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A new homotopy perturbation method (NHPM) is applied to system of variable coefficient coupled Burgers’ equation with time-
fractional derivative.The fractional derivatives are described in theCaputo fractional derivative sense.The concept of new algorithm
is introduced briefly, and NHPM is examined for two systems of nonlinear Burgers’ equation. In this approach, the solution is
considered as a power series expansion that converges rapidly to the nonlinear problem.The new approximate analytical procedure
depends on two iteratives. The modified algorithm provides approximate solutions in the form of convergent series with easily
computable components. Results indicate that the introduced method is promising for solving other types of systems of nonlinear
fractional-order partial differential equations.

1. Introduction

In recent years, the differential equations of fractional order
have been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics, med-
ical sciences, biological research, as well as various chemi-
cal, biochemical, and physical fields, viscoelasticity, biology,
physics, and engineering. Consequently, considerable atten-
tion has been given to the solutions of fractional differential
equations and integral equations of physical interest [1–4].
Various powerful methods have been presented so far such
as homotopy perturbationmethod [5, 6], variational iteration
method [7], differential transform method [8], homotopy
analysis method [9], and Adomian decomposition method
[10, 11] for solving different kinds of fractional partial differ-
ential equations. In this paper, we construct the solution of a
system of variable coefficient coupled Burgers’ equation with
time-fractional derivative by extending the idea of [12, 13]. A
new version of homotopy perturbation method is proposed,
which we called it NHPMand then applied it to the nonlinear
systems of variable coefficient coupled Burgers’ equationwith

time-fractional derivative that can be written as the following
basic form:

𝜕
𝛼

𝑢

𝜕𝑡𝛼
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2
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+ 𝑝
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2
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𝜕
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𝜕𝑥2
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(𝑡) V
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(𝑡)

𝜕 (𝑢V)
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,

(1)

subject to the initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) , V (𝑥, 0) = 𝑔 (𝑥) , (2)

where the subscripts 𝑟
1
(𝑡), 𝑟
2
(𝑡), 𝑠
1
(𝑡), 𝑠
2
(𝑡), 𝑝
1
(𝑡), and 𝑝

2
(𝑡)

are arbitrary smooth functions of 𝑡.
The paper is organized as follows. In Section 2, we begin

with an introduction to some necessary definitions of frac-
tional calculus theory. In Section 3, we illustrated a basic
idea of the new method. In Section 4, the uses of the new
method for solving nonlinear variable coefficient coupled
Burgers’ equation are presented. Two examples are solved by
the proposed method in this section. Conclusion will appear
in Section 5.
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2. Fractional Calculus

We give some basic definitions and properties of the frac-
tional calculus theory used in this work. Some of these are
Riemann-Liouville, Grunwald-Letnikov, Caputo, and gener-
alized functions approach. The most commonly used defini-
tions are the Riemann-Liouville and Caputo derivatives.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator 𝐽𝜇 of order𝜇 on the usual Lebesgue space𝐿

1
[𝑎, 𝑏] is given

by

𝐽
𝜇

𝑓 (𝑥) =
1

Γ (𝜇)
∫

𝑥

0

(𝑥 − 𝑡)
𝜇−1

𝑓 (𝑡) 𝑑𝑡, 𝜇 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

It has the following properties:

(i) 𝐽𝜇 exists for any 𝑥 ∈ [𝑎, 𝑏],

(ii) 𝐽𝜇𝐽𝛽 = 𝐽
𝜇+𝛽,

(iii) 𝐽𝜇𝐽𝛽 = 𝐽
𝛽

𝐽
𝜇,

(iv) 𝐽𝜇𝐽𝛽𝑓(𝑥) = 𝐽
𝛽

𝐽
𝜇

𝑓(𝑥),
(v) 𝐽𝜇(𝑥 − 𝑎)

𝛾

= (Γ(𝛾 + 1)/Γ(𝜇 + 𝛾 + 1))(𝑥 − 𝑎)
𝜇+𝛾,

where 𝑓 ∈ 𝐿
1
[𝑎, 𝑏], 𝜇, 𝛽 ≥ 0, and 𝛾 > −1.

The Riemann-Liouville fractional derivative is mostly
used by mathematicians, but this approach is not suitable
for physical problems of the real world since it requires the
definition of fractional order initial conditions which have
no physicallymeaningful explanation yet. Caputo introduced
an alternative definition, which has the advantage of defining
integer-order initial conditions for fractional order differen-
tial equations.

Definition 2. TheCaputo definition of fractal derivative oper-
ator is given by

𝐷
𝜇

𝑓 (𝑥) = 𝐽
𝑚−𝜇

𝐷
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(4)

where𝑚 − 1 < 𝜇 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑥 > 0.

Lemma 3. If𝑚 − 1 < 𝜇 ≤ 𝑚,𝑚 ∈ N, and 𝑓 ∈ 𝐿
1
[𝑎, 𝑏], then
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𝜇
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𝜇
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𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
𝑘

(0
+

)
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𝑘

𝑘!
,

𝑥 > 0.

(5)

The Caputo fractional derivative is considered here because it
allows traditional initial and boundary conditions to be in-
cluded in the formulation of the problem. In this paper, we have
considered some systems of linear and nonlinear FPDEs, where
fractional derivatives are taken in Caputo sense as follows.

Definition 4. For 𝑛 to be the smallest integer that exceeds 𝛼,
the Caputo time-fractional derivative operator of 𝛼 > 0 is
defined as

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

=
𝜕
𝛼
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𝜕
𝑛
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𝜕𝜏𝑛
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𝜕
𝑛

𝑢 (𝑥, 𝜏)

𝜕𝜏𝑛
, for 𝛼 = 𝑛 ∈ 𝑁.

(6)

3. Analysis of New Homotopy
Perturbation Method

Let us consider the system of nonlinear fractional differential
equations

𝐷
𝛼

𝑡
𝑢
𝑖
(𝑥, 𝑡) = 𝐴

𝑖
(𝑢
𝑖
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𝑖
(𝑡, 𝑥) ,

𝑥, 𝑡 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑛,

(7)

with the following initial conditions:

𝑢
𝑖
(𝑥, 0) = 𝛼

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (8)

where𝐴
𝑖
are the operators,𝑓

𝑖
are known functions, and 𝑢

𝑖
are

sought functions. Assume that operators𝐴
𝑖
can be written as

𝐴
𝑖
(𝑢
𝑖
) = 𝐿
𝑖
(𝑢
𝑖
) + 𝑁
𝑖
(𝑢
𝑖
) , (9)

where 𝐿
𝑖
are the linear operators and 𝑁

𝑖
are the nonlinear

operators. Hence, (7) can be rewritten as follows:

𝐷
𝛼

𝑡
𝑢
𝑖
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𝑖
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𝑖
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𝑖
(𝑢
𝑖
) + 𝑓
𝑖
(𝑥, 𝑡) . (10)

For solving system (7) by NHPM, we construct the following
homotopy:

𝐻(𝑈
𝑖
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𝛼
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= 0,

(11)

where 𝑝 ∈ [0, 1] is an embedding or homotopy parameter,
𝐻(𝑡, 𝑥; 𝑝) : Ω × [0, 1] → 𝑅, and 𝑢

𝑖,0
are the initial approxi-

mation of solution of the problem in (10).
Clearly, the homotopy equations 𝐻(𝑈

𝑖
: 0) = 0 and

𝐻
𝑖
(𝑈
𝑖
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𝑖
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𝑖
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𝑖
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𝑖
(𝑡, 𝑥) = 0,

respectively.Thus, amonotonous change of parameter𝑝 from
zero to one corresponds to a continuous change of the trivial
problem𝐷

𝛼

𝑡
𝑈
𝑖
(𝑥, 𝑡)−𝑢

𝑖,0
= 0 to the original problem.Next, we
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assume that the solution of equation𝐻(𝑈
𝑖
, 𝑝) can be written

as a power series in embedding parameter 𝑝 as follows:

𝑈
𝑖
= 𝑈
𝑖,0
+ 𝑝𝑈
𝑖,1
, 𝑖 = 1, 2, . . . , 𝑛. (12)

Now, let us write (12) in the following form:

𝐷
𝛼

𝑡
𝑈
𝑖
(𝑥, 𝑡) = 𝑢

𝑖,0
+ 𝑝 (𝐿

𝑖
(𝑈
𝑖
) + 𝑁
𝑖
(𝑈
𝑖
) + 𝑓
𝑖
(𝑡, 𝑥)) . (13)

Applying the inverse operator, 𝐽𝛼
𝑡
, which is the Riemann-

Liouville fractional integral of order 𝛼 ≥ 0, on both sides of
(13), we have

𝑈
𝑖
(𝑥, 𝑡)

= 𝑈
𝑖
(𝑥, 0) + 𝐽

𝛼

𝑡
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𝛼
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𝑖
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𝑖
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𝑖
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𝑖
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𝑖
(𝑡, 𝑥)) .

(14)

Suppose that the initial approximation of (10) has the form

𝑢
𝑖,0
(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑎
𝑖,𝑛
(𝑥) 𝑝
𝑛
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (15)

where 𝑎
𝑖,𝑛
(𝑥), 𝑛 = 0, 1, 2, . . . are unknown coefficients and

𝑝
𝑛
(𝑡), 𝑛 = 0, 1, 2, . . . are specific functions on the problem.

By substituting (12) and (15) into (14), we get

𝑈
𝑖,0
+ 𝑝𝑈
𝑖,1

= 𝑈
𝑖
(𝑥, 0) + 𝐽

𝛼

𝑡
(

∞

∑
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𝑛
(𝑡))

+ 𝑝𝐽
𝛼

𝑡
(𝐿
𝑖
(𝑈
𝑖,0
+ 𝑝𝑈
𝑖,1
) + 𝑁
𝑖
(𝑈
𝑖,0
+ 𝑝𝑈
𝑖,1
) + 𝑓
𝑖
(𝑡, 𝑥)) .

(16)

Equating the coefficients of like powers of 𝑝, we get the fol-
lowing set of equations:

coefficient of 𝑝0 : 𝑈
𝑖,0
(𝑥, 𝑡)

= 𝑈
𝑖
(𝑥, 0) + 𝐽

𝛼

𝑡
(

∞

∑

𝑛=0

𝑎
𝑖,𝑛
(𝑥) 𝑝
𝑛
(𝑡)) ,

coefficient of 𝑝1 : 𝑈
𝑖,1
(𝑥, 𝑡)

= 𝐽
𝛼

𝑡
(𝐿
𝑖
(𝑈
𝑖,0
) + 𝑁
𝑖
(𝑈
𝑖,0
) + 𝑓
𝑖
(𝑡, 𝑥)) .

(17)

Now,we solve these equations in such away that𝑈
𝑖,1
(𝑥, 𝑡) = 0.

Therefore, the approximate solution may be obtained as

𝑢
𝑖
(𝑥, 𝑡) = 𝑈

𝑖,0
(𝑥, 𝑡)

= 𝑈
𝑖
(𝑥, 0) + 𝐽

𝛼

𝑡
(

∞

∑

𝑛=0

𝑎
𝑖,𝑛
(𝑥) 𝑝
𝑛
(𝑡)) .

(18)

4. Examples

In this section, to illustrate themethod and to show the ability
of the method, two examples are presented.

Example 1. Consider the following variable coefficient cou-
pled Burgers’ equation:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

=
𝑡

1 − 𝑡

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

+
1 + 𝑡

1 − 𝑡

𝜕 (𝑢 (𝑥, 𝑡) V (𝑥, 𝑡))

𝜕𝑥
,

𝐷
𝛼

𝑡
V (𝑥, 𝑡)

=
𝑡

1 + 𝑡

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
+ V (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥

−
1 − 𝑡

1 + 𝑡

𝜕 (𝑢 (𝑥, 𝑡) V (𝑥, 𝑡))

𝜕𝑥
,

𝑡 ̸= − 1, 1,

(19)

subject to the initial condition

𝑢 (𝑥, 0) = V (𝑥, 0) = 𝑥. (20)

The exact solutions of (19) for the special case 𝛼 = 1 are
𝑢(𝑥, 𝑡) = 𝑥/(1 − 𝑡) and V(𝑥, 𝑡) = 𝑥/(1 + 𝑡).

To obtain the solution of (19) by NHPM, we construct the
following homotopy:

(1 − 𝑝) (𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) − 𝑢

0
(𝑥, 𝑡))

+ 𝑝(𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) −

𝑡

1 − 𝑡

𝜕
2

𝑈 (𝑥, 𝑡)

𝜕𝑥2

+ 𝑈 (𝑥, 𝑡)
𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥
−
1 + 𝑡

1 − 𝑡

𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
)

= 0,

(1 − 𝑝) (𝐷
𝛼

𝑡
𝑉 (𝑥, 𝑡) − V

0
(𝑥, 𝑡))

+ 𝑝(𝐷
𝛼

𝑡
𝑉 (𝑥, 𝑡) −

𝑡

1 + 𝑡

𝜕
2

𝑉 (𝑥, 𝑡)

𝜕𝑥2

− 𝑉 (𝑥, 𝑡)
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥
+
1 − 𝑡

1 + 𝑡

𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
)

= 0.

(21)

Applying the inverse operator 𝐽𝛼
𝑡
of 𝐷𝛼
𝑡
on both sides of the

above equation, we obtain

𝑈 (𝑥, 𝑡) = 𝑈 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0
(𝑥, 𝑡)

− 𝑝𝐽
𝛼

𝑡
(𝑢
0
(𝑥, 𝑡) −

𝑡

1 − 𝑡

𝜕
2

𝑈 (𝑥, 𝑡)

𝜕𝑥2

+ 𝑈 (𝑥, 𝑡)
𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥

−
1 + 𝑡

1 − 𝑡

𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) ,



4 The Scientific World Journal

𝑉 (𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽
𝛼

𝑡
V
0
(𝑥, 𝑡)

− 𝑝𝐽
𝛼

𝑡
(V
0
(𝑥, 𝑡) −

𝑡

1 + 𝑡

𝜕
2

𝑉 (𝑥, 𝑡)

𝜕𝑥2

− 𝑉 (𝑥, 𝑡)
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥

+
1 − 𝑡

1 + 𝑡

𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) .

(22)

For solving system (22), by new homotopy perturbation
method, we use the Taylor series of

1

1 − 𝑡
=

∞

∑

𝑛=0

𝑡
𝑛

,

1

1 + 𝑡
=

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛

.

(23)

The solution of (19) has the following form:

𝑈 (𝑥, 𝑡) = 𝑈
0
(𝑥, 𝑡) + 𝑝𝑈

1
(𝑥, 𝑡) ,

𝑉 (𝑥, 𝑡) = 𝑉
0
(𝑥, 𝑡) + 𝑝𝑉

1
(𝑥, 𝑡) .

(24)

Substituting (23) and (24) in (22) and equating the coeffi-
cients of like powers of 𝑝, we get the following set of equa-
tions:

𝑈
0
(𝑥, 𝑡) = 𝑈 (𝑥, 0) + 𝐽

𝛼

𝑡
𝑢
0
(𝑥, 𝑡) ,

𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽

𝛼

𝑡
V
0
(𝑥, 𝑡) ,

𝑈
1
(𝑥, 𝑡) = 𝐽

𝛼

𝑡
(−𝑢
0
(𝑥, 𝑡) + 𝑡

∞

∑

𝑛=0

𝑡
𝑛
𝜕
2

𝑈
0
(𝑥, 𝑡)

𝜕𝑥2

− 𝑈
0
(𝑥, 𝑡)

𝜕𝑈
0
(𝑥, 𝑡)

𝜕𝑥

+ (1 + 𝑡)

∞

∑

𝑛=0

𝑡
𝑛
𝜕 (𝑈
0
(𝑥, 𝑡) 𝑉

0
(𝑥, 𝑡))

𝜕𝑥
) ,

𝑉
1
(𝑥, 𝑡) = 𝐽

𝛼

𝑡
(−V
0
(𝑥, 𝑡) + 𝑡

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛
𝜕
2

𝑉
0
(𝑥, 𝑡)

𝜕𝑥2

+ 𝑉
0
(𝑥, 𝑡)

𝜕𝑉
0
(𝑥, 𝑡)

𝜕𝑥
− (1 − 𝑡)

×

∞

∑

𝑛=0

(−1)
𝑛

𝑡
𝑛
𝜕 (𝑈
0
(𝑥, 𝑡) 𝑉

0
(𝑥, 𝑡))

𝜕𝑥
) .

(25)

Assuming 𝑢
0
(𝑥, 𝑡) = ∑

∞

𝑛=0
𝑎
𝑛
(𝑥)𝑝
𝑛
(𝑡), V

0
(𝑥, 𝑡) =

∑
∞

𝑛=0
𝑏
𝑛
(𝑥)𝑝
𝑛
(𝑡), 𝑝
𝑛
(𝑡) = 𝑡

𝑛𝛼, 𝑈(𝑥, 0) = 𝑢(𝑥, 0), and 𝑉(𝑥,

0) = V(𝑥, 0) and solving the above equation for 𝑈
1
(𝑥, 𝑡) and

𝑉
1
(𝑥, 𝑡) lead to the result

𝑈
1
(𝑥, 𝑡) = (𝑥 − 𝑎

0
(𝑥))

𝑡
𝛼

Γ (𝛼 + 1)

+ (−𝑎
1
(𝑥) + 𝑏

0
(𝑥) + 𝑥

𝑑𝑏
0
(𝑥)

𝑑𝑥
+ 4𝑥)

×
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

+ ( − 𝑎
2
(𝑥) − 𝑎

0
(𝑥)

𝑑𝑎
0
(𝑥)

𝑑𝑥
+
𝑑
2

𝑎
0
(𝑥)

𝑑𝑥2

+
1

2
𝑏
1
(𝑥) +

1

2
𝑥
𝑑𝑏
1
(𝑥)

𝑑𝑥
+
𝑑𝑎
0
(𝑥)

𝑑𝑥
𝑏
0
(𝑥)

+ 𝑎
0
(𝑥)

𝑑𝑏
0
(𝑥)

𝑑𝑥
+ 2𝑎
0
(𝑥) + 2𝑥

𝑑𝑎
0
(𝑥)

𝑑𝑥

+ 2𝑏
0
(𝑥) + 2𝑥(

𝑑𝑏
0
(𝑥)

𝑑𝑥
) + 4𝑥)

×
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)

+ (4𝑥 + 2𝑎
0
(𝑥) + ⋅ ⋅ ⋅ + 2𝑥

𝑑𝑏
0
(𝑥)

𝑑𝑥
)

×
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅ ,

𝑉
1
(𝑥, 𝑡) = (−𝑥 − 𝑏

0
(𝑥))

𝑡
𝛼

Γ (𝛼 + 1)

+ (−𝑏
1
(𝑥) − 𝑎

0
(𝑥) − 𝑥

𝑑𝑎
0
(𝑥)

𝑑𝑥
+ 4𝑥)

×
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

+ ( − 𝑏
2
(𝑥) + 𝑏

0
(𝑥)

𝑑𝑏
0
(𝑥)

𝑑𝑥
−
𝑑
2

𝑎
0
(𝑥)

𝑑𝑥2

−
1

2
𝑎
1
(𝑥) −

1

2
𝑥
𝑑𝑎
1
(𝑥)

𝑑𝑥
−
𝑑𝑎
0
(𝑥)

𝑑𝑥
𝑏
0
(𝑥)

− 𝑎
0
(𝑥)

𝑑𝑏
0
(𝑥)

𝑑𝑥
+ 2𝑎
0
(𝑥) + 2𝑥(

𝑑𝑎
0
(𝑥)

𝑑𝑥
)

+ 2𝑏
0
(𝑥) + 2𝑥(

𝑑𝑏
0
(𝑥)

𝑑𝑥
) − 4𝑥)

×
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)

+ (4𝑥 − 2𝑎
0
(𝑥) + ⋅ ⋅ ⋅ − 2𝑥(

𝑑𝑏
0
(𝑥)

𝑑𝑥
))

×
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅ .

(26)

Vanishing 𝑈
1
(𝑥, 𝑡) and 𝑉

1
(𝑥, 𝑡) lets the coefficients 𝑎

𝑖
, 𝑏
𝑖
, 𝑖 =

0, 1, 2, . . . have the following values:
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𝑎
0
(𝑥) = 𝑥, 𝑎

1
(𝑥) = 2𝑥, 𝑎

2
(𝑥) = 3𝑥,

𝑎
3
(𝑥) = 4𝑥, 𝑎

4
(𝑥) = 5𝑥, 𝑎

5
(𝑥) = 6𝑥, . . . ,

𝑏
0
(𝑥) = −𝑥, 𝑏

1
(𝑥) = 2𝑥, 𝑏

2
(𝑥) = −3𝑥,

𝑏
3
(𝑥) = 4𝑥, 𝑏

4
(𝑥) = −5𝑥, 𝑏

5
(𝑥) = 6𝑥.

(27)

Therefore, we obtain the solutions of (19) as

𝑢 (𝑥, 𝑡) = 𝑥 + 𝑥
𝑡
𝛼

Γ (𝛼 + 1)
+ 2𝑥

Γ (𝛼 + 1) 𝑡
2𝛼

Γ (2𝛼 + 1)

+ 3𝑥
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)
+ 4𝑥

Γ (3𝛼 + 1) 𝑡
4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅

= 𝑥(1 +

∞

∑

𝑛=1

𝑛Γ ((𝑛 − 1) 𝛼 + 1) 𝑡
𝑛𝛼

Γ (𝑛𝛼 + 1)
) ,

V (𝑥, 𝑡) = 𝑥 − 𝑥
𝑡
𝛼

Γ (𝛼 + 1)
+ 2𝑥

Γ (𝛼 + 1) 𝑡
2𝛼

Γ (2𝛼 + 1)

− 3𝑥
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)
+ 4𝑥

Γ (3𝛼 + 1) 𝑡
4𝛼

Γ (4𝛼 + 1)
− ⋅ ⋅ ⋅

= 𝑥(1 +

∞

∑

𝑛=1

𝑛(−1)
𝑛

Γ ((𝑛 − 1) 𝛼 + 1) 𝑡
𝑛𝛼

Γ (𝑛𝛼 + 1)
) .

(28)

If we put 𝛼 → 1 in (28) or solve (19) with 𝛼 = 1, we obtain
the exact solution

𝑢 (𝑥, 𝑡) = 𝑥 (1 + 𝑡 + 𝑡
2

+ 𝑡
3

+ ⋅ ⋅ ⋅ )

=
𝑥

1 − 𝑡
,

V (𝑥, 𝑡) = 𝑥 (1 − 𝑡 + 𝑡
2

− 𝑡
3

+ ⋅ ⋅ ⋅ )

=
𝑥

1 + 𝑡
.

(29)

Example 2. Consider the following variable coefficient cou-
pled Burgers’ equation:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = −

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 2𝑒
2𝑡

𝑢 (𝑥, 𝑡)
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

− sin (2𝑡) 𝜕 (𝑢 (𝑥, 𝑡) V (𝑥, 𝑡))
𝜕𝑥

,

𝐷
𝛼

𝑡
V (𝑥, 𝑡) =

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
− 2𝑒
−2𝑡 cos (2𝑡) V (𝑥, 𝑡) 𝜕V (𝑥, 𝑡)

𝜕𝑥

+ cos (2𝑡) 𝜕 (𝑢 (𝑥, 𝑡) V (𝑥, 𝑡))
𝜕𝑥

,

(30)

subject to the initial condition

𝑢 (𝑥, 0) = V (𝑥, 0) = 𝑒
𝑥

. (31)

The exact solution for 𝛼 = 1 is 𝑢(𝑥, 𝑡) = 𝑒
𝑥−𝑡and V(𝑥, 𝑡) = 𝑒

𝑥+𝑡.

To obtain the solution of (30) byNHPM,we construct the
following homotopy:

(1 − 𝑝) (𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) − 𝑢

0
(𝑥, 𝑡))

+ 𝑝(𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) +

𝜕
2

𝑈 (𝑥, 𝑡)

𝜕𝑥2

− 2𝑒
2𝑡 sin (2𝑡) 𝑈 (𝑥, 𝑡)

𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥

+ sin (2𝑡) 𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) = 0,

(1 − 𝑝) (𝐷
𝛼

𝑡
𝑉 (𝑥, 𝑡) − V

0
(𝑥, 𝑡))

+ 𝑝(𝐷
𝛼

𝑡
𝑉 (𝑥, 𝑡) −

𝜕
2

𝑉 (𝑥, 𝑡)

𝜕𝑥2

+ 2𝑒
−2𝑡 cos (2𝑡) 𝑉 (𝑥, 𝑡)

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥

− cos (2𝑡) 𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) = 0.

(32)

Applying the inverse operator 𝐽𝛼
𝑡
of 𝐷𝛼
𝑡
on both sides of the

above equation, we obtain

𝑈 (𝑥, 𝑡) = 𝑈 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0
(𝑥, 𝑡)

− 𝑝𝐽
𝛼

𝑡
(𝑢
0
(𝑥, 𝑡) +

𝜕
2

𝑈 (𝑥, 𝑡)

𝜕𝑥2

− 2𝑒
2𝑡 sin (2𝑡) 𝑈 (𝑥, 𝑡)

𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥

+ sin (2𝑡) 𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) ,

𝑉 (𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽
𝛼

𝑡
V
0
(𝑥, 𝑡)

− 𝑝𝐽
𝛼

𝑡
(V
0
(𝑥, 𝑡) −

𝜕
2

𝑉 (𝑥, 𝑡)

𝜕𝑥2

+ 2𝑒
−2𝑡 cos (2𝑡) 𝑉 (𝑥, 𝑡)

𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥

− cos (2𝑡) 𝜕 (𝑈 (𝑥, 𝑡) 𝑉 (𝑥, 𝑡))

𝜕𝑥
) .

(33)

For solving system (33), by new homotopy perturbation
method, we use the Taylor series of

sin (2𝑡) =
∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)

2𝑛+1

(2𝑛 + 1)!
,

cos (2𝑡) =
∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)
2𝑛

(2𝑛)!
,
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exp (2𝑡) =
∞

∑

𝑛=0

(2𝑡)
𝑛

𝑛!
,

exp (−2𝑡) =
∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)
𝑛

𝑛!
.

(34)

The solution of (30) has the following form:

𝑈 (𝑥, 𝑡) = 𝑈
0
(𝑥, 𝑡) + 𝑝𝑈

1
(𝑥, 𝑡) ,

𝑉 (𝑥, 𝑡) = 𝑉
0
(𝑥, 𝑡) + 𝑝𝑉

1
(𝑥, 𝑡) .

(35)

Substituting (34) and (35) in (33) and equating the coefficients
of like powers of 𝑝, we get the following set of equations:

𝑈
0
(𝑥, 𝑡) = 𝑈 (𝑥, 0) + 𝐽

𝛼

𝑡
𝑢
0
(𝑥, 𝑡) ,

𝑉
0
(𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽

𝛼

𝑡
V
0
(𝑥, 𝑡) ,

𝑈
1
(𝑥, 𝑡)

= 𝐽
𝛼

𝑡
( − 𝑢

0
(𝑥, 𝑡) −

𝜕
2

𝑈
0
(𝑥, 𝑡)

𝜕𝑥2

+ 2

∞

∑

𝑛=0

(2𝑡)
𝑛

𝑛!

∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)

2𝑛+1

(2𝑛 + 1)!
𝑈
0
(𝑥, 𝑡)

𝜕𝑈
0
(𝑥, 𝑡)

𝜕𝑥

−

∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)

2𝑛+1

(2𝑛 + 1)!

𝜕𝑈
0
(𝑥, 𝑡) 𝑉

0
(𝑥, 𝑡)

𝜕𝑥
) ,

𝑉
1
(𝑥, 𝑡)

= 𝐽
𝛼

𝑡
( − V
0
(𝑥, 𝑡) +

𝜕
2

𝑉
0
(𝑥, 𝑡)

𝜕𝑥2

− 2

∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)
𝑛

𝑛!

∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)
2𝑛

(2𝑛)!

× 𝑉
0
(𝑥, 𝑡)

𝜕𝑉
0
(𝑥, 𝑡)

𝜕𝑥

+

∞

∑

𝑛=0

(−1)
𝑛 (2𝑡)
2𝑛

(2𝑛)!

𝜕𝑈
0
(𝑥, 𝑡) 𝑉

0
(𝑥, 𝑡)

𝜕𝑥
) .

(36)

Assuming 𝑢
0
(𝑥, 𝑡) = ∑

∞

𝑛=0
𝑎
𝑛
(𝑥)𝑝
𝑛
(𝑡), V

0
(𝑥, 𝑡) =

∑
∞

𝑛=0
𝑏
𝑛
(𝑥)𝑝
𝑛
(𝑡), 𝑝
𝑛
(𝑡) = 𝑡

𝑛𝛼, 𝑈(𝑥, 0) = 𝑢(𝑥, 0), and 𝑉(𝑥,

0) = V(𝑥, 0) and solving the above equation for 𝑈
1
(𝑥, 𝑡) and

𝑉
1
(𝑥, 𝑡) lead to the result

𝑈
1
(𝑥, 𝑡) = (−𝑎

0
(𝑥) − 𝑒

𝑥

)
𝑡
𝛼

Γ (𝛼 + 1)

+ (−𝑎
1
(𝑥) −

𝑑
2

𝑎
0
(𝑥)

𝑑𝑥2
)
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

+ ( − 𝑎
2
(𝑥) −

1

2

𝑑
2

𝑎
1
(𝑥)

𝑑𝑥2
− 2𝑏
0
(𝑥) 𝑒
𝑥

+ 2𝑎
0
(𝑥) 𝑒
𝑥

+ 2𝑒
𝑥
𝑑𝑎
0
(𝑥)

𝑑𝑥

− 2𝑒
𝑥

(
𝑑𝑏
0
(𝑥)

𝑑𝑥
) + 8𝑒

2𝑥

)
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)

+ (−𝑎
3
(𝑥) − 2𝑎

0
(𝑥) (

𝑑𝑏
0
(𝑥)

𝑑𝑥
)

+ ⋅ ⋅ ⋅ + 8𝑎
0
(𝑥) 𝑒
𝑥

)

×
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅ ,

𝑉
1
(𝑥, 𝑡) = (−𝑏

0
(𝑥) + 𝑒

𝑥

)
𝑡
𝛼

Γ (𝛼 + 1)

+ (− 𝑏
1
(𝑥) − 𝑏

0
(𝑥) 𝑒
𝑥

+ 𝑎
0
(𝑥) 𝑒
𝑥

+ 𝑒
𝑥
𝑑𝑎
0
(𝑥)

𝑑𝑥
− 𝑒
𝑥
𝑑𝑏
0
(𝑥)

𝑑𝑥

+
𝑑
2

𝑏
0
(𝑥)

𝑑𝑥2
+ 4𝑒
2𝑥

)
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

+ (−𝑏
2
(𝑥) −

1

2
𝑒
𝑥
𝑑𝑏
1
(𝑥)

𝑑𝑥

−
1

2
𝑏
1
(𝑥) 𝑒
𝑥

+
1

2
𝑎
1
(𝑥) 𝑒
𝑥

+ 𝑎
0
(𝑥)

𝑑𝑏
0
(𝑥)

𝑑𝑥
+ 4𝑏
0
(𝑥) 𝑒
𝑥

)

×
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)

+ (− 𝑏
1
(𝑥)

𝑑𝑏
0
(𝑥)

𝑑𝑥
−
1

3
𝑏
2
(𝑥) 𝑒
𝑥

+ ⋅ ⋅ ⋅ +
1

3

𝑑
2

𝑏
2
(𝑥)

𝑑𝑥2
)
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅ .

(37)

Vanishing 𝑈
1
(𝑥, 𝑡) and 𝑉

1
(𝑥, 𝑡) lets the coefficients 𝑎

𝑖
, 𝑏
𝑖
, 𝑖 =

0, 1, 2, . . . have the following values:

𝑎
0
(𝑥) = −𝑒

𝑥

, 𝑎
1
(𝑥) = 𝑒

𝑥

, 𝑎
2
(𝑥) = −

1

2!
𝑒
𝑥

,

𝑎
3
(𝑥) =

1

3!
𝑒
𝑥

, 𝑎
4
(𝑥) = −

1

4!
𝑒
𝑥

, . . . ,

𝑏
0
(𝑥) = 𝑒

𝑥

, 𝑏
1
(𝑥) = 𝑒

𝑥

, 𝑏
2
(𝑥) =

1

2!
𝑒
𝑥

,

𝑏
3
(𝑥) =

1

3!
𝑒
𝑥

, 𝑏
4
(𝑥) =

1

4!
𝑒
𝑥

, . . . .

(38)
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Therefore, we obtain the solutions of (30) as

𝑢 (𝑥, 𝑡)

= 𝑒
𝑥

− 𝑒
𝑥

𝑡
𝛼

Γ (𝛼 + 1)
+ 𝑒
𝑥
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

−
1

2!
𝑒
𝑥
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)
+

1

3!
𝑒
𝑥
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
− ⋅ ⋅ ⋅

= 𝑒
𝑥

(1 +

∞

∑

𝑛=1

(−1)
𝑛

Γ ((𝑛 − 1) 𝛼 + 1) 𝑡
𝑛𝛼

(𝑛 − 1)!Γ (𝑛𝛼 + 1)
) ,

V (𝑥, 𝑡)

= 𝑒
𝑥

+ 𝑒
𝑥

𝑡
𝛼

Γ (𝛼 + 1)
+ 𝑒
𝑥
Γ (𝛼 + 1) 𝑡

2𝛼

Γ (2𝛼 + 1)

+
1

2!
𝑒
𝑥
Γ (2𝛼 + 1) 𝑡

3𝛼

Γ (3𝛼 + 1)
+

1

3!
𝑒
𝑥
Γ (3𝛼 + 1) 𝑡

4𝛼

Γ (4𝛼 + 1)
+ ⋅ ⋅ ⋅

= 𝑒
𝑥

(1 +

∞

∑

𝑛=1

Γ ((𝑛 − 1) 𝛼 + 1) 𝑡
𝑛𝛼

(𝑛 − 1)!Γ (𝑛𝛼 + 1)
) .

(39)

If we put 𝛼 → 1 in (39) or solve (30) with 𝛼 = 1, we obtain
the exact solution

𝑢 (𝑥, 𝑡) = 𝑒
𝑥

(1 − 𝑡 +
𝑡
2

2!
−
𝑡
3

3!
+ ⋅ ⋅ ⋅)

= 𝑒
𝑥−𝑡

,

V (𝑥, 𝑡) = 𝑒
𝑥

(1 + 𝑡 +
𝑡
2

2!
+
𝑡
3

3!
+ ⋅ ⋅ ⋅)

= 𝑒
𝑥+𝑡

.

(40)

5. Concluding Remarks

In this paper, we have used a new homotopy perturbation
method for solving a system of two nonlinear time-fractional
partial differential equations. The NHPM for solving system
of variable coefficient coupled Burgers’ equation with time-
fractional derivative is based on two-component procedure
and polynomial initial condition. The Computations finally
lead to a set of nonlinear equationswith one unspecified value
in each equation. This set can be readily solved using Maple,
and putting these values into the first approximate solution
yields the analytical approximate solution. The present study
has confirmed that NHPM offers significant advantages
in terms of its straightforward applicability, computational
efficiency, and accuracy. Thus, we conclude that the new
method can be considered as an efficient method for solving
linear and nonlinear problems.
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