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This paper is concerned with 𝐻
∞

static output tracking control of nonlinear systems with one-sided Lipschitz condition. The
dimensions of system model and reference model may be different. A static output feedback controller is designed to guarantee
that the system output asymptotically tracks the reference output with𝐻

∞
disturbance rejection level. A new sufficient condition

is derived to obtain the static output feedback gain by linear matrix inequality (LMI), and no equality constraints can be needed.
Finally, an example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Tracking control has been a hot point due to its wide applica-
tions. The main objective of tracking control is to minimize
the error between the state (or output) of the plant and the
state (or output) of a given referencemodel. So it involves two
related problems, that is, state feedback tracking controller
design [1–3] and output feedback tracking controller design
[4–9]. Among them, the latter is paidmuch attention because
of its attractive features such as low overheads of imple-
menting control, the reliability of control systems, and widely
practical applications where measurement of all the state
variables is not possible. Furthermore, since the static output
feedback case needs much lower costs than an observer-
based approach, a few meaningful results about static output
feedback tracking control have been presented [10–12].

From above results, it has been shown that the solution
of the Riccati equation or LMI depends strongly on the
Lipschitz constant, but when the Lipschitz constant becomes
large, most of the existing results are infeasible. To enlarge
the domain of attraction of nonlinear systems, the one-
sided Lipschitz condition is proposed [13, 14, 14–21]. The
one-sided Lipschitz constant is significantly smaller than
the Lipschitz constant, which makes it much more suit-
able for estimating the influence of nonlinear part. One-
sided Lipschitz condition is shown to be an extension of

the Lipschitz condition and is less conservative. Recently, the
problem of tracking control of nonlinear systems with one-
sided Lipschitz condition has been presented [22]. In [22],
the stabilization and signal tracking control for one-sided
Lipschitz nonlinear differential inclusions are considered;
a nonlinear state feedback tracking controller is designed.
However, to the authors’ knowledge, there are very few
studies concerning static output tracking controller design of
nonlinear systems with one-sided Lipschitz condition. These
motivate our study.

This paper considers static output tracking control of
nonlinear systems with one-sided Lipschitz condition. The
dimensions of system model and reference model may
be different. A design procedure of static output feedback
controller is proposed to guarantee that the system output
asymptotically tracks the reference output with 𝐻

∞
distur-

bance rejection level. A new sufficient condition is obtained
by LMI, and no equality constraints can be needed. These
will reduce the difficulty in solving output feedback gain.
Finally, an example is given to illustrate the effectiveness of
the proposed method.

Notations. 𝑅𝑛 and 𝑅𝑛×𝑚 denote, respectively, the spaces of 𝑛-
dimensional real numbers and 𝑛 × 𝑚 real matrices. Let𝑀 be
a real symmetric matrix;𝑀 > 0means𝑀 is positive definite.
⟨⋅, ⋅⟩ is the inner product in 𝑅𝑛; that is, given 𝑥, 𝑦 ∈ 𝑅

𝑛, then
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⟨𝑥, 𝑦⟩ = 𝑥
𝑇

𝑦, where 𝑥𝑇 is the transpose of the column vector
𝑥 ∈ 𝑅

𝑛. 𝐼
𝑛
is an identity matrix with dimension 𝑛. ‖ ⋅ ‖ refers

to either the Euclidean vector norm or the induced matrix
2-norm. ∗ represents the omitted symmetric element of a
matrix.

2. Problem Formulation

Consider the following nonlinear system:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝜙 (𝑥) + 𝐷𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where𝑥(𝑡) ∈ 𝑅𝑛 is the state vector and𝑢(𝑡) ∈ 𝑅𝑚 is the control
input. 𝑦(𝑡) ∈ 𝑅

𝑝 is the system output. 𝜙(𝑥) represents a
nonlinear function that is continuous with respect to 𝑥(𝑡) and
𝜙(0) = 0.𝐴, 𝐵, 𝐶,𝐷 are matrices with compatible dimensions
and (𝐴, 𝐵) is controllable. 𝐶 is of full rank. 𝑤(𝑡) is a bounded
disturbance.

The following concepts about Lipschitz property, the one-
sided Lipschitz property, and quadratic inner-boundedness
property for the nonlinear function 𝜙(𝑥) are introduced to
further our study.

Definition 1 (see [22]). The nonlinear function 𝜙 is said to
be locally Lipschitz in a region 𝑄 including the origin with
respect to 𝑥, if there exists a constant 𝑙 > 0 satisfying

󵄩
󵄩
󵄩
󵄩
𝜙 (𝑥
1
) − 𝜙 (𝑥

2
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑙

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
2

󵄩
󵄩
󵄩
󵄩
, ∀𝑥

1
, 𝑥
2
∈ 𝑄. (2)

Definition 2 (see [22]). The nonlinear function 𝜙 is said to be
one-sided Lipschitz, if there exists a constant 𝜌 ∈ 𝑅 such that

⟨𝜙 (𝑥
1
) − 𝜙 (𝑥

2
) , 𝑥
1
− 𝑥
2
⟩ ≤ 𝜌

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
2

󵄩
󵄩
󵄩
󵄩

2

, ∀𝑥
1
, 𝑥
2
∈ 𝑄,

(3)

where 𝜌 is called the one-sided Lipschitz constant.

From Definitions 1 and 2, Lipschitz constant 𝑙 must be
positive; however, one-sided Lipschitz constant 𝜌 can be
positive, zero, or even negative. It is true that any Lipschitz
function is also one-sided Lipschitz, not vice versa [15–17, 22].

Definition 3 (see [22]). The nonlinear function 𝜙 is called
quadratic inner-bounded in the origin 𝑄, if there exists
constants 𝛽, ] ∈ 𝑅 such that

Δ𝜙
𝑇

Δ𝜙 ≤ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
2

󵄩
󵄩
󵄩
󵄩

2

+ ]⟨𝑥
1
− 𝑥
2
, Δ𝜙⟩, ∀𝑥

1
, 𝑥
2
∈ 𝑄 (4)

with Δ𝜙 = 𝜙(𝑥
1
) − 𝜙(𝑥

2
).

From the definition, the Lipschitz function is quadrati-
cally inner-bounded with 𝛽 > 0 and ] = 0, but the converse
is not true. Note that ] is not necessarily positive. In fact, if ]
is restricted to be positive, then it can be shown that 𝜙 must
be Lipschitz.

Consider a reference model as follows [4]:

𝑥̇
𝑚
(𝑡) = 𝐴

𝑚
𝑥
𝑚
(𝑡) + 𝑟 (𝑡) ,

𝑦
𝑚
(𝑡) = 𝐶

𝑚
𝑥
𝑚
(𝑡) ,

(5)

where 𝑥
𝑚
(𝑡) ∈ 𝑅

𝑠 is the reference state, 𝑟(𝑡) is a bounded
reference input, and 𝑦

𝑚
(𝑡) is the reference output. 𝐴

𝑚
, 𝐶
𝑚

are matrices with compatible dimensions and𝐴
𝑚
is a specific

asymptotically stable matrix.
Let 𝑧(𝑡) = 𝑥(𝑡) − 𝐺𝑥

𝑚
(𝑡). From (1) and (5), we have

𝑧̇ (𝑡) = 𝐴𝑧 (𝑡) + 𝐵𝑢 (𝑡) − 𝐵𝐻𝑥
𝑚

+ 𝜙 (𝑧 (𝑡) + 𝐺𝑥
𝑚
(𝑡)) + 𝐷𝑑 (𝑡) ,

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦
𝑚
(𝑡) = 𝐶𝑧 (𝑡) ,

(6)

where 𝐷 = [𝐷 −𝐺] and 𝑑(𝑡) = [𝑤
𝑇

(𝑡) 𝑟
𝑇

(𝑡)]

𝑇

; 𝐺 ∈ 𝑅
𝑛×𝑠

and𝐻 ∈ 𝑅
𝑚×𝑠 satisfy

𝐴𝐺 + 𝐵𝐻 = 𝐺𝐴
𝑚
, 𝐶𝐺 = 𝐶

𝑚
. (7)

Remark 4. In (7), the values of 𝐺,𝐻 can be obtained by the
method in [8]. By using Kronecker product ⊗ of matrices and
the vec(⋅) operation, (7) can be equivalent to

ΩΠ = Λ, (8)

where

Ω =
[

[

𝐼
𝑠
⊗ 𝐴 − 𝐴

𝑇

𝑚
⊗ 𝐼
𝑛
𝐼
𝑠
⊗ 𝐵

𝐼
𝑠
⊗ 𝐶 0

]

]

,

Π = [

vec (𝐺)
vec (𝐻)] , Λ = [

0

vec (𝐶𝑇
𝑚
)
] .

(9)

If and only if rank(Ω, Λ) = rank(Ω), one of the solutions is

Π = Ω
+

Λ, (10)

whereΩ+ denotes the Moore-Penrose inverse ofΩ.

For (6), we design the following static output feedback
controller

𝑢 (𝑡) = 𝐻𝑥
𝑚
(𝑡) + 𝐾 (𝑦 (𝑡) − 𝑦

𝑚
(𝑡)) , (11)

where𝐻 is from (7) and𝐾 is a static output feedback gain and
determined later.

From (5), (6), and (11), the closed-loop system can be
written as

𝑧̇ (𝑡) = 𝐴𝑧 (𝑡) + 𝜙 (𝑧 (𝑡) + 𝐺𝑥
𝑚
(𝑡)) + 𝐷𝑑 (𝑡) ,

𝑥̇
𝑚
(𝑡) = 𝐴

𝑚
𝑥
𝑚
(𝑡) + 𝐹𝑑 (𝑡) ,

𝑒 (𝑡) = 𝐶𝑧 (𝑡) ,

(12)

where 𝐴 = 𝐴 + 𝐵𝐾𝐶 and 𝐹 = [0 𝐼
𝑠
].

Note that the output matrix 𝐶 is of full rank; without loss
of generality, we assume that 𝐶 = [0 𝐶

2
], 𝐶
2
∈ 𝑅
𝑝×𝑝 is

nonsingular.
The objective of this paper is to design a static output

feedback controller (11) such that the closed-loop system (12)
is asymptotically stable with an 𝐻

∞
-norm bound 𝛾; that is,

the following conditions are achieved simultaneously.
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(i) The closed-loop system (12) with 𝑑(𝑡) = 0 is
asymptotically stable.

(ii) The closed-loop system (12) has a given 𝐻
∞

dis-
turbance rejection level. It is to make, under the
zero-valued initial condition, the following inequality
holds:

‖𝑒(𝑡)‖
2

< 𝜂
2

‖𝑑(𝑡)‖
2 (13)

for any nonzero 𝑤(𝑡), where 𝜂 > 0 is a prescribed
scalar.

3. Main Results

In this section, a design algorithm is proposed to obtain the
output feedback gain via LMI and the sufficient condition
includes no equality constraints.

Theorem 5. Given a constant 𝜂 > 0. Suppose that the function
𝜙(𝑥) in the system (12) satisfies conditions (2) and (3) with
constants 𝜌, 𝛽, and ]. The system (12) is asymptotically stable
with an𝐻

∞
-norm bound 𝜂, if there exist matrices𝑃 > 0, 𝑆 > 0,

𝑃
1
, 𝑃
2
, 𝐾 and scalars 𝜀

1
> 0, 𝜀

2
> 0 such that the following

matrix inequality is true

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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1

Ξ
2

Ξ
3

Ξ
4

𝑃
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𝐷
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2
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𝑇

2
0 𝑃

𝑇

2
𝑃
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2
𝐷
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5

]𝜀
2
− 𝜀
1

2

𝐺
𝑇

𝑆𝐹
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𝐼 0
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2

𝐼

]

]
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]

]

]

]

]

]

]

]

]

]

]

< 0, (14)

where 𝐴 = 𝐴+ BKC, Ξ
1
= 𝑃
𝑇

1
𝐴+𝐴

𝑇

𝑃
1
+ (𝜀
1
𝜌 + 𝜀
2
𝛽)𝐼 + 𝐶

𝑇

𝐶,
Ξ
2
= 𝑃−𝑃

𝑇

1
+𝐴

𝑇

𝑃
2
,Ξ
3
= (𝜀
1
𝜌+𝜀
2
𝛽)𝐺,Ξ

4
= 𝑃
𝑇

1
+((]𝜀
2
−𝜀
1
)/2)𝐼,

and Ξ
5
= (𝜀
1
𝜌 + 𝜀
2
𝛽)𝐺
𝑇

𝐺 + 𝑆𝐴
𝑚
+ 𝐴
𝑇

𝑚
𝑆.

Proof. Consider the following Lyapunov functional candi-
date:

𝑉 (𝑡) = 𝑧
𝑇

(𝑡) 𝑃𝑧 (𝑡) + 𝑥
𝑇

𝑚
(𝑡) 𝑆𝑥
𝑚
(𝑡) . (15)

Calculating the time derivative of𝑉(𝑡) along the trajectory of
system (12), we have

𝑉̇ (𝑡) = 2𝑧
𝑇

(𝑡) 𝑃𝑧̇ (𝑡) + 𝑥
𝑇

𝑚
(𝑡) (𝑆𝐴

𝑚
+ 𝐴
𝑇

𝑚
𝑆) 𝑥
𝑚
(𝑡)

+ 2𝑥
𝑇

𝑚
(𝑡) 𝑆𝐹𝑑 (𝑡) .

(16)

On the other hand, we have

2 (𝑧
𝑇

(𝑡) 𝑃
𝑇

1
+ 𝑧̇
𝑇

(𝑡) 𝑃
𝑇

2
)

× [−𝑧̇ (𝑡) + 𝐴𝑧 (𝑡) + 𝜙 (𝑧 (𝑡) + 𝐺𝑥
𝑚
(𝑡)) + 𝐷𝑑 (𝑡)] = 0,

(17)

where 𝑃
1
, 𝑃
2
are free-weighting matrices. In the following,

𝜙(𝑧(𝑡) + 𝐺𝑥
𝑚
(𝑡)) can be shortened as 𝜙 for simplicity.

From (3), 𝜌𝑧𝑇(𝑡)𝑧(𝑡)+2𝜌𝑧𝑇(𝑡)𝐺𝑥
𝑚
(𝑡)+𝜌𝑥

𝑇

𝑚
(𝑡)𝐺
𝑇

𝐺𝑥
𝑚
(𝑡)−

𝑧
𝑇

(𝑡)𝜙 + 𝑥
𝑇

𝑚
(𝑡)𝐺
𝑇

𝜙 ≥ 0. Therefore, for any positive scalar 𝜀
1
,

we have

𝜀
1

[

[

𝑧(𝑡)

𝑥
𝑚
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]

]
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[

[

[

[

[
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1

2

𝐼
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𝑇
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1

2

𝐺
𝑇
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]

]

]

]

]

]

]

[

[

𝑧 (𝑡)

𝑥
𝑚
(𝑡)

𝜙

]

]

≥ 0. (18)

From (4), similarly, for any positive scalar 𝜀
2
, we have

𝜀
2

[
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𝑚
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]

]

𝑇
[

[

[

[

[

[

𝛽 𝛽𝐺
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2

𝐼
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𝑇

𝐺

]
2

𝐺
𝑇
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]

]

]

]

]

]

[

[

𝑧 (𝑡)

𝑥
𝑚
(𝑡)

𝜙

]

]

≥ 0. (19)

Then, adding (17) and the left-sided terms in (18) and (19) to
time derivative of 𝑉(𝑡) yields

𝑉̇ (𝑡) + 𝑦
𝑇

𝑧
(𝑡) 𝑦
𝑧
(𝑡) − 𝜂

2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) ≤ 𝜉
𝑇

Ξ𝜉, (20)

where 𝜉 = [𝑧
𝑇

(𝑡), 𝑧̇
𝑇

(𝑡), 𝑥
𝑇

𝑚
(𝑡), 𝜙
𝑇

, 𝑑
𝑇

(𝑡)]

𝑇.
From (14), we can have

𝑉̇ (𝑡) + 𝑦
𝑇

𝑧
(𝑡) 𝑦
𝑧
(𝑡) − 𝜂

2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) ≤ 𝜉
𝑇

Ξ𝜉 < 0,

(for 𝜉 ̸= 0) .

(21)

Under the zero initial conditions, we have

𝜂
2

∫

∞

0

𝑑
𝑇

(𝑡) 𝑑 (𝑡) 𝑑𝑡

≥ 𝑉 (∞) − 𝑉 (0) + ∫

∞

0

𝑦
𝑇

𝑧
(𝑡) 𝑦
𝑧
(𝑡) 𝑑𝑡

≥ ∫

∞

0

𝑦
𝑇

𝑧
(𝑡) 𝑦
𝑧
(𝑡) 𝑑𝑡.

(22)

That is, ‖𝑦
𝑧
(𝑡)‖
2

< 𝛾
2

‖𝑑(𝑡)‖
2.

In fact, when 𝑑(𝑡) = 0, in the same way, we easily obtain

𝑉̇ (𝑡) = 𝜉

𝑇

Ξ̃𝜉, (23)

where 𝜉 = [𝑧
𝑇

(𝑡), 𝑧̇
𝑇

(𝑡), 𝑥
𝑇

𝑚
(𝑡), 𝜙
𝑇

]

𝑇 and

Ξ̃ =

[

[

[

[

[

[

[

[

[

[

Ξ̃
1

Ξ
2

Ξ
3

Ξ
4

∗ −𝑃
2
− 𝑃
𝑇

2
0 𝑃

𝑇

2

∗ ∗ Ξ
5

]𝜀
2
− 𝜀
1

2

𝐺
𝑇

∗ ∗ ∗ −𝜀
2
𝐼

]

]

]

]

]

]

]

]

]

]

, (24)

where Ξ̃
1
= 𝑃
𝑇

1
𝐴 + 𝐴

𝑇

𝑃
1
+ (𝜀
1
𝜌 + 𝜀
2
𝛽)𝐼.

Noting that (14) implies Ξ < 0, we have

𝑉̇ (𝑡) = 𝜉

𝑇

Ξ̃𝜉 < 0, (for 𝜉 ̸= 0) . (25)
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This implies that the system (12) with 𝑑(𝑡) = 0 is
asymptotically stable. Then the proof is completed.

For (14), it is a nonlinear matrix inequality, there are no
effective algorithms for solving 𝑃, 𝑆, 𝑃

1
, 𝑃
2
, 𝐾, and scalars 𝜀

1
,

𝜀
2
simultaneously. The following theorem gives an approach

to solve this problem.

Theorem 6. Given a constant 𝜂 > 0. Suppose that the function
𝜙(𝑥) in the system (12) satisfies conditions (2) and (3) with
constants 𝜌, 𝛽, and ]. 𝑀 ∈ 𝑅

𝑝×(𝑛−𝑝) and 𝜔 ∈ 𝑅 are priori
selected tuning parameters. The system (12) is asymptotically
stable with an𝐻

∞
-norm bound 𝜂, if there exist matrix 𝑋 > 0,

generalmatrix𝑋
1
= [
𝑋
11
𝑋
12

𝑋
22
𝑀 𝜔𝑋

22

]with𝑋
22
∈ 𝑅
𝑝×𝑝, and scalars

𝜀
1
> 0, 𝜀
2
> 0 such that the following matrix inequality is true:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

𝐷 √
󵄨
󵄨
󵄨
󵄨
𝜀
1
𝜌 + 𝜀
2
𝛽
󵄨
󵄨
󵄨
󵄨
𝑋
𝑇

1
𝑋
𝑇

1
𝐶
𝑇

∗ −𝑋
1
− 𝑋
𝑇

1
0 𝐼 𝐷 0 0

∗ ∗ Ξ
5

]𝜀
2
− 𝜀
1

2

𝐺
𝑇

𝑆𝐹 0 0

∗ ∗ ∗ −𝜀
2
𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜂
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (26)

where Ξ
1
= 𝐴𝑋

1
+ 𝑋
𝑇

1
𝐴
𝑇

+ 𝐵𝐿 [𝑀 𝜔𝐼
𝑝
] + [𝑀 𝜔𝐼

𝑝
]

𝑇

𝐿
𝑇

𝐵
𝑇,

Ξ
2
= 𝑋 − 𝑋

1
+ 𝑋
𝑇

1
𝐴
𝑇

+ [𝑀 𝜔𝐼
𝑝
]

𝑇

𝐿
𝑇

𝐵
𝑇, and Ξ

3
= (𝜀
1
𝜌 +

𝜀
2
𝛽)𝑋
𝑇

1
𝐺, Ξ
4
= 𝐼 + ((]𝜀

2
− 𝜀
1
)/2)𝑋

𝑇

1
. Furthermore, 𝐾 =

𝐿(𝐶
2
𝑋
22
)
−1.

Proof. The solution of (14) can be obtained by the following
two-step procedures.

In the first step, 𝜀
1
, 𝜀
2
can be given.

In the second step, for (14), choose 𝑃
1
= 𝑃
2
and denote

𝑋
1
= 𝑃
−1

1
, 𝑋 = 𝑋

𝑇

1
𝑃𝑋
1
. Left- and right-multiplying both

sides of (14) by diag{𝑋𝑇
1
, 𝑋
𝑇

1
, 𝐼, 𝐼, 𝐼} and diag{𝑋

1
, 𝑋
1
, 𝐼, 𝐼, 𝐼},

respectively, we obtain

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ̂
1

Ξ̂
2

Ξ
3

Ξ
4

𝐷

∗ −𝑋
1
− 𝑋
𝑇

1
0 𝐼 𝐷

∗ ∗ Ξ
5

]𝜀
2
− 𝜀
1

2

𝐺
𝑇

0

∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ −𝜂
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (27)

where Ξ̂
1
= 𝐴𝑋

1
+ 𝑋
𝑇

1
𝐴

𝑇

+ (𝜀
1
𝜌 + 𝜀
2
𝛽)𝑋
𝑇

1
𝑋
1
+ 𝑋
𝑇

1
𝐶
𝑇

𝐶𝑋
1
,

Ξ̂
2
= 𝑋 − 𝑋

1
+ 𝑋
𝑇

1
𝐴

𝑇.
By considering the structure of𝑋

1
, we have

𝐾𝐶𝑋
1
= 𝐹 [0 𝐶

2
]𝑋
1
= [𝐾𝐶

2
𝑋
22
𝑀 𝜔𝐾𝐶

2
𝑋
22
] . (28)

Define

𝐿 = 𝐹𝐶
2
𝑋
22
. (29)

Then we have

𝐾𝐶𝑋
1
= [𝐿𝑀 𝜔𝐿] = 𝐿 [𝑀 𝜔𝐼

𝑝
] . (30)

Substituting (30) into (27) and using Schur’s Lemma yield
(26).

Because 𝜀
1
, 𝜀
2
is given in advance, (26) is converted to a

LMI. So we easily solve it by Matlab LMI toolbox [23]. The
proof is completed.

Remark 7. Theorem 6 provides a new solving method about
static output feedback gain by LMI, when the parameters
𝜀
1
, 𝜀
2
are given in advance. Moreover, no equality constraints

are needed, so the difficulty in solving it can be reduced. It
should be noted that the special form of matrix𝑋

1
will bring

some conservatism; however, thanks to this form, the output
feedback gain can be easily obtained [24].

The procedure of the proposed𝐻
∞
static output tracking

control of nonlinear systems with one-sided Lipschitz condi-
tion is summarized as follows.

Step 1. Find the solutions of𝐺 and𝐻 from (10). If there exists
no solution, then the reference model must be modified.

Step 2. Observe the structure of 𝐶 in (12): if 𝐶 = [0 𝐶
2
],

𝐶
2
∈ 𝑅
𝑝×𝑝 is nonsingular, then the procedure directly goes

to the next step, or there exists a state transformation 𝑧(𝑡) =
𝑇𝑧(𝑡) for (12) to make 𝐶 satisfy this structure, where 𝑇 is a
nonsingular matrix.

Step 3. Choose the parameters 𝜀
1
, 𝜀
2
, 𝜂 > 0, 𝑀 ∈ 𝑅

𝑝×(𝑛−𝑝),
and 𝜔 ∈ 𝑅 in Theorem 6.



Mathematical Problems in Engineering 5

Step 4. Calculate the matrix 𝐿 and 𝑋
22
in 𝑋
1
by solving LMI

(26).

Step 5. Obtain the static output feedback gain 𝐾 =

𝐿(𝐶
2
𝑋
22
)
−1.

4. Discussion

Theorem 6 gives a new approach to solve the static out-
put feedback gain; if we use traditional method including

the equality constraints, the following theorem can be
given.

Theorem 8. Given a constant 𝜂 > 0. Suppose that the function
𝜙(𝑥) in the system (12) satisfies conditions (2) and (3) with
constants 𝜌, 𝛽, and ]. The system (12) is asymptotically stable
with an 𝐻

∞
-norm bound 𝜂, if there exist matrices 𝑋 > 0,

𝑋
1
, 𝑁, 𝑌 and scalars 𝜀

1
> 0, 𝜀

2
> 0 such that the following

matrix inequality is true:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

𝐷 √
󵄨
󵄨
󵄨
󵄨
𝜀
1
𝜌 + 𝜀
2
𝛽
󵄨
󵄨
󵄨
󵄨
𝑋
𝑇

1
𝑋
𝑇

1
𝐶
𝑇

∗ −𝑋
1
− 𝑋
𝑇

1
0 𝐼 𝐷 0 0

∗ ∗ Ξ
5

]𝜀
2
− 𝜀
1

2

𝐺
𝑇

𝑆𝐹 0 0

∗ ∗ ∗ −𝜀
2
𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜂
2

𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (31)

𝑁𝐶 = 𝐶𝑋
1
, (32)

where Ξ
1
= 𝐴𝑋

1
+ 𝑋
𝑇

1
𝐴
𝑇

+ 𝐵𝑌𝐶 + 𝐶
𝑇

𝑌
𝑇

𝐵
𝑇, Ξ
2
= 𝑋 − 𝑋

1
+

𝑋
𝑇

1
𝐴
𝑇

+𝐶
𝑇

𝑌
𝑇

𝐵
𝑇, Ξ
3
= (𝜀
1
𝜌 + 𝜀
2
𝛽)𝑋
𝑇

1
𝐺, and Ξ

4
= 𝐼 + ((]𝜀

2
−

𝜀
1
)/2)𝑋

𝑇

1
. Furthermore, 𝐾 = 𝑌𝑁

−1.

Proof. The proofs can be easily obtained similar to the
arguments inTheorem 6; the details are omitted.

Remark 9. Noting that (31) can be converted to a LMI on
condition that the parameters 𝜀

1
, 𝜀
2
are also given in advance,

the equality condition 𝑁𝐶 = 𝐶𝑋
1
can be equivalently

converted to trace [(𝑁𝐶−𝐶𝑋
1
)
𝑇

(𝑁𝐶−𝐶𝑋
1
)] = 0. Introduce

the condition (𝑁𝐶 − 𝐶𝑋
1
)
𝑇

(𝑁𝐶 − 𝐶𝑋
1
) ≤ 𝛼𝐼 and Schur’s

complement gives

[
−𝛼𝐼 (𝑁𝐶 − 𝐶𝑋

1
)
𝑇

∗ −𝐼

] ≤ 0. (33)

Hence, the static output tracking problem can be changed
to a problem of finding a global solution of the following
minimization problem:

min𝛼 subject to (31) and (33) . (34)

Remark 10. FromTheorems 6 and 8, the sufficient conditions
inTheorem 8 aremore complex, which lead to a large amount
of calculation. So the static output feedback gain can be
conveniently obtained by the method inTheorem 6.

5. Example

Consider the systems (1) and (5) with 𝐴 = [
−3 0

1 2
], 𝐵 = [

0

1
],

𝐷 = [
0

1
], 𝐶 = [0 1], 𝑤(𝑡) = 0.1 cos(𝑡), 𝐴

𝑚
= −1, 𝐶

𝑚
= 2,

and 𝑟(𝑡) = 0.1 sin(𝑡).
𝜙(𝑥) is given by

𝜙 (𝑥) =
[

[

−𝑥
1
(𝑥
2

1
+ 𝑥
2

2
)

−𝑥
2
(𝑥
2

1
+ 𝑥
2

2
)

]

]

. (35)

The above system model can be used to describe the
motion of a moving object [22].

Let

𝜛 = min(√−]
4

,

4
√
𝛽 +

]2

4

) , ] < 0, 𝛽 +

]2

4

> 0. (36)

According to [22], the quadratically inner-bounded property
of 𝜙(𝑥) is verified in 𝑄, 𝑄 = {𝑥 ∈ 𝑅

2

: ‖𝑥‖ ≤ 𝜛}. As the
system is globally one-sided Lipschitz, that is,𝑄 = 𝑅

2,𝑄∩𝑄 =

𝑄. Note that the region 𝑄 can be made arbitrarily large by
choosing appropriate values for 𝛽 and ].

We choose 𝛽 = −1 and ] = −3; then 𝜛 = 0.8660.
The initial value is 𝑥(0) = [0.5 −0.3]

𝑇

∈ 𝑄 and 𝑥
𝑚
(0) =

−1.
By solving (10), 𝐺 and𝐻 can be obtained as

𝐺 = [0 2]

𝑇

, 𝐻 = −6. (37)
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Figure 1: Error 𝑒(𝑡) : (= 𝑦(𝑡) − 𝑦
𝑚
(𝑡)).

Given 𝜂 = 4.4711, 𝜀
1
= 0.01, 𝜀

2
= 1, and 𝑀 = 0, 𝜔 = 1,

then solving LMI (26) yields

𝑋
1
= [

1.8784 −0.2931

0 1.5907
] , 𝐿 = −17.4786. (38)

Furthermore, noting that𝐶
2
= 1,𝑋

22
= 1.5907, we obtain

𝐾 = 𝐿(𝐶
2
𝑋
22
)
−1

= −10.9880. (39)

Then the controller is designed as

𝑢 (𝑡) = −6𝑥
𝑚
(𝑡) − 10.988 (𝑦 (𝑡) − 𝑦

𝑚
(𝑡)) . (40)

The simulation results are shown in Figures 1, 2, and 3.
Figure 1 shows the time response of the error 𝑒(𝑡). The

curves about system output 𝑦(𝑡) and reference output 𝑦
𝑚
(𝑡)

are shown in Figure 2. Figure 3 shows the control input
response curve. From the simulation results, it is concluded
that the proposed method is effective.

Remark 11. ByTheorem 8,we also can obtain the static output
feedback gain, but both conditions (31) and (33) are calculated
simultaneously. So the method by Theorem 6 is relatively
simple.

6. Conclusion

In this paper, the problem of static output tracking control
of nonlinear systems with one-sided Lipschitz condition
has been investigated. A static output feedback controller is
designed to guarantee that the system output asymptotically
tracks the reference output with 𝐻

∞
disturbance rejection

level. A sufficient condition is derived to obtain the static
output feedback gain by linear matrix inequality (LMI), and
no equality constraints can be needed. It should be noted that
the special form of matrix 𝑋

1
will bring some conservatism,

so further work is to study how to reduce it.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

−2

−1.5
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−0.5
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Figure 2: Output 𝑦(𝑡) and 𝑦
𝑚
(𝑡).
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Figure 3: Control 𝑢(𝑡).
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