𝑡0+𝑚𝜎

𝑡0

𝑧
2

2
(𝜏) 𝑑𝜏 − ∫

𝑡0+𝛿

𝑡0+𝑚𝜎

𝑧
2

2
(𝜏) 𝑑𝜏

≥ 𝛾3 (𝑚𝜎)
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2
− 𝛾1𝑒
−𝛾2𝑚𝜎󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2

+ 𝑛𝛼1

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

− 𝑚𝛼2

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2
[𝛾3 (𝑚𝜎) − 𝛾1𝑒

−𝛾2𝑚𝜎]

+
󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

[𝑛𝛼1 − 𝑚𝛼2] .

(34)

Let both𝑚 and 𝑛 be large enough such that 𝑛𝛼1−𝑚𝛼2 ≥ 𝛼1 >
0 and 𝛾3(𝑚𝜎) − 𝛾1𝑒

−𝛾2𝑚𝜎 ≥ 𝛾3(𝑚𝜎)/2 > 0; then,

∫

𝑡0+𝛿

𝑡0

󵄨󵄨󵄨󵄨𝑦 (𝜏)
󵄨󵄨󵄨󵄨

2
𝑑𝜏 ≥

𝛾3 (𝑚𝜎)

2

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
+ 𝛼1

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

. (35)

Similarly, it is possible to conclude that

∫

𝑡0+𝛿

𝑡0

󵄨󵄨󵄨󵄨𝑦 (𝜏)
󵄨󵄨󵄨󵄨

2
𝑑𝜏 ≤ 2𝛾1

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
𝑒
−𝛾2𝑚𝜎 + 2 (𝑚 + 𝑛) 𝛼2

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

.

(36)
Now we define 𝛽1 = min(𝛼1, 𝛾3(𝑚𝜎)/2) and 𝛽2 =

max(2𝛾1, 2(𝑚 + 𝑛)𝛼2). Then, it is possible to obtain the
following bounds:

𝛽1 (
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

)

≤ ∫

𝑡0+𝛿

𝑡0

󵄩󵄩󵄩󵄩𝑦 (𝜏)
󵄩󵄩󵄩󵄩

2
𝑑𝜏 ≤ 𝛽2 (

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

) ,

(37)

and therefore

∫

𝑡+𝛿

𝑡

𝑑

𝑑𝜏
𝑉2 (w (𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(18)

≤ −
𝜆min (𝑄)

𝜇2 + 1
𝛽1 (

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡0)

󵄩󵄩󵄩󵄩󵄩

2

)

≤ −𝛼3
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩 ,

(38)

where 𝛼1 = min(𝜆min (𝑀2), 𝜆min(Γ))/2, 𝛼2 = max(𝜆max =
(𝑀2), 𝜆max(Γ))/2, and 𝛼3 = 𝜆min(𝑄)min(𝛼1, 𝛾3(𝑚𝜎)/2)/(𝜇

2
+

1). Then we conclude that the system (18) is exponentially
stable.

The last result established the exponential stability of
(18) for the unperturbed case. However, in practice there are
several disturbance sources (e.g., unmodeled dynamics, noise
from the environment or from the measuring devices, etc.)
which may affect the system performance of both the system
and the identification algorithm. Therefore, the next analysis
shows the extension of the last analysis to those scenarios.

4. Closed-Loop Identification Algorithm:
Perturbed Case

Till now exponential stability of the equilibrium of (18) has
been established. Now, it will be considered the perturbed
system (10) in closed loop with the PD controller 𝑢(𝑡) and
it will be proved that this closed loop system is 𝐿∞ stable
in the sense of Theorem 1. Let us consider the system (10) in
closed loop with 𝑢(𝑡), the system Σ2, and the output error 𝜀(𝑡)
defined as before. Then, it is possible to obtain the following
error dynamics:

..

𝜀 (𝑡) = −𝑐 ̇𝜀 (𝑡) − 𝑏𝑘𝑝𝜀 (𝑡) + 𝜃
𝑇
𝜙 (𝑡) + ] (𝑡) . (39)

For the system (39) it is important to know if it is still stable
in the presence of the perturbation signal ](𝑡). If it is the
case, then the system will be robust even in the presence of
perturbations, which is desirable in the identification context
because reliable parameter estimates can be obtained even in
the perturbed case.The next result obtained from [22] allows
concluding that the perturbed system (39) is 𝐿∞ stable.

Theorem 4. Consider the perturbed system (39) and the
unperturbed system (18). If the equilibrium w0 of (18) is
exponentially stable, then one has the following.

(1) The perturbed system (39) is small signal 𝐿∞-stable;
that is, there exists 𝛾∞ such that ‖w(𝑡)‖ ≤ 𝛾∞𝛽 < ℎ,
where w(𝑡) is the solution of (39) starting at w0.

(2) There exists 𝑚 ≥ 1, such that ‖w0‖ < ℎ/𝑚 implies that
w(𝑡) converges to a ballΩ𝛿 of radius 𝛿 = 𝛾∞𝛽 < ℎ; that
is, for all 𝜀 > 0, there exists 𝑇 ≥ 0 such that ‖w(𝑡)‖ ≤
𝛿(1+𝜀) for all 𝑡 ≥ 𝑇, along the solutions of (39) starting
at w0. Also for all 𝑡 ≥ 0, ‖w0‖ < ℎ.

Proof. Consider again the Lyapunov function 𝑉2(w(𝑡)).
Assuming that inequalities for 𝜇 given in Proposition 2, it
is possible to obtain 𝑉̇2 ≤ −𝜆min(𝑄)‖𝑥‖

2
+ 𝛽√𝜇2 + 1‖𝑥‖.

Let us define the constants 𝛼3 = 𝜆min(𝑄), 𝛼4 = √𝜇2 + 1,
𝛾∞ = 𝛼4/𝛼3√𝛼2/𝛼1, 𝛿 = 𝛾∞𝛽, and 𝑚 = √𝛼2/𝛼1 ≥ 1.
Then, the time derivative of𝑉2(w(𝑡)) along the trajectories of
(39) yields 𝑉̇2 ≤ −𝛼3‖𝑥‖[‖𝑥‖ − 𝛿/𝑚] and two cases may be
considered.

(1) First it will be proved that ‖w(𝑡)‖ ≤ 𝛾∞𝛽 < ℎ. To
this end consider the case where ‖𝑥0‖ ≤ 𝛿/𝑚. Note
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that 𝛿/𝑚 ≤ 𝛿 because of 𝑚 ≥ 1, which implies that
w(𝑡) ∈ Ω𝛿 for all 𝑡 ≥ 0. Suppose that it is not true,
and then, by continuity of the solutions there exists
𝑇0 and 𝑇1, with 𝑇1 > 𝑇0 ≥ 0 such that ‖𝑥(𝑇0)‖ = 𝛿/𝑚,
‖𝑥(𝑇1)‖ > 𝛿 and for all 𝑡 ∈ [𝑇0, 𝑇1]: ‖w(𝑡)‖ ≥ 𝛿/𝑚,
and then, from the time derivative of𝑉2 it is clear that
in [𝑇0, 𝑇1]: 𝑉̇2 ≤ 0, but in this case 𝑉2(𝑇0, 𝑥(𝑇0)) ≤
𝛼2(𝛿/𝑚)

2
= 𝛼1𝛿

2 and 𝑉2(𝑇1, 𝑥(𝑇1)) > 𝛼1𝛿
2, which

is a contradiction; therefore, for all w(𝑡) with initial
condition w0, a solution for (39) remains onΩ𝛿.

(2) Assume that ‖w0‖ > 𝛿/𝑚 and that for all 𝜀 > 0

there exists 𝑇 ≥ 0 such that ‖w(𝑇)‖ ≤ 𝛿(1 + 𝜀)/𝑚

and suppose that it is not true; then, for some 𝜀 > 0

and for all 𝑡 ≥ 0: ‖w(𝑡)‖ > 𝛿(1 + 𝜀)/𝑚 and from the
time derivative of 𝑉2 given previously it is possible to
obtain 𝑉̇2 ≤ −𝛼3(𝛿/𝑚)

2
𝜀(1 + 𝜀), which is a strictly

negative constant. However, this contradicts with the
fact that 𝑉2(0, 𝑥0) ≤ 𝛼2‖x0‖

2
< 𝛼2ℎ

2
/𝑚
2
, 𝑉2(𝑡, x(𝑡)) ≥

0 for all 𝑡 ≥ 0, because the inequality must be strict.
On the other hand, let us assume that for all 𝑡 ≥ 𝑇

the following inequality holds: ‖𝑥(𝑡)‖ ≤ 𝛿(1 + 𝜀) and
it is possible to probe this affirmation in the same
way that the first step of this proof.Thus, we conclude
that w(𝑡) converges toΩ𝛿, as desired, and the proof is
completed.

5. Analysis of the Results

The previous analysis showed that even in the presence of a
bounded perturbation signal the parameter estimates remain
in a region Ω𝛿 = 𝛾∞𝛽. Now it is important to analyze the
behavior of this region and to see that how the controller gains
influence the way this region behaves. To this end, recall from
Theorem 4 that the state of (39) is bounded by

Ω𝛿 = 𝛾∞𝛽 =
√
(𝜇
2
+ 1) 𝛽

2max (𝜆max (𝑀2) , 𝜆max (Γ))

(𝜆min (Q))
2min (𝜆min (𝑀2) , 𝜆min (Γ))

.

(40)

Besides, it is easy to obtain the eigenvalues 𝜆𝑖 of𝑀2 as 𝜆𝑖 =
(𝑏𝑘𝑝 +𝜇𝑐+ 1±√(𝑏𝑘𝑝 + 𝜇𝑐 − 1)

2
+ 4𝜇2)/2. Thus, the minimal

(𝜆min) and maximum (𝜆max) eigenvalues for𝑀2 are given by

𝜆min (𝑀2) =
𝑏𝑘𝑝 + 𝜇𝑐 + 1 −

√(𝑏𝑘𝑝 + 𝜇𝑐 − 1)
2

+ 4𝜇2

2
,

𝜆max (𝑀2) =
𝑏𝑘𝑝 + 𝜇𝑐 + 1 +

√(𝑏𝑘𝑝 + 𝜇𝑐 − 1)
2

+ 4𝜇2

2
.

(41)

Besides, for the diagonal matrix 𝑄, note that 𝜆min(𝑄) =

min{𝜇𝑏𝑘𝑝, 𝑐 − 𝜇}, 𝜆max(𝑄) = max{𝜇𝑏𝑘𝑝, 𝑐 − 𝜇}.Then, note
that the region Ω𝛿 depends on several parameters, among
which are the controller gains 𝑘𝑝 and 𝑘𝑑. In order to
see the effect of the controller gains, let us consider the
minimal and maximum eigenvalues of 𝑀2. From (40), it

is possible to note that the region Ω𝛿 can be reduced by
minimizing the value of 𝜆max(𝑀2) and maximizing that of
𝜆min(𝑀2); that is, the value of √(𝑏𝑘𝑝 + 𝜇𝑐 − 1)

2
+ 4𝜇2 must

be the minimum possible. Then, let us consider the function
𝑓𝑚(𝜇, 𝑘𝑝, 𝑘𝑑) = (𝑏𝑘𝑝 + 𝜇𝑐 − 1)

2
+ 4𝜇
2 and its first and second

partial derivatives with respect to 𝜇, 𝑘𝑝, and 𝑘𝑑 as follows:

𝜕𝑓𝑚

𝜕𝜇
= 2𝑐 (𝑏𝑘𝑝 + 𝜇𝑐 − 1) + 8𝜇,

𝜕
2
𝑓𝑚

𝜕𝜇2
= 2𝑐
2
+ 8,

𝜕𝑓𝑚

𝜕𝑘𝑝

= 2𝑏 (𝑏𝑘𝑝 + 𝜇𝑐 − 1) ,
𝜕
2
𝑓𝑚

𝜕𝑘2
𝑝

= 2𝑏
2
,

𝜕𝑓𝑚

𝜕𝑘𝑑

= 2𝜇𝑏 (𝑏𝑘𝑝 + 𝜇𝑐 − 1) ,
𝜕
2
𝑓𝑚

𝜕𝑘
2

𝑑

= 2𝜇
2
𝑐.

(42)

If we set the first partial derivatives to zero, we obtain the
equilibrium points {𝜇∗, 𝑘∗

𝑝
, 𝑘
∗

𝑑
} with the following expres-

sions:

𝑘
∗

𝑝
=
1 − 𝜇𝑐

𝑏
, 𝑘
∗

𝑑
=

1 − (𝑏𝑘𝑝 + 𝜇𝑎)

𝜇𝑏
, 𝜇
∗
=

𝑐 (1 − 𝑏𝑘𝑝)

𝑐2 + 4
.

(43)

Now, let us analyze the qualitative behavior of the region Ω𝛿
for different values of 𝜆min(𝑄), 𝜆min(Γ), 𝜆max(𝑄), 𝜆max(Γ), 𝑘𝑝,
𝑘𝑑, and 𝜇. Figure 2 depicts the behavior of region Ω𝛿 for dif-
ferent values of 𝑘𝑝 and 𝑘𝑑 (the controller gains) and Figure 3
shows also theΩ𝛿 behavior for different values of 𝜆min(Γ) and
𝜆max(Γ) (thematrix relatedwith the identification algorithm).
From this set of graphics and (40), note the following.

(i) For a given constant value of 𝑘𝑑 and 𝜇, if 𝑘𝑑 is big,
the value of 𝑘∗

𝑝
is reduced and the region Ω𝑑 is also

reduced. For a given constant value of 𝑘𝑝, if 𝑘𝑝 is big,
the values of 𝑘 ∗̈

𝑑
and 𝜇∗ are reduced, which turns out

to reduce again the size of the regionΩ𝛿.
(ii) The region Ω𝛿 can be made arbitrarily small if the

values for 𝜆min(𝑄) and min(𝜆min(𝑀2), 𝜆min(Γ)) are
as large as possible and the value for 𝜆min(𝑄) can be
increased if the controller gains 𝑘𝑑 and 𝑘𝑝 have large
values, which is the case if a high gain PD controller
is used. Then, the size of Ω𝛿 may be reduced and
therefore the quality of the parameter estimates may
be improved by means of the controller gains.

(iii) By increasing the value of 𝑘𝑝 and 𝑘𝑑, the value of
𝜆min(𝑀2) is increased, which may reduce the size of
Ω𝛿 and by increasing the values of the gain matrix Γ
the value of 𝜆min(Γ) is also increased, reducing then
the size ofΩ𝛿.

(iv) As it can be seen from Figure 4, for the controller
gains, the effect of the gain 𝑘𝑝 is more important
for reducing the size of region Ω𝛿 than that of
gain 𝑘𝑑, because large values of 𝑘𝑑 do not influence
significantly in the reduction of the regionΩ𝛿. What’s
more, the effect of gain 𝑘𝑑 is almost imperceptible if
the gain 𝑘𝑝 is large enough.
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(v) Finally, as expected, if the values of the maximum or
minimumeigenvalues for the gainmatrix Γdominate,
the size ofΩ𝛿 will also be reduced.

From the last analysis, it is possible to conclude that, for
robustness of the identification algorithm, it is important to
pay attention not only to the setup of the gain matrix Γ and
𝜇 from the identification algorithm, but also to the value
of the controller gains 𝑘𝑝 and 𝑘𝑑. Then, the region Ω𝑑 is
effectively reduced if a high gain 𝑘𝑝 is employed, and also if
large eigenvalues are assigned to matrix Γ.

Another subject to be considered is the controller struc-
ture, because it is possible to note that not all the gains
have the same effect of reducing region Ω𝛿. Therefore,
when the parameter identification algorithm is designed,
it is important to note that the structure of the controller
should be an important issue that has been underestimated
and that will be important in real applications where noisy
measurements or unmodeled dynamics may be affecting the
system.

6. Conclusion

This paper analyzes a method for on-line closed loop identi-
fication of a linear DC servomechanism with a bounded per-
turbation signal and a PD controller.Theoretical results show
that, without perturbation signals, the system is exponentially
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Figure 4: Behavior of the regionΩ𝑑 for different cases: (a) variation
of 𝑘𝑝; (b) variation of 𝑘𝑑; (c) variation of 𝜇.

stable and the parameter error converges to zero, but when
a perturbation signal is present, the parameter estimates
converge to a region Ω𝛿 and the overall system is 𝐿∞ stable;
that is, the system is robust in face of perturbation signals.
Besides, by increasing the controller and adaptation gains the
region Ω𝑑 can be arbitrarily reduced, which means that the
accuracy of the parameter estimates can be increased, which
gives some insight into the importance of the controller
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structure in the identification process. Future work will be
devoted to design more complicated controllers and verify
the controller structure needed to obtain a better estimate
of the system parameters, that is, a controller which reduces
Ω𝛿 as much as possible and ensures the overall exponential
stability.
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