
Research Article
Refining Automatically Extracted Knowledge Bases
Using Crowdsourcing

Chunhua Li,1 Pengpeng Zhao,1 Victor S. Sheng,2 Xuefeng Xian,3

JianWu,1 and Zhiming Cui1

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2Computer Science Department, University of Central Arkansas, Conway, AR, USA
3College of Computer Engineering, Suzhou Vocational University, Suzhou 215104, China

Correspondence should be addressed to Pengpeng Zhao; ppzhao@suda.edu.cn

Received 23 December 2016; Revised 18 March 2017; Accepted 12 April 2017; Published 14 May 2017

Academic Editor: J. Alfredo Hernández-Pérez

Copyright © 2017 Chunhua Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing
automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far
from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As
human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality
improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be
used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-
based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate
facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of
knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost.

1. Introduction

There are numerous information extraction projects that
use a variety of techniques to extract knowledge from large
text corpora and World Wide Web [1]. Example projects
include YAGO [2], DBPedia [3], NELL [4], open information
extraction [5], and knowledge vault [6]. These projects pro-
vide automatically constructed knowledge bases (KBs) with
massive collections of entities and facts, where each entity or
fact has a confidence score. However, machine-constructed
knowledge bases contain noisy and unreliable facts due to
the variable quality of information and the limited accuracy
of extractors. Transforming these candidate facts into useful
knowledge is a formidable challenge [7].

To alleviate the amount of noise in automatically
extracted facts, these projects often employ ad hoc heuristics
to reason about uncertainty and contradictoriness due to
the large scale of the facts. There exists significant work in
developing effective algorithms to perform joint probabilistic
inference over candidate facts [7, 8]. Automated approaches

have been improved in terms of quality but remain far
from perfect. Therefore, effective methods to obtain high
quality knowledge are desired. It is easy for human experts
to determine whether a fact is correct or not. However, it is
impossible to hire experts to correct all of them. Recently,
due to the availability of Internet platforms like Amazon
Mechanical Turk (MTurk), which enables the participation
of human workers in a large scale, crowdsourcing has been
proven to be a viable and cost-effective alternative solution.
Crowdsourcing is normally used to create labelled datasets to
apply machine learning algorithms and becomes an effective
way to handle computer-hard tasks [9–11], such as sentiment
analysis [12], image classification [13], and entity resolu-
tion [14]. The limitations of machine-based approaches and
the availability of easily accessible crowdsourcing platforms
inspire us to exploit crowdsourcing to improve the quality of
automatically extracted knowledge bases.

In this paper, we study the problem of refining knowledge
bases using crowdsourcing. Specifically, given a collection

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 4092135, 17 pages
https://doi.org/10.1155/2017/4092135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194991961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/4092135

2 Computational Intelligence and Neuroscience

of noisy extractions (entities and their relationships) and a
budget, we can obtain a set of high quality facts from these
extractions via crowdsourcing. In particular, there are two
subproblems to address in this study: (1) error Detection:
how can we effectively detect potential erroneous candidate
facts which need to be verified by the crowd? Information
extraction systems are able to extract massive collections
of interrelated facts. Some facts are correct, while others
are clearly incorrect and contradictory. Asking humans to
verify all candidate facts is generally not feasible due to the
large size of extractions. Hence, one of key challenges is to
determine which subset of knowledge should be presented
to the crowd for verification. (2) Knowledge Inference:
how can we accurately infer consistent knowledge based
on crowd feedbacks? Errors introduced from the extraction
process cause inconsistencies in the knowledge base, which
may contain duplicate entities and violate key ontological
constraints such as subsumption, mutual exclusion, inverse,
and domain and range constraints.

To address these problems, we first introduce a concept of
semantic constraints, which is similar to integrity constraints
in data cleaning. Then we propose rank-based and graph-
based algorithms to judiciously select candidate facts to
conduct crowdsourcing based on semantic constraints. Our
method automatically assigns themost “beneficial” task to the
crowd and infers the answers of some candidate facts based
on crowd feedbacks. Experiments on NELL’s knowledge base
show that our method can significantly improve the quality
of knowledge and outperform state-of-the-art automatic
methods under a reasonable crowdsourcing cost.

To summarize, we make the following contributions:
(1) We propose a rank-based crowdsourced knowledge

refining framework. We introduce a concept of
semantic constraints and utilize it to detect potential
contradictive facts.Wepresent a score function taking
both uncertainty and contradictoriness into consider-
ation to select the most beneficial candidate facts for
crowdsourcing.

(2) We construct a graph based on the semantic con-
straints and utilize the graph to ask questions and
infer answers. We judiciously select candidate facts
to ask in order to minimize the number of candidate
facts to conduct crowdsourcing. We propose path-
based and topological-sorting-based algorithms that
ask multiple questions in parallel in each iteration.

(3) We develop a probability-based method to tolerate
the errors introduced by the crowd and propagated
through inference rules.

(4) We conduct experiments using real-world datasets on
a real crowdsourcing platform. Experimental results
show the effectiveness of the proposed approaches.

The rest of this paper is structured as follows. We first
review relatedwork in Section 2 and introduce basic concepts
related to our work in Section 3. Then we describe our
proposed approaches in Section 4. We report experimental
results in Section 5 and conclude in Section 6.

2. Related Work

Information extraction techniques are widely applied in the
construction of web-scale knowledge bases. In this paper,
we use Never Ending Language Learner (NELL) [4] as a
case study. NELL starts from a few “seed instances” of each
category and relation and generates a knowledge base iter-
atively. It uses natural language processing and information
extraction techniques to extract candidate facts from a large
web corpus, using facts learned from the previous iteration
as training examples. NELL has four subcomponents that
extract candidate facts, namely, Pattern Learner, SEAL, Mor-
phological Classified, and Rule Learner. NELL uses heuristics
and ontological constraints to promote candidate facts into
a knowledge base, assigning each promotion a confidence
value.

Early work on cleaning a noisy knowledge base was
considered by Cohen et al. [15]. They considered only a small
subset of KB errors. Jiang et al. [8] proposed a method for
cleaning knowledge bases at a broader scope using Markov
Logic Networks (MLNs). This method performs joint prob-
abilistic inference over candidate facts. To make inference
and learning tractable, Jiang et al. surmounted these obstacles
with a number of approximations and demonstrated the
utility of joint reasoning in comparison to a baseline that
considers each fact independently. More recently, Pujara
et al. [7] improved the model of Jiang et al. by including
multiple extractors and reasoning about coreferent entities.
Furthermore, Pujara et al. used probabilistic soft logic (PSL)
to avoid scalability limitation of MLNs. Dong et al. [6]
employed supervised machine learning methods for fusing
distinct information sources by combining noisy extractions
from the web with prior knowledge derived from existing
knowledge repositories. However, all of above methods are
automated algorithms and do not leverage the power of
crowdsourcing.

There also exist many research works that incorporate
crowdsourcing into data and knowledge management, such
as data cleaning [14, 16–19], record linkage [20, 21], schema
matching [22–25], and knowledge acquisition [26, 27]. For
example, Wang et al. [14] proposed CrowdER to solve the
problem of entity resolution via crowdsourcing. Zhang et
al. [16] used crowdsourcing to clean uncertain data. Chu
et al. [18] proposed KATARA, a data cleaning system that
utilizes the power of knowledge bases and crowdsourcing
to clean tables. Demartini et al. [20] proposed ZenCrowd
which uses a mixed human-machine workflow to solve the
entity linking problem. Gokhale et al. [21] studied how to
do hands-off crowdsourcing record linkage which requires
no involvement of developers. Sarasua et al. [22] studied
the problem of ontology matching using crowdsourcing.
Fan et al. [23] proposed a hybrid machine-crowdsourcing
system for matching web tables. Kondreddi et al. [26, 27]
developed HIGGINS, a framework for human intelligence
games for knowledge acquisition, to expand and complement
the output of automated information extraction methods.
However, so far, there has been little discussion about how
to use crowdsourcing to clean a noisy knowledge base with
semantic constraints.

Computational Intelligence and Neuroscience 3

A sport team is a group of athletes who play a sport together competitively.
(1) Is saints a sport team?
I Yes
I No

(2) Is padres a sport team?
I Yes
I No

(3) Is boilermakers a sport team?
I Yes
I No

(4) Is Soochow_university a sport team?
I Yes
I No

Box 1: An example of HITs.

3. Preliminaries

3.1. Knowledge Bases. Weconsider an automatically extracted
knowledge base as a probabilistic knowledge base, which
stores facts in a form of triple (subject, predicate, and object),
for example, (Brussel, citycapitalofcountry, Belgium). Each
fact 𝑡𝑖 has a confidence score, representing the probability that
the corresponding information extraction system “believes”
the fact is correct.We formally define an extracted knowledge
base as follows.

Definition 1. An extracted knowledge base (KB) is a 5-tuple
𝐾 = (E, 𝐶, 𝑅, Π, 𝐿), where

(1) E = {𝑒1, . . . , 𝑒|E|} is a set of entities. Each entity 𝑒 ∈ E

refers to a real-world object.
(2) 𝐶 = {𝑐1, . . . , 𝑐|𝐶|} is a set of categories (or types). Each

category 𝑐 ∈ 𝐶 is a subset of E. Each entity 𝑒 ∈ E
belongs to one or more categories.

(3) 𝑅 = {𝑟1, . . . , 𝑟|𝑅|} is a set of predicates. Each 𝑟 ∈ 𝑅
defines a binary relation between one ormore pairs of
types. For example, the𝑤𝑎𝑠𝐵𝑜𝑟𝑛𝐼𝑛 predicate specifies
a binary relation between 𝑃𝑒𝑟𝑠𝑜𝑛 and 𝑃𝑙𝑎𝑐𝑒. We call
the types of subject and object domain and range of
the predicate, respectively.

(4) Π = {(𝑡1, 𝑝1), . . . , (𝑡|Π|, 𝑝|Π|)} is a set of weighted facts.
For each (𝑡, 𝑝) ∈ Π, 𝑡 is a triple (𝑥, 𝑟, 𝑦) representing
a fact that relation 𝑟 holds between 𝑥 and 𝑦, where
𝑥, 𝑦 ∈ E, 𝑟 ∈ 𝑅; 𝑝 ∈ R is a weight indicating
the probability that an information extraction system
believes the corresponding fact is correct, that is, a
confidence score.

(5) 𝐿 = {𝐹1, . . . , 𝐹|𝐿|} is a set of ontological relations. It
defines concept hierarchy and semantic relationships
between categories and relations.

The definition of 𝐶 implies a concept hierarchy: for any
𝑐𝑖, 𝑐𝑗 ∈ 𝐶, 𝑐𝑖 is subclass of 𝑐𝑗 if and only if 𝑐𝑖 ⊆ 𝑐𝑗.
Typing provides semantic context for extracted entities and is
commonly adopted by the information extraction systems, so
we make it an integral part of the definition.We use𝐶𝑎𝑡(𝑥, 𝑐)

to denote that 𝑥 is an entity of category 𝑐 and use 𝑅𝑒𝑙(𝑥, 𝑦, 𝑟)
to denote that relation 𝑟 holds between entities 𝑥 and 𝑦.

An automatically extracted knowledge base could be very
large and noisy. For example, the knowledge vault [6] has 1.6B
triples, of which 324M have a confidence of 0.7 or higher,
and 271M have a confidence of 0.9 or higher. NELL so far
has acquired a knowledge base with over 80M confidence-
weighted facts, 2M of which have a confidence of 0.9 or
higher. The overall estimated precision of NELL’s promoted
facts across first 66 iterations is 74%.

3.2. Crowdsourcing. There exist a number of crowdsourcing
platforms, such as MTurk and CrowdFlower. In such plat-
forms, we can ask human “workers” to complete microtasks.
For example, we may ask them to answer questions like “Is
Italy a country?” Each microtask is referred as a human
intelligent task (HIT). After having completed a HIT, a
worker is rewarded with a certain amount of money based
on the difficulty of the HIT. That is, invoking the crowd for
knowledge cleaning comes with amonetary cost. In addition,
a humanworkermay not always produce a correct answer for
a HIT. To mitigate such human errors, we assign each HIT
to multiple workers and then take a majority vote. However,
even when majority votes are used, we may still get incorrect
answers from the crowd.As a consequence, it is crucial to take
human errors into account when designing a crowd-based
algorithm.

Given a set of candidate facts to be sent to the crowd, we
need to combine them into HITs. For each fact, the crowd
needs to verify whether the fact is correct or not. We have
four questions as one HIT, where each question contains
a candidate fact requiring workers to verify its correctness.
Box 1 shows an example of questions we generate as an HIT
for MTurk. A brief description of the HIT is shown at the
top. To assist workers to understand the fact, we provide
a description of the related category or relation and use a
human format for each fact.

4. Methodology

Our method takes an automatically extracted knowledge
base as input and identifies a set of true facts from noisy

4 Computational Intelligence and Neuroscience

extractions through crowdsourcing. We first introduce the
concept of semantic constraints that can be used to detect
potential erroneous facts and do inference among candidate
facts. And then we propose a score function to measure the
usefulness of candidate facts, in order to conduct crowd-
sourcing. In Section 4.3, we will explain how to leverage
semantic constraints as inference rules to prune unnecessary
questions. Finally, we will discuss our error-tolerant tech-
niques.

4.1. Semantic Constraints. Integrity constraints are effective
tools used in data cleaning. This section introduces a similar
concept called semantic constraints that can be used to clean
noisy knowledge bases.These constraints can be learned from
training data or derived from ontological constraints. The
ontological constraints can be seen as axioms or rules in first-
order logic. For example, we can represent an ontological con-
straint (every 𝐴𝑡ℎ𝑙𝑒𝑡𝑒 is a 𝑃𝑒𝑟𝑠𝑜n) with a rule, 𝐴𝑡ℎ𝑙𝑒𝑡𝑒(𝑥) ⇒
𝑃𝑒𝑟𝑠𝑜𝑛(𝑥). Similarly, since a𝐶𝑖𝑡𝑦 is not a 𝑃𝑒𝑟𝑠𝑜𝑛, we can have
a following rule, City(𝑥) ⇒ ¬𝑃𝑒𝑟𝑠𝑜𝑛(𝑥).

We derive semantic constraints according to ten types
of ontological relations used in NELL: subsumption among
categories and relations (e.g., every bird is an animal);
mutually exclusive categories and relations (e.g., no person is
a location); inversion (for mirrored relations like TeamHas-
Player and PlaysForTeam); the type of the domain and range
of each predicate (e.g., the mayor of a city must be a person);
the functionality of relations (e.g., a person has only one birth
date); antisymmetric (e.g., if person 𝑎 writes book 𝑏, then
𝑏 cannot write 𝑎); and antireflexive (e.g., a company cannot
produce itself).

We use the following notations: 𝑆𝑢𝑏 and𝑅𝑆𝑢𝑏 for subclass
relationships;𝑀𝑢𝑡 and 𝑅𝑀𝑢𝑡 for mutual exclusion relation-
ships;𝐷𝑜𝑚 and 𝑅𝑎𝑛 for domain and range relationships; Inv
for inversion; 𝐹𝑢𝑛 for functionality, 𝐴𝑛𝑡𝑖𝑆𝑦𝑚 for antisym-
metric, and 𝐴𝑛𝑡𝑖𝑅𝑒𝑓 for antireflexive.

There are two types of semantic constraints according to
the label transitive relation between candidate facts: contra-
dictive relation and positive relation. The derived semantic
constraints are shown as follows.

Contradictive Relation. In semantic constraints of this type, if
a candidate fact is correct, we can infer that another candidate
fact must be incorrect. Violations of contradictive relations
indicate potential errors.

𝑀𝑢𝑡 (𝑐1, 𝑐2) ∧ 𝐶𝑎𝑡 (𝑥, 𝑐1) 󳨐⇒ ¬𝐶𝑎𝑡 (𝑥, 𝑐2) (1)

𝑅𝑀𝑢𝑡 (𝑟1, 𝑟2) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟1) 󳨐⇒ ¬𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟2) (2)

𝑀𝑢𝑡 (𝑐1, 𝑐2) ∧ 𝐷𝑜𝑚 (𝑟, 𝑐1) ∧ 𝐶𝑎𝑡 (𝑥, 𝑐2)

󳨐⇒ ¬𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟)
(3)

𝑀𝑢𝑡 (𝑐1, 𝑐2) ∧ 𝐷𝑜𝑚 (𝑟, 𝑐1) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟)

󳨐⇒ ¬𝐶𝑎𝑡 (𝑥, 𝑐2)
(4)

𝑀𝑢𝑡 (𝑐1, 𝑐2) ∧ 𝑅𝑎𝑛 (𝑟, 𝑐1) ∧ 𝐶𝑎𝑡 (𝑥, 𝑐2)

󳨐⇒ ¬𝑅𝑒𝑙 (𝑦, 𝑥, 𝑟)
(5)

𝑀𝑢𝑡 (𝑐1, 𝑐2) ∧ 𝑅𝑎𝑛 (𝑟, 𝑐1) ∧ 𝑅𝑒𝑙 (𝑦, 𝑥, 𝑟)

󳨐⇒ ¬𝐶𝑎𝑡 (𝑥, 𝑐2)
(6)

𝐹𝑢𝑛 (𝑟) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟) 󳨐⇒ ¬𝑅𝑒𝑙 (𝑥, 𝑧, 𝑟) (7)

𝐴𝑛𝑡𝑖𝑅𝑒𝑓 (𝑟) 󳨐⇒ ¬𝑅𝑒𝑙 (𝑥, 𝑥, 𝑟) (8)

𝐴𝑛𝑡𝑖𝑆𝑦𝑚 (𝑟) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟) 󳨐⇒ ¬𝑅𝑒𝑙 (𝑦, 𝑥, 𝑟) (9)

Positive Relation. In semantic constraints of this type, if a
candidate fact is correct, we can infer another candidate fact
is also correct.

𝑆𝑢𝑏 (𝑐1, 𝑐2) ∧ 𝐶𝑎𝑡 (𝑥, 𝑐1) 󳨐⇒ 𝐶𝑎𝑡 (𝑥, 𝑐2) (10)

𝑅𝑆𝑢𝑏 (𝑟1, 𝑟2) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟1) 󳨐⇒ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟2) (11)

𝐼𝑛V (𝑟1, 𝑟2) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟1) 󳨐⇒ 𝑅𝑒𝑙 (𝑦, 𝑥, 𝑟2) (12)

𝐷𝑜𝑚 (𝑟, 𝑐) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟) 󳨐⇒ 𝐶𝑎𝑡 (𝑥, 𝑐) (13)

𝑅𝑎𝑛 (𝑟, 𝑐) ∧ 𝑅𝑒𝑙 (𝑥, 𝑦, 𝑟) 󳨐⇒ 𝐶𝑎𝑡 (𝑦, 𝑐) (14)

Given semantic constraints and a set of candidate facts,
we will generate a set of ground rules. A ground rule is a
rule containing only candidate facts and no variables.We first
instantiate a formula of semantic constraint using ontological
relations and candidate facts in the knowledge base.Then, we
omit the part of instantiated ontological relations since they
are deemed to be true and obtain ground rules containing
only candidate facts. For example, (a) in Box 2 are sample
ontological relations defined inNELL. Considering candidate
facts (b) in Box 2, corresponding ground rules generated
according to semantics constraints are shown (c) in Box 2.

While contradictive semantic constraints can be used to
detect potential erroneous facts, both positive constraints and
contradictive constraints can be used to do inference among
candidate facts.

4.2. Ranking Facts Based on Benefit. In this section, we pro-
pose a rank-basedmethod for knowledge refining.We would
like to select the most beneficial candidate facts to conduct
crowdsourcing under a given budget for a knowledge base.
It is obvious that we prefer to choose the facts that the cor-
responding information extraction system is most uncertain
about. In addition, the facts that violate semantic constraints
themost are of high risk and important ones to the knowledge
base. It is beneficial to verify them via crowdsourcing. In this
paper, we will use the contradictoriness to estimate the risk
and importance of candidate facts. In summary, we will first
evaluate the benefit of candidate facts in terms of improving
the quality of the knowledge base by taking both uncertainty
and contradictoriness into consideration. Then we will rank
them according to their evaluation scores and choose top 𝑘
facts to conduct crowdsourcing.

Uncertainty Score.A threshold 𝜏 is often applied to probabilis-
tic extractions. Facts with a high confidence can be assumed
to be correct, while facts with a confidence less than threshold
𝜏 are deemed to be most likely incorrect. The most uncertain

Computational Intelligence and Neuroscience 5

(a) Ontological Constrains
Domain(ceoof, ceo)
Ran(ceoof, company)
Sub(ceo, person)
RSub(ceoof, topmemberoforganization)
RSub(topmemberoforganization, worksfor)
RSub(topmemberoforganization, personleadsorganization)
Rsub(worksfor, personbelongstoorganization)
RMut(topmemberoforganization, organizationleadbyperson)

(b) Candidate Facts
𝑡1 Rel(𝑥, 𝑦, ceoof)
𝑡2 Cat(𝑥, ceo)
𝑡3 Cat(𝑦, company)
𝑡4 Rel(𝑥, 𝑦, topmemberoforganization)
𝑡5 Rel(𝑥, 𝑦, organizationleadbyperson)
𝑡6 Rel(𝑥, 𝑦, worksfor)
𝑡7 Cat(𝑥, person)
𝑡8 Rel(𝑥, 𝑦, personbelongstoorganization)

(c) Ground Rules
𝑡1 ⇒ 𝑡2
𝑡1 ⇒ 𝑡3
𝑡1 ⇒ 𝑡4
𝑡2 ⇒ 𝑡7
𝑡4 ⇒ 𝑡6
𝑡4 ⇒ 𝑡7
𝑡6 ⇒ 𝑡7
𝑡6 ⇒ 𝑡8
𝑡8 ⇒ 𝑡7
𝑡5 ⇒⌉𝑡6
𝑡6 ⇒⌉𝑡5

Box 2: Sample semantic constraints in NELL.

facts are those whose probability are closest to threshold 𝜏.
We use 𝑐𝑜𝑛𝑓𝑚(𝑡𝑖) to denote the machine-based probability
estimation of a fact 𝑡𝑖 being correct. Therefore, we model the
uncertainty of a fact 𝑡𝑖 as follows.

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑡𝑖) = 1 − 󵄨󵄨󵄨󵄨𝑐𝑜𝑛𝑓𝑚 (𝑡𝑖) − 𝜏󵄨󵄨󵄨󵄨 . (15)

The information extraction systems commonly provide a
confidence score for each candidate fact, that is, the weight
𝑝 in the knowledge base definition. We adopt the weight 𝑝𝑖
as the machine-based probability estimation of a fact 𝑡𝑖 being
correct.

𝑐𝑜𝑛𝑓𝑚 (𝑡𝑖) = 𝑝𝑖. (16)

Information extraction systems usually use many dif-
ferent extraction techniques to generate candidates. For
example, NELL produces separate extractions from lexical,
structural, and morphological patterns. If the patterns used
to extract each candidate fact are provided, this extra infor-
mation can help us better estimate the probability.We can use
a simple logistic regression model learned from training data
to predict the probability of each candidate fact being correct
[28, 29]. The features are whether each pattern cooccurs with
the candidate fact, and the coefficients reflect the reliability of
patterns.

Contradictoriness Score. Based on contradictive semantic
constraints introduced in Section 4.1, we can detect incon-
sistency, errors, and conflicts among candidate facts as the
violations of these constraints. The more facts a fact is
contradictory with, the more likely it is a potential error. We
define the contradictoriness score of a fact 𝑡𝑖 as follows.

𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑛𝑒𝑠𝑠 (𝑡𝑖) = 1 +∑
𝑗

𝑛𝑗 (𝑡𝑖) , (17)

where 𝑛𝑗(𝑡𝑖) is the number of violated ground rules of
𝐹𝑗 when 𝑡𝑖 appears in 𝐹𝑗. The addition of 1 ensures the
contradictoriness scores are greater than zero.

For example, considering a semantic constraint (rule)
𝐹1 (defined in Section 4.1), supposing there are two ground
atoms 𝑀𝑢𝑡(𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑏𝑖𝑟𝑑) and 𝑀𝑢𝑡(𝑐𝑖𝑡𝑦, 𝑏𝑖𝑟𝑑), and three
facts 𝐶𝑎𝑡(𝐼𝑡𝑎𝑙𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦), 𝐶𝑎𝑡(𝐼𝑡𝑎𝑙𝑦, 𝑐𝑖𝑡𝑦), and 𝐶𝑎𝑡(𝐼𝑡𝑎𝑙𝑦,
𝑏𝑖𝑟𝑑), then the fact𝐶𝑎𝑡(𝐼𝑡𝑎𝑙𝑦, 𝑏𝑖𝑟𝑑) violates two ground rules
of 𝐹1. Hence, 𝑛1(𝐶𝑎𝑡(𝐼𝑡𝑎𝑙𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦)) = 2.

Combining the above two factors, we use the following
function to rank candidate facts.

𝑆𝑐𝑜𝑟𝑒 (𝑡𝑖) = 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑡𝑖)

∗ 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑛𝑒𝑠𝑠 (𝑡𝑖) .
(18)

Based on ranking scores, we select a batch of candi-
date facts to conduct crowdsourcing at a time. Algorithm 1

6 Computational Intelligence and Neuroscience

Input: A set of extracted candidate facts𝐾, semantic constraints 𝑆𝐶𝑠, a budge 𝐵, a threshold 𝜏
Output: Refined knowledge base 𝐾󸀠
(1) Initialize 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑠 with machine based estimations
(2) Calculate 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 scores using Eq. (15)
(3) Calculate 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑛𝑒𝑠𝑠 scores using Eq. (17)
(4) Calculate 𝑆𝑐𝑜𝑟e𝑠 using Eq. (18)
(5) Rank candidate facts by scores and select top 𝐵 instances 󳵻𝐵 from𝐾 to conduct crowdsourcing
(6) 𝐾𝑈 ← 𝐾 \ 󳵻𝐵
(7) 󳵻𝑝 ← facts with a confirm from the crowd
(8) 𝐾󸀠 ← 󳵻𝑝 ∪ {𝑡𝑖 | 𝑡𝑖 ∈ 𝐾𝑈, 𝑐𝑜𝑛𝑓 (𝑡𝑖) ≥ 𝜏}

Algorithm 1: Rank-based knowledge refining.

describes the overall procedure for refining a knowledge base.
Given an extracted knowledge base and a set of semantic con-
straints (SCs), it first initializes confidences of candidate facts
being correct with machine-based estimations and calculates
scores using (15)–(18). Then, it selects 𝐵 candidate facts 󳵻𝐵
from the knowledge base (𝐾) to conduct crowdsourcing
where 𝐵 is a budget allowed for improving the knowledge
base.

4.3. Leveraging Semantic Constraints Pruning Unnecessary
Questions. In this section, we discuss how to utilize semantic
constraints as inference rules to reduce the crowdsourcing
cost. The rank-based method discussed above simply selects
top 𝐵 candidate facts to conduct crowdsourcing at a time.
However, by leveraging semantic constraints, we can infer
the correctness of a candidate fact from other facts without
acquiring the intelligence from the crowd. Thus, we can
effectively use the budget for crowdsourcing. For example, if
𝑐ℎ𝑖𝑙𝑑(𝑥, 𝑦) is correct, we do not need to crowdsource the can-
didate fact 𝑝𝑎𝑟𝑒𝑛𝑡(𝑦, 𝑥) since it can be inferred to be correct
based on the inversion constraint (12). If 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑐𝑎𝑝𝑖𝑡𝑎𝑙(𝑥, 𝑦)
is correct, we can infer any 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑐𝑎𝑝𝑖𝑡𝑎𝑙(𝑥, 𝑧) is incorrect
based on the functionality constraint (7).

4.3.1. Graph-Based Algorithm. To leverage semantic con-
straints, we model the selected candidate facts (under a
given budget) for crowdsourcing as a graph based on ground
inference rules and try to infer the correctness of some
candidate facts using the graph model.

Definition 2 (graphmodel). Given a set of candidate facts, we
build a directed graph𝐺 = (𝑉,E), where each vertex in𝑉 is a
candidate fact,E = E𝑝 ∪E𝑐, whereE𝑝 represents all positive
relations and E𝑐 represents all contradictive relations. Given
two candidate facts 𝑡𝑖 and 𝑡𝑗, if 𝑡𝑖 ⇒ 𝑡𝑗, there is a directed
edge 𝑒 ∈ E𝑝 from 𝑡𝑖 to 𝑡𝑗 to represent this positive relation;
if 𝑡𝑖 ⇒ ¬𝑡𝑗, there is a directed edge in E𝑐 from 𝑡𝑖 to 𝑡𝑗 to
represent this contradictive relation.

Figure 1 shows the graph for candidate facts in Box 2.
We use 𝐺𝑝 = (𝑉,E𝑝) to denote the subgraph containing
only edges in E𝑝 and 𝐺𝑐 = (𝑉,E𝑐) to denote the subgraph
containing only edges in E𝑐.

t1

t2 t3 t4

t5t6

t7

t8

ti => ¬tj

ti => tj

Figure 1: A sample of graph model.

Graph Coloring. Each vertex in 𝐺 has two possibilities: (1)
the candidate fact is correct and we color it Green; (2) the
candidate fact is incorrect and we color it Red. Initially, each
vertex is uncolored. Our goal is to utilize the crowd to color
all vertices.

A straightforward method is to take the candidate fact
on each vertex as a question and ask workers to answer
the question, that is, whether the candidate fact is correct.
If a worker thinks that the candidate fact is correct, the
worker returns Yes and No otherwise. Based on the workers’
results, we get a voted answer on each vertex. If majority of
workers vote Yes, we color it Green; otherwise we color it Red.
Next, we interchangeably use vertex, fact, and question if the
context is clear.

Thismethod is rather expensive as there aremany vertices
in the graph. To address this issue, we propose an effective
coloring framework to reduce the number of questions.
Algorithm 2 shows the pseudocode. It first constructs a graph
based on ground inference rules (line 1-2). Then it selects an
uncolored vertex 𝑡𝑖 and asks workers to answer Yes or No
for the vertex (line 4). If majority of workers vote Yes, we
not only color 𝑡𝑖 Green, but also color all of its descendants
in 𝐺𝑝(𝑑𝑒𝑠𝑐𝑝(𝑡𝑖)) Green and color all of their children in

Computational Intelligence and Neuroscience 7

Input: A set of facts 𝐾 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, semantic constraints 𝑆𝐶𝑠
Output: All vertices are colored as Green or Red
(1) Generate ground inference rules using semantic constraints
(2) Construct 𝐺 = (𝑉,E) based on ground inference rules
(3) while there exist uncolored vertices in 𝑉 do
(4) Select an uncolored vertex 𝑡𝑖 to conduct crowdsourcing;
(5) if majority workers vote Yes then
(6) color 𝑡𝑖 and 𝑑𝑒𝑠𝑐𝑝(𝑡𝑖) Green;
(7) color 𝑐ℎ𝑖𝑙𝑑𝑐(𝑡𝑖) and 𝑐ℎ𝑖𝑙𝑑𝑐(𝑑𝑒𝑠𝑐𝑝(𝑡𝑖)) Red;
(8) color 𝑎𝑛𝑐𝑒𝑝(𝑐ℎ𝑖𝑙𝑑𝑐(𝑡𝑖)) and 𝑎𝑛𝑐𝑒𝑝(𝑐ℎ𝑖𝑙𝑑𝑐(𝑑𝑒𝑠𝑐𝑝(𝑡𝑖))) Red;
(9) else
(10) color 𝑡𝑖 and 𝑎𝑛𝑐𝑒𝑝(𝑡𝑖) Red;
(11) end if
(12) end while
(13) return colored 𝑉;

Algorithm 2: Graph coloring.

𝐺c (𝑐ℎ𝑖𝑙𝑑𝑐(𝑡𝑖) and 𝑐ℎ𝑖𝑙𝑑𝑐(𝑑𝑒𝑠𝑐𝑝(𝑡𝑖))) Red and their ancestors
in 𝐺𝑝 (𝑎𝑛𝑐𝑒𝑝(𝑐ℎ𝑖𝑙𝑑𝑐(𝑡𝑖)) and 𝑎𝑛𝑐𝑒𝑝(𝑐ℎ𝑖𝑙𝑑𝑐(𝑑𝑒𝑠𝑐𝑝(𝑡𝑖)))) Red
(line 6–8). In other words, for 𝑡𝑖 ⇒ 𝑡𝑗, we can infer that 𝑡𝑗
is also correct; for 𝑡𝑖 ⇒ ¬𝑡𝑗, we can infer 𝑡𝑗 is incorrect. If
majority of workers vote No, we not only color 𝑡𝑖 Red, but
also color all of its ancestors in 𝐺𝑝 (𝑎𝑛𝑐𝑒𝑝(𝑡𝑖)) Red (line 10).
In other words, for 𝑡𝑗 ⇒ 𝑡𝑖, we infer that 𝑡𝑗 is also incorrect. If
all the vertices have been colored, the algorithm terminates.
Otherwise, it selects an uncolored vertex and repeats the
above steps (line 3–12).

Obviously, this method can reduce the crowdsourcing
cost as we can avoid asking questions for many unnecessary
vertices. For example, considering the constructed graph in
Figure 1, a naive method is to conduct crowdsourcing for
all eight facts. However, if we first conduct crowdsourcing
for 𝑡6, as majority of workers vote Yes, we can color 𝑡6 and
their descendants 𝑡7 and 𝑡8 Green and color 𝑡5 Red without
conducting crowdsourcing for its descendants. Then if we
continue to conduct crowdsourcing for 𝑡4, as majority of
workers vote No, we can color 𝑡4 and its ancestor 𝑡1 Red.

An important problem in the algorithm is to select the
minimum number of vertices to conduct crowdsourcing, so
that all vertices in the graph are colored. We will first formu-
late the question selection problem and then propose a path-
based algorithm and a topological-sorting-based algorithm
that select multiple vertices in each iteration to solve the
problem.

4.3.2. Optimal Vertex Selection. As we know, we have the
basic coloring strategy: if a vertex is Green, then all of its
descendants in 𝐺𝑝 are Green but all of its children in 𝐺𝑐 and
their ancestors in 𝐺𝑝 are Red; if a vertex is Red, then all of its
ancestors in 𝐺𝑝 are Red. We will discuss how to support the
case that the two conditions do not hold in Section 4.4.

Definition 3 (optimal graph coloring). Given a graph, the
optimal graph coloring problem aims to select the minimum
number of vertices as questions to color all the vertices using
the coloring strategy.

Boundary

Boundary

t1

t2 t3 t4

t5t6

t7

t8

Figure 2: A sample of boundary vertex.

For example, in Figure 2, if we sequentially select vertices
𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7, and 𝑡6, we should ask seven questions.
The optimal crowdsourced vertices are 𝑡2, 𝑡3, 𝑡4, and 𝑡6
(highlighted by bold cycles), because the colors of these
vertices cannot be inferred based on the colors of other
vertices. Next we will study how to identify the optimal
vertices. Before that, we introduce a concept for making our
explanation easily.

Definition 4 (boundary vertex). A vertex is a boundary vertex
if its color cannot be inferred based on other vertices’ colors.
There are four cases in 𝐺𝑝: (1) all of its parents have different
colors with the vertex; (2) all of its children have different
colors with the vertex; (3) it has no parent and its color
is Green; or (4) it has no children and its color is Red. In
addition, there are two cases in 𝐺𝑐: (1) all of its parents are
Red; (2) it has no parents (in-edge).

8 Computational Intelligence and Neuroscience

Input: 𝐺 = (𝑉,E𝑝 ∪E𝑐)
Output: All vertices in 𝐺 are colored as Green or Red
(1) while there exist uncolored vertices in 𝑉 do
(2) Compute disjoint paths in 𝐺𝑝 using maximal matching;
(3) if there exist paths with length > 1 then
(4) V ← select the optimal vertex of the longest path
(5) else
(6) V ← select an optimal vertex according to 𝐺𝑐
(7) end if
(8) Crowdsourcing V and color 𝐺;
(9) Remove the colored vertices;
(10) end while
(11) return colored 𝑉

Algorithm 3: Question selection: SinglePath.

For example, 𝑡6 is a boundary vertex in 𝐺𝑝 as its parent 𝑡4
has a different color. 𝑡8 is not a boundary vertex as its parent
𝑡6 has the same color and 𝑡8’s color can be inferred based on
𝑡6’s color. 𝑡6 is also a boundary vertex in 𝐺𝑐 as its parent 𝑡5 is
Red.

Here we use 𝑉𝐵 to denote all the boundary vertices in the
graph and𝑉𝐵(𝐺𝑝) and𝑉𝐵(𝐺𝑐) to denote the boundary vertices
in𝐺𝑝 and𝐺𝑐, respectively.There are overlaps between𝑉𝐵(𝐺𝑝)
and𝑉𝐵(𝐺𝑐), so𝑉𝐵 = 𝑉𝐵(𝐺𝑝)∩𝑉𝐵(𝐺𝑐). Ideally, all vertices in𝑉𝐵
should be checked, because their colors cannot be inferred.
Thus, the number of vertices checked using any algorithm
should not be smaller than the number of boundary vertices
in 𝑉𝐵. However, since we do not know the ground truths of
all vertices in the graph, we cannot identify the boundary
vertices in advance. To address this problem, we propose
effective algorithms to identify the boundary vertices in 𝐺𝑝
with a theoretical guarantee and use a greedy algorithm to
identify the boundary vertices in𝐺𝑐, respectively.Meanwhile,
we note that there are more boundary vertices in 𝐺𝑐 because
of the limited influence of a vertex in 𝐺𝑐 than those in 𝐺𝑝.
Hence, we consider firstly the boundary vertices in 𝐺𝑝.

Optimal Vertex Selection in𝐺𝑝.Given a path in𝐺𝑝, we can use
a binary search method to select the boundary vertices. We
initially crowdsource the mid-vertex on the path. Based on
the result of themid-vertex, we determine the next step.There
are two situations: (1) If the mid-vertex is colored Green, its
descendants’ colors can be inferred but its ancestors’ colors
can not be inferred. Thus, we can crowdsource the next mid-
vertex between the current vertex and the source vertex of
the path. (2) If the mid-vertex is colored Red, its ancestors’
colors can be inferred but its descendants’ colors can not be
inferred. Therefore, we can crowdsource the next mid-vertex
between the current vertex and the destination vertex of the
path. Iteratively, we can find all the boundary vertices. For
the path 𝑃 with |𝑃| vertices, the number of crowdsourcing
vertices is 𝑂(log |𝑃|).

Optimal Vertex Selection in𝐺𝑐.We greedily select the vertices
with no in-edge in 𝐺𝑐 and the vertices with the largest
confidence value in each contradictive group (i.e., connected

subgraph), since only Green vertices can be used to infer
colors of its children.

4.3.3. Path-Based Algorithm. We can divide the graph 𝐺𝑝
into a set of disjoint paths (i.e., any two paths have no
common vertices).Thenwe can use the binary searchmethod
described above to determine the vertices for crowdsourcing.
As the maximum length of a path is |𝑉|, the number of
crowdsourcing vertices is𝑂(𝛽 log |𝑉|), where𝛽 is the number
of disjoint paths. If 𝛽 = 1, we need to crowdsource log |𝑉|
vertices.

Finding 𝛽 Disjoint Paths. In order to find the disjoint paths,
we transform the graph 𝐺𝑝 into a bipartite graph 𝐺𝑏𝑝 =
((𝑉𝑏1 , 𝑉

𝑏
2),E
𝑏
𝑝), where 𝑉

𝑏
1 = 𝑉𝑏2 = 𝑉 and there is an edge

between V1 ∈ 𝑉
𝑏
1 and V2 ∈ 𝑉

𝑏
2 if there is an edge (V1, V2) ∈ E𝑝.

We find maximal matching in 𝐺𝑏𝑝, which is a maximal set of
edges in 𝐺𝑏𝑝 where any two edges do not share a common
vertex in 𝑉𝑏1 and 𝑉

𝑏
2 . That is, for any two edges (V, V󸀠), (𝑢, 𝑢󸀠)

in the matching, V ̸= 𝑢 and V󸀠 ̸= 𝑢󸀠. Obviously, any two
edges in the matching sharing the same vertex in 𝑉 must be
on the same path. Based on this idea, we utilize the maximal
matching to find the 𝛽 disjoint paths as follows.

Let 𝑀 denote the maximal matchings, 𝑌1 denote the set
of the first vertices in𝑀 and 𝑌2 denote the set of the second
vertices in𝑀. Then 𝑉𝑏2 − 𝑌2 is the set of vertices that have no
in-edges, and we can take them as the first vertices of paths.
For each such a vertex V, if it has an edge (V, V󸀠), we take V󸀠
as the second vertex in a path. Then we check whether V󸀠 has
an edge (V󸀠, V󸀠󸀠). Iteratively, we can find the path starting at V.
The paths computed usingmaximalmatching satisfy disjoint,
complete, and minimal paths [30].

Then we propose a serial path-based vertex-selection
algorithm. The pseudocode is shown in Algorithm 3. It
computes disjoint paths in 𝐺𝑝 using maximal matching and
selects the optimal vertex of the longest path to conduct
crowdsourcing. When there is no path with length greater
than 1, it selects an optimal vertex according to 𝐺𝑐.

Computational Intelligence and Neuroscience 9

Input: 𝐺 = (𝑉,E𝑝 ∪E𝑐)
Output: All vertices in 𝐺 are colored as Green or Red
(1) while there exist uncolored vertices in 𝑉 do
(2) Compute 𝛽 disjoint paths in 𝐺𝑝 using maximal matching;
(3) if there exist paths with length > 1 then
(4) 𝑁 ← select an optimal vertex of each path with lengh > 1;
(5) else
(6) 𝑁 ← select optimal vertices according to 𝐺𝑐;
(7) end if
(8) Crowdsourcing𝑁 in parallel and color 𝐺;
(9) Remove the colored vertices;
(10) end while
(11) return colored 𝑉

Algorithm 4: Question selection: Multi-Path.

Input: 𝐺 = (𝑉,E𝑝 ∪E𝑐)
Output: All vertices in 𝐺 are colored as Green or Red
(1) while there exist uncolored vertices in 𝑉 do
(2) Do a topological sorting on the uncolored vertices in 𝐺𝑃 and obtain |𝐿| sets, 𝐿1, 𝐿2, . . . , 𝐿 |𝐿|;
(3) if |𝐿| > 1 then
(4) 𝑁 ← vertices in 𝐿 (|𝐿|+1)/2;
(5) else
(6) 𝑁 ← select the optimal vertices according to 𝐺𝑐;
(7) end if
(8) Crowdsourcing𝑁 in parallel and color 𝐺;
(9) Remove the colored vertices;
(10) end while
(11) return colored 𝑉

Algorithm 5: Question selection: TopologicalSorting.

The serial path-based vertex-selection algorithm can
only publish a single fact to a crowdsourcing platform at
a time, which is unable to crowdsource candidate facts
simultaneously and results in long latency. To overcome this
drawback, we extend the path-based algorithm to support
parallel settings, which select multiple vertices and publish
the corresponding candidate facts simultaneously to the
crowdsourcing platform in each iteration. The pseudo code
is shown in Algorithm 4.We first identify the 𝛽 disjoint paths
and use the optimal vertex selection strategy discussed in
Section 4.3.2 to select one vertex from each path to conduct
crowdsourcing in parallel. When there is no path with length
greater than 1, we select the optimal vertices according to 𝐺𝑐.
Based on the answers of these vertices, we color the graph.
Next we remove the colored vertices and repeat the above step
until all the vertices are colored.

However, the parallel algorithm may generate conflicts.
For example, if 𝑡𝑖 is colored Green and 𝑡𝑗 is colored Red, then
there is a conflict on 𝑡 where 𝑡𝑖 ⇒ 𝑡 and 𝑡 ⇒ 𝑡𝑗, because 𝑡 is
inferred as Green based on 𝑡𝑖 but is inferred as Red based on
𝑡𝑗. To address this confliction, we can use majority voting to
vote 𝑡’s color and randomly choose one if a tie occurred.

4.3.4. Topological-Sorting-Based Algorithm. Note that the
maximal matching can be computed in𝑂(𝛽|𝑉|2) [30], which

is too slow in practice when used for a large knowledge base.
To address this issue, we perform a topological sorting on
the vertices. We first identify the set of vertices with zero
in-degree, denoted by 𝐿1. Then we delete them from the
graph and find another set of vertices whose in-degrees are
zero, denoted by 𝐿2. We repeat this step until all vertices are
deleted. Suppose there are |𝐿| sets, 𝐿1, 𝐿2, . . . , 𝐿 |𝐿|. Obviously
vertices in each 𝐿 𝑖 have no in-edges (as their in-degrees are
0). Therefore, each 𝐿 𝑖 can be considered as an independent
set.

We design a topological-sorting-based algorithm to
improve the time efficiency of the maximal matching. It first
computes topological-sorted sets 𝐿1, 𝐿2, . . . , 𝐿 |𝐿| in 𝐺𝑝. And
then it crowdsources vertices in the middle set 𝐿 (|𝐿|+1)/2 in
parallel. When |𝐿| ≤ 1, it selects optimal vertices accord-
ing to 𝐺𝑐 to conduct crowdsourcing. Based on the results
of these vertices, it colors the graph and removes the col-
ored vertices and 𝐿 (|𝐿|+1)/2 from the set 𝐿. It repeats the
above step and iteratively colors all vertices. The pseudo
code of the topological-sorting-based algorithm is shown in
Algorithm 5.

4.4. Tolerating Errors. There are two types of possible errors
in our graph-based framework. The first type is caused by
workers’ errors and the second type is propagated through

10 Computational Intelligence and Neuroscience

Input: 𝐺 = (𝑉,E)
Output: All vertices in 𝐺 are colored as Green or Red
(1) while there exist uncolored vertices in 𝑉 do
(2) Select a set of uncolored vertices to conduct crowdsourcing;
(3) for each crowdsourced 𝑡𝑖 with an answer do
(4) if 𝑐𝑟𝑜𝑤𝑑 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 0.8 then
(5) color 𝑡𝑖 and related vertices using coloring strategy;
(6) else
(7) color 𝑡𝑖 Blue;
(8) end if
(9) end for
(10) end while
(11) Learn a logistic regression model to the machine confidence scores from Green and Red vertices;
(12)Predict colors of facts in Blue vertices;
(13) return colored 𝑉

Algorithm 6: Error-tolerant graph coloring.

Table 1: Statistic characters of dataset.

Dataset Category Relation Total
Candidate 836K 182K 1.02M
Promotion 354K 64K 418K
Ontological Relation 18K 52K 70K
Test 2002 2546 4546
Training 4777 5089 9866

inference rules. For example, suppose a candidate fact 𝑡𝑖 is
actually incorrect. However, the workers wrongly label it as
correct. This error is caused by workers’ errors. Consider a
contradictive fact 𝑡𝑗 of 𝑡𝑖, whose labels are correct. Our graph-
based algorithms could wrongly label it as incorrect using
inference rules. This error is propagated through inference
rules. We will discuss how to address these errors in our
framework as follows.

Confidence ofWorkers’ Answer.To tolerate workers’ errors, we
assign each candidate fact to multiple workers and aggregate
their answers. There are many methods to compute the
confidence of workers’ answers. We use majority voting as
an example and any other techniques can be integrated into
our framework. Suppose each candidate fact is assigned to 𝑧
workers and 𝑦 > 𝑧/2 workers vote a consensus answer (e.g.,
Yes) and 𝑧 − 𝑦 workers vote the other answer (e.g., No). The
confidence of the voted answer is 𝑐 = 𝑦/𝑧.

Error-Tolerant Coloring. For each crowdsourced fact, if the
confidence of workers on this fact is high, for example, greater
than 0.8, we use inference rules to label related candidate
facts; otherwise, we label it uncertain (color the vertex in
graph as Blue) and do not use it to infer the labels of
other candidate facts. For the Green and the Red vertices,
we take them as ground truths as their answers have large
confidences. Then we utilize them to color Blue (uncertain)
vertices. Specifically, we use facts inGreen andRed vertices to
learn a logistic regression model on the machine confidence
scores (provided by the information extraction system) and
predict the labels of facts in Blue vertices.

The pseudo code of our error-tolerant coloring algorithm
in shown inAlgorithm 6. It uses the coloring strategy only for
the vertices with high-confidence answers (line 5) and utilizes
the logistic regression model to color the vertices with low-
confidence answers (lines 11-12).

5. Experiments

In this section, we evaluate our methods and report experi-
mental results.

5.1. Experimental Setup

Datasets. NELL [4] generates a knowledge base iteratively.
In each iteration, NELL uses facts learned from the previous
iteration and a corpus of web pages to generate a new set of
candidate facts. NELL selectively promotes those candidates
that have a high confidence from the extractors and obey
ontological constraints with the existing knowledge base to
build a high-precision knowledge base. We use extractions
of the 165𝑡ℎ iteration of NELL released by [7] to evaluate
our method, containing over 1M extractions, with a manual
labelled test set consisting of 4546 instances and a training
set consisting of 9866 instances. There are 70K ontological
relations in total. Table 1 shows the statistics of the data set.
The training set can be used to calibrate the confidence scores
from the original system.When training data is not available,
we can adopt the confidence provided by the information
extraction system as the probability.

We calculate contradictoriness scores among all candi-
date facts and select candidate facts from the test set for

Computational Intelligence and Neuroscience 11

crowdsourcing. We use a threshold 0.5 for the confidence
score. For crowdsourced data, a fact is treated as correct
only when more than half of crowd answers are “Yes.” We
compare our methods with other popular methods in terms
of the quality, the number of questions, and the number of
iterations. To evaluate the quality, we use three metrics, that
is, precision, recall, and F1. Suppose the set of correct facts is
𝑆𝑇, and the set of facts that an algorithm reports as correct
is 𝑆𝑃. Then the precision is 𝑝 = |𝑆𝑇 ∩ 𝑆𝑃|/|𝑆𝑃|, the recall is
𝑟 = |𝑆𝑇 ∩ 𝑆𝑃|/|𝑆𝑇|, and the F-measure is 𝐹1 = 2𝑝𝑟/(𝑝 +
𝑟).

Crowdsourcing on MTurk.We use MTurk for crowdsourcing.
We post all candidate facts in the test set toMTurk and record
the crowd’s answers in a local file 𝐹. During our experiments,
when a method requests to crowdsource candidate facts,
we retrieve answers from 𝐹 instead of posting facts to
MTurk. This ensures that all methods utilize the same set
of crowdsourced results, for the fairness of comparisons.
We take four microtasks as one HIT, where each microtask
contains a candidate fact. To assist workers to understand the
fact, we provide a description of each category or relation
and use a human format for each entity (see Box 1 as an
example). We pay $0.02 each time a worker completes an
HIT and $0.01 to MTurk for publishing each HIT. We assign
each HIT to five workers. We require that each worker has an
approval rate greater than 95%.This setting intends to ensure
that all workers provide reasonably accurate answers to the
HITs.

5.2. Experimental Results. We first compare ourmethod with
state-of-the-art methods for knowledge refining. Then we
evaluate our rank function, question selection strategies, and
error-tolerant techniques, respectively.

5.2.1. Evaluation of Our Methods. In order to evaluate the
effectiveness of our proposed techniques, we compare our
methods Rank, Graph, and Graph+ (graph-based method
with error-tolerant techniques) with two recent methods for
cleaning automatically extracted knowledge bases, that is,
MLN [8] and PSL [7], using previously reported results on
the same evaluation set. We also compare with the default
strategy used by the NELL [4] project to choose candidate
facts to include in the knowledge base.

MLN [8]. This method defines a Markov logic network
(MLN) to perform jointly probabilistic inference over can-
didate facts. We compare our method against the best-
performing MLN model from [8], which expresses ontolog-
ical constraints, and candidate and promoted facts trough
logical rules. The MLN method reports an output with a 0.5
marginal probability cutoff, which maximizes the F1 score.

PSL [7]. This method uses probabilistic soft logic (PSL)
to jointly reason candidate facts and identify coreferent
entities, which can perform inference more efficiently. The
PSL method reports results using a soft-truth threshold 0.55
to maximize F1.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

10 20 30 40

F1

Crowdsourcing budget (%)

Rank
Graph
Graph+

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1

NELL
MLN
PSL
Graph+ (10%)

Graph+ (20%)
Graph+ (30%)
Graph+ (40%)

(b)

Figure 3: Evaluation of proposed methods. (a) Quality comparison
of proposed methods for different crowdsourcing budgets. (b)
Quality comparison with the state-of-the-art methods.

NELL [4]. We also compare the default strategy used by the
NELL project to choose candidate facts to include in the
knowledge base. We take the promoted facts as its result.

Given a budget 𝐵 (e.g., 40% of candidate facts), our
Rank method selects top 𝐵 candidate facts to conduct
crowdsourcing at a time. For theGraph andGraph+methods,
we construct a graph with the top 𝐵 candidate facts and
use the topological-sorting algorithm to select questions for
crowdsourcing. Figure 3(a) shows a comparison of the overall
performance of our Rank, Graph, and Graph+ methods. We

12 Computational Intelligence and Neuroscience

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
F1

Random
Uncertainty

Contradictoriness
U∗C

10 20 30 40
Crowdsourcing cost (%)

(a) F1

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Pr
ec

isi
on

Random
Uncertainty

Contradictoriness
U∗C

10 20 30 40
Crowdsourcing budget (%)

(b) Precision

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

10 20 30 40

Re
ca

ll

Crowdsourcing budget (%)
Random
Uncertainty

Contradictoriness
U∗C

(c) Recall

Figure 4: Evaluation of different ranking functions.

report the results of our methods under different budgets.
From Figure 3(a), we can see that, given a larger crowdsourc-
ing budget, our method can obtain a higher performance.
Graph+ andRank achieve a similar quality. However, Graph+
asks fewer questions than Rank, as shown in Section 5.2.3.
Graph+ outperforms Graph, because Graph+ can tolerate
workers’ errors by not coloring unconfident vertices and
thus avoids enlarging the errors by a wrong colored vertex.
Figure 3(b) shows a comparison of the overall performance
with the state-of-the-art methods. From Figure 3(b), we can
see that MLN and PSL perform well in precision or recall,
respectively. Our method improves both precision and recall.
Overall, our method improves significantly on F1. With a
reasonable budget (above 20% test instances), our method
outperforms both MLN and PSL methods in terms of F1.

5.2.2. Evaluation on Rank Function. In this experiment, we
evaluate our ranking function, which is a key for selecting
crowdsourcing candidate facts in the rank-based method.
This function, denoted as U∗C, quantifies the usefulness of
a candidate fact by considering both its uncertainty and its
contradictoriness with other facts. We compare U∗C against
following baselines. (1) Method Uncertainty considers only
uncertainty scores. (2) Method 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑛𝑒𝑠𝑠 considers
only contradictoriness scores. (3) Method Random selects
candidate facts for crowdsourcing randomly.

Figure 4 shows the results of F1 using different rank-
ing functions. The U∗C method achieves the highest F1.
The Uncertainty method achieves the highest recall at the
beginning but the speed of improvement slowing down
with the increment of the budget. This is because there are

Computational Intelligence and Neuroscience 13

0.8

0.82

0.84

0.86

0.88

0.9

0.92
F1

10 20 30 40
Crowdsourcing budget (%)

Random SinglePath
MultiPath TopologicalSorting

(a) Quality

0

200

400

600

800

1000

1200

1400

1600

1800

of

 q
ue

sti
on

s

10 20 30 40
Crowdsourcing budget (%)

Random SinglePath
MultiPath TopologicalSorting

(b) Questions

0

1

10

100

1,000

10,000

of

 it
er

at
io

ns

10 20 30 40
Crowdsourcing budget (%)

Random SinglePath
MultiPath TopologicalSorting

(c) Iterations

Figure 5: Evaluation of question selection strategies on the test dataset.

many false positives and negatives among candidate facts
with confidences around the threshold, which have higher
uncertainty scores. The error rate drops quickly when the
difference between confidence and threshold increases, while
considering contradictoriness can still help detect potential
erroneous facts effectively. The 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑛𝑒𝑠𝑠 method
achieves better precision than 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦. 𝑅𝑎𝑛𝑑𝑜𝑚 consis-
tently performs the worst.

5.2.3. Evaluation on Question Selection. From Section 5.2.1,
we can see that the Graph+method has a similar quality with
the Rank method. In this section, we focus on the efficiency
of question selection algorithms in terms of the number
of questions and the number of iterations. We evaluate the
path-based and topological-sorting-based question selection

algorithms proposed in Sections 4.3.3 and 4.3.4. We compare
four algorithms: (1) Random: which randomly selects a
vertex in each iteration. (2) SinglePath: which selects a
vertex from the longest path in each iteration. (3)Multipath:
which selectsmultiple vertices frommultiple disjoint paths in
each iteration. (4) TopologicalSorting: which selects multiple
independent vertices based on topological sorting in each
iteration. We compare them in terms of the quality, the
number of questions, and the number of iterations, shown in
Figure 5.

From Figure 5(a), we can see that the four methods
achieve the similar quality, because different question orders
do not affect the quality based on inference rules. From
Figure 5(b), we can see that the two parallel algorithms
Multipath and TopologicalSorting crowdsource a few more

14 Computational Intelligence and Neuroscience

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
F1

Rank
Graph

10 20 30 40
Crowdsourcing budget (%)

(a) Quality

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

of

 q
ue

sti
on

s

Rank
Graph

10 20 30 40
Crowdsourcing budget (%)

(b) Questions

0

1

2

3

4

5

6

7

8

9

10

of

 it
er

at
io

ns

Rank
Graph

10 20 30 40
Crowdsourcing budget (%)

(c) Iterations

Figure 6: Evaluation of question selection strategies on the complete dataset.

questions than SinglePath. This is because Multipath may
crowdsource vertices with ancestor-descendant relationships
and TopologicalSorting may crowdsource vertices with the
same descendants which can be avoided by our serial algo-
rithm SinglePath based on the inference rules. Topological-
Sorting outperforms Multipath because TopologicalSorting
crowdsources independent questions in each iteration while
Multipathmay crowdsource dependent questions. SinglePath
outperforms Random and reduces the number of ques-
tions. This is because SinglePath can effectively identify the
boundary vertex using the optimal vertex search strategy.
From Figure 5(c), the two parallel algorithms Multipath and
TopologicalSorting significantly outperform SinglePath and
Random as they crowdsource questions in parallel.

To evaluate our graph-based method (Graph) on reduc-
ing the number of questions, we conduct additional simula-
tion experiments on the complete dataset, usingNELL beliefs

as ground truths and simulating workers with accuracy
of 90%. Our experimental results are shown in Figure 6.
Figure 6 shows that our graph-based method crowdsources
fewer questions than our rank-based method (Rank). It
saves even more than 30%, comparing with the rank-based
method. This is because we can utilize the inference rules
to prune many candidate facts that do not need to be
crowdsourced. The rank-based method achieves a higher
quality at the expense of crowdsourcing many more ques-
tions. Besides, the graph-based method only involves a few
iterations, because it can crowdsource many questions in
parallel.

5.2.4. Evaluation on the Error-Tolerant Solution. In this sec-
tion, we evaluate the effectiveness of our error-tolerant solu-
tion (proposed in Section 4.4) by comparing two algorithms:
(1)Graph: which does not consider errors; (2)Graph+: which

Computational Intelligence and Neuroscience 15

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94

70 80 90

F1

Accuracy of workers (%)

Graph
Graph+

(a) Quality

3880

3900

3920

3940

3960

3980

4000

4020

of

 q
ue

sti
on

s

Graph
Graph+

70 80 90
Accuracy of workers (%)

(b) Questions

1

2

3

4

5

6

7

8

9

10

of

 it
er

at
io

ns

Graph
Graph+

70 80 90
Accuracy of workers (%)

(c) Iterations

Figure 7: Evaluation of our error-tolerant technique.

extends Graph to tolerate errors. We use simulated workers
and conduct evaluation under different accuracy levels of
crowdsourcing workers (i.e., 70%, 80%, and 90%) on test
dataset. We compare Graph+ with Graph in terms of quality,
the number of questions, and the number of iterations. Our
experimental results are shown in Figure 7.

From Figure 7, we can see that Graph+ achieves a higher
quality than Graph, because it can tolerate the errors intro-
duced by crowdsourcing workers and avoid error propaga-
tion along the inference rules. Graph+ significantly outper-
forms Graph for low-quality workers. With the increment of
the accuracy level of workers, the improvement decreases. On
the other hand, Graph+ crowdsources a little more questions
than Graph. This is because Graph+ does not utilize the
inference rules for some facts, so that it reduces the number
of inferred facts. From Figure 7(c), we can see that the two
methods have the samenumber of iterations.This is expected,

since the only difference between Graph+ and Graph is that
Graph+ does not infer the answers for some unconfident
facts. The accuracy level of crowdsourcing workers has little
impact on the number of questions and the number of
iterations for bothmethods, because the number of questions
and the number of iterations are determined by the graph
structure. Therefore, we can use the error-tolerant technique
to improve the quality of the knowledge base.

6. Conclusions

We proposed a cost-effective method for cleaning automat-
ically extracted knowledge bases using crowdsourcing. Our
method uses a ranking score to select the most beneficial
candidate facts for crowdsourcing in terms of improving
the quality of knowledge bases. We constructed a graph
based on the semantic constraints and utilized the graph

16 Computational Intelligence and Neuroscience

to crowdsource questions and infer answers. We evaluated
the effectiveness of our methods on real-world web extrac-
tions from NELL. Our experimental results showed that
our method outperforms both MLN-based and PSL-based
methods in terms of F1 under a reasonable crowdsourcing
cost.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was partially supported by Chinese NSFC
(61170020, 61402311, and 61440053), Jiangsu Province Col-
leges and Universities Natural Science Research project
(13KJB520021), Jiangsu Province Postgraduate Cultivation
and Innovation project (CXZZ13_0813), and the US National
Science Foundation (IIS-1115417).

References

[1] F. M. Suchanek and G.Weikum, “Knowledge bases in the age of
big data analytics,” Proceedings of the VLDB Endowment, vol. 7,
no. 13, pp. 1713–1714, 2014.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of
semantic knowledge,” in Proceedings of the 16th international
conference on World Wide Web, pp. 697–706, 2007.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, “DBpedia: a nucleus for a Web of open data,” in The
Semantic Web, pp. 722–735, Springer, 2007.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr.,
and T. M. Mitchell, “Toward an architecture for never-ending
language learning,” in AAAI, vol. 5, p. 3, 2010.

[5] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam,
“Open information extraction: The second generation,” in
Proceedings of 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, pp. 3–10, esp, July 2011.

[6] X. Dong, E. Gabrilovich, G. Heitz et al., “Knowledge vault:
a web-scale approach to probabilistic knowledge fusion,” in
20th ACM SIGKDD International Conference on Knowledge
Discovery andDataMining, KDD 2014, pp. 601–610, usa, August
2014.

[7] J. Pujara, H. Miao, L. Getoor, andW. Cohen, “Knowledge graph
identification,” in The Semantic Web-ISWC 2013, pp. 542–557,
Springer, 2013.

[8] S. Jiang, D. Lowd, and D. Dou, “Learning to refine an automat-
ically extracted knowledge base using markov logic,” in Data
Mining (ICDM), 2012 IEEE 12th International Conference on, pp.
912–917, 2012.

[9] Z. Xia, X. Wang, X. Sun, Q. Liu, and Q. Wang, “A secure and
dynamic multi-keyword ranked search scheme over encrypted
cloud data,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 2, pp. 340–352, 2015.

[10] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling person-
alized search over encrypted outsourced data with efficiency
improvement,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, pp. 2546–2559, 2015.

[11] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data

with accuracy improvement,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 12, pp. 2706–2716, 2016.

[12] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng, “Cheap
and fast-but is it good?: evaluating non-expert annotations
for natural language tasks,” in Proceedings of the conference on
empirical methods in natural language processing, pp. 254–263,
Association for Computational Linguistics, 2008.

[13] L. Von Ahn and L. Dabbish, “Designing games with a purpose,”
Communications of the ACM, vol. 51, no. 8, pp. 58–67, 2008.

[14] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “CrowdER:
Crowdsourcing entity resolution,” Proceedings of the VLDB
Endowment, vol. 5, no. 11, pp. 1483–1494, 2012.

[15] W. W. Cohen, H. Kautz, and D. McAllester, “Hardening soft
information sources,” in Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD-2001), pp. 255–259, USA, August 2000.

[16] C. J. Zhang, L. Chen, Y. Tong, and Z. Liu, “Cleaning uncertain
data with a noisy crowd,” in 2015 IEEE 31st International
Conference on Data Engineering, pp. 6–17, 2015.

[17] Y. Zheng, B. Jeon, D. Xu, Q. M. J. Wu, and H. Zhang, “Image
segmentation by generalized hierarchical fuzzy C-means algo-
rithm,” Journal of Intelligent and Fuzzy Systems, vol. 28, no. 2,
pp. 961–973, 2015.

[18] X. Chu, J. Morcos, I. F. Ilyas et al., “Katara: a data cleaning
system powered by knowledge bases and crowdsourcing,” in
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 1247–1261, 2015.

[19] B. Gu, X. Sun, and V. S. Sheng, “Structural minimax probability
machine,” IEEE Transactions on Neural Networks and Learning
Systems, 2016.

[20] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux, “Zen-
Crowd: Leveraging probabilistic reasoning and crowdsourcing
techniques for large-scale entity linking,” in 21st Annual Confer-
ence onWorld Wide Web, WWW’12, pp. 469–478, France, April
2012.

[21] C. Gokhale, S. Das, A. Doan et al., “Corleone: hands-off crowd-
sourcing for entity matching,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pp.
601–612, 2014.

[22] C. Sarasua, E. Simperl, and N. F. Noy, “Crowdmap: Crowd-
sourcing ontology alignment withmicrotasks,” in Proceedings of
International Semantic Web Conference, pp. 525–541, Springer,
2012.

[23] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang, “A hybrid
machine-crowdsourcing system for matching web tables,” in
Proceedings of 30th IEEE International Conference on Data
Engineering, ICDE 2014, pp. 976–987, USA, April 2014.

[24] Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong, “Steganalysis
of LSBmatching using differences between nonadjacent pixels,”
Multimedia Tools and Applications, vol. 75, no. 4, pp. 1947–1962,
2014.

[25] Z. Xia, X. Wang, X. Sun, and B. Wang, “Steganalysis of least
significant bit matching using multi-order differences,” Security
and Communication Networks, vol. 7, no. 8, pp. 1283–1291, 2014.

[26] S. K. Kondreddi, G. Weikum, and P. Triantafillou, “Human
computing games for knowledge acquisition,” in Proceedings
of the 22nd ACM international conference on Conference on
information and knowledge management, pp. 2513–2516, 2013.

[27] S. K. Kondreddi, P. Triantafillou, and G. Weikum, “Combining
information extraction and human computing for crowd-
sourced knowledge acquisition,” in 2014 IEEE 30th International
Conference on Data Engineering, pp. 988–999, 2014.

Computational Intelligence and Neuroscience 17

[28] B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman, and S. Li,
“Incremental learning for]-support vector regression,” Neural
Networks, vol. 67, pp. 140–150, 2015.

[29] B. Gu, V. S. Sheng, K. Y. Tay,W. Romano, and S. Li, “Incremental
support vector learning for ordinal regression,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 7,
pp. 1403–1416, 2015.

[30] S. Felsner, V. Raghavan, and J. Spinrad, “Recognition algorithms
for orders of small width and graphs of small Dilworth number,”
Order, vol. 20, no. 4, pp. 351–364 (2004), 2003.

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

