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A ratio-dependent predator-prey model with two delays is investigated. The conditions which ensure the local stability and the
existence of Hopf bifurcation at the positive equilibrium of the system are obtained. It shows that the two different time delays have
different effects on the dynamical behavior of the system. An example together with its numerical simulations shows the feasibility
of the main results. Finally, main conclusions are included.

1. Introduction

After the seminal models of Volterra and Lotka in the mid-
1920s, understanding the dynamics of predator-prey models
has been the focus of intense research in recent years. A great
deal of excellent and interesting results have been reported.
For example, Bhattacharyya and Mukhopadhyay [1] made
a detailed discussion on the local and global dynamical
behavior of an ecoepidemiological model, Kar and Ghorai
[2] analyzed the local stability, global stability, influence
of harvesting, and bifurcation of a delayed predator-prey
model with harvesting, and Chakraborty et al. [3] studied the
bifurcation and control of a bioeconomic model of a delayed
prey-predator model. Bhattacharyya and Mukhopadhyay [4]
focused on the spatial dynamics of nonlinear prey-predator
models with prey migration and predator switching, and
Chang and Wei [5] considered the bifurcation nature and
optimal control of a diffusive predator-prey system with time
delay and prey harvesting. For more related research, one can
see [6–26].

In 2011, Wang and Pei [27] investigated the stability and
Hopf bifurcation of the following delayed ratio-dependent
predator-prey system:

𝑥̇ (𝑡) = 𝑎𝑥 (𝑡 − 𝜏

1
) − 𝑏𝑥

2
−

𝑐𝑥𝑦

𝑚𝑦 + 𝑥

,

̇𝑦 (𝑡) =

𝑥 (𝑡 − 𝜏

2
) 𝑦 (𝑡 − 𝜏

2
)

𝑚𝑦 (𝑡 − 𝜏

2
) + 𝑥 (𝑡 − 𝜏

2
)

− 𝑑𝑦, (1)

where 𝑥(𝑡) and𝑦(𝑡) represent the densities of the prey and the
predator population at time 𝑡, respectively. The parameters
𝑎, 𝑘, 𝑐, 𝑚, 𝑓, and 𝑑 are positive constants that stand for
prey intrinsic growth rate, carrying capacity, capturing rate,
half capturing saturation constant, conversion rate, predator
and death rate, respectively. The constants 𝜏

1
≥ 0 and 𝜏

2
≥

0 denote the time delays due to gestation of the prey and
predator, respectively. For more detailed biological meaning
of the coefficients of system (1), one can see [27]. Applying
the Nyquist criteria and the theory of Hopf bifurcation,
Wang and Pei [27] considered the stability of the positive
equilibrium and the existence of the local Hopf bifurcation of
system (1). By means of the center manifold and normal form
theories, they obtained explicit formulae which determine
the stability, direction, and other properties of bifurcating
periodic solutions.

We would like to point out that Wang and Pei [27] inves-
tigated the local stability of system (1) under the assumption
𝜏

1
+ 𝜏

2
in a certain range and focused on the local Hopf

bifurcation by choosing the delay 𝜏
2
as bifurcation parameter.

A natural problem arising from this is what effect the different
delays 𝜏

1
and 𝜏
2
have on the dynamical behavior of system

(1). In [27], Wang and Pei did not analyze this aspect. Thus,
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Figure 1: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 0, 𝜏

2
= 2.2 < 𝜏

20
≈ 2.3345. The positive equilibrium 𝐸(5.61, 7.02) is

asymptotically stable. The initial value is (5.6, 7.45).

we think that it is important to deal with the effect of time
delay on the dynamics of system (1). To the best of the authors
knowledge, there are very few works’ which deal with this
topic. In this paper, we will further investigate the stability
and bifurcation of model (1) as a complementarity. It will
be shown that the two different time delays 𝜏

1
and 𝜏

2
have

different effects on the stability and Hopf bifurcation nature
of system (1).

The remainder of the paper is organized as follows.
In Section 2, we investigate the stability of the positive
equilibrium and the occurrence of local Hopf bifurcations. In
Section 3, numerical simulations are carried out to illustrate

the validity of the main results. Some main conclusions are
drawn in Section 4.

2. Stability and Local Hopf Bifurcations

In this section, we shall study the stability of the positive
equilibrium and the existence of local Hopf bifurcations.

From [27], we know that if the following conditions
(H1)

𝑑 < 𝑓 <

𝑑𝑐

𝑐 − 𝑚𝑎

,

𝑐 > 𝑚𝑎 or 𝑓 > 𝑑, 𝑐 ≤ 𝑚𝑎
(2)
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Figure 2: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 0, 𝜏

2
= 2.5 > 𝜏

20
≈ 2.3345. Hopf bifurcation occurs from the positive

equilibrium 𝐸(5.61, 7.02). The initial value is (5.6, 7.45).

hold, then system (1) has a unique equilibrium point 𝐸(𝑥∗,
𝑦

∗
), where

𝑥

∗
=

𝑎𝑘𝑙 − 𝑏

1
(𝑘 + 𝑙)

𝑎𝑘𝑙

, 𝑦

∗
=

𝑏

1

𝑘𝑙

.
(3)

Let 𝑥(𝑡) = 𝑥(𝑡) − 𝑥∗ and 𝑦(𝑡) = 𝑦(𝑡) − 𝑦∗ and still denote
𝑥(𝑡), 𝑦(𝑡) by 𝑥(𝑡), 𝑦(𝑡), respectively. Then (1) reads as

𝑥̇ (𝑡) = 𝑝

1
𝑥 + 𝑝

2
𝑦 + 𝑝

3
𝑥 (𝑡 − 𝜏

1
) ,

̇𝑦 (𝑡) = 𝑝

4
𝑦 + 𝑝

5
𝑥 (𝑡 − 𝜏

2
) + 𝑝

6
𝑦 (𝑡 − 𝜏

2
) ,

(4)

where

𝑝

1
=

𝑐 (𝑓

2
− 𝑑

2
) − 2𝑚𝑎𝑓

2

𝑚𝑓

2
,

𝑝

2
= −

𝑑

2
𝑐

𝑓

2
,

𝑝

3
= 𝑎,

𝑝

4
= −𝑑,

𝑝

5
=

(𝑓 − 𝑑)

2

𝑚𝑓

,

𝑝

6
=

𝑑

2

𝑓

. (5)

The characteristic equation of (4) is given by

det(
𝜆 − 𝑝

1
− 𝑝

3
𝑒

−𝜆𝜏1
−𝑝

2

−𝑝

5
𝑒

−𝜆𝜏2
𝜆 − 𝑝

4
− 𝑝

6
𝑒

−𝜆𝜏2

) = 0. (6)
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Figure 3: Bifurcation diagram with respect to the time delay 𝜏
2
for

system (57) with 𝜏
1
= 0.

That is,

𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 − 𝑝

3
𝜆𝑒

−𝜆𝜏1
− 𝑝

6
𝜆𝑒

−𝜆𝜏2
+ 𝑝

3
𝑝

4
𝑒

−𝜆𝜏1

+ (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) 𝑒

−𝜆𝜏2
+ 𝑝

3
𝑝

6
𝑒

−𝜆(𝜏1+𝜏2)
+ 𝑝

1
𝑝

4
= 0.

(7)

The following lemma is important for us to analyze the
distribution of roots of the transcendental equation (7).

Lemma 1 (see [28]). For the transcendental equation

𝑃 (𝜆, 𝑒

−𝜆𝜏1
, . . . , 𝑒

−𝜆𝜏𝑚
)

= 𝜆

𝑛
+ 𝑝

(0)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ [𝑝

(1)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
] 𝑒

−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝

(𝑚)

1
𝜆

𝑛−1
+ ⋅ ⋅ ⋅ + 𝑝

(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
] 𝑒

−𝜆𝜏𝑚
= 0,

(8)

as (𝜏
1
, 𝜏

2
, 𝜏

3
, . . . , 𝜏

𝑚
) vary, the sum of orders of the zeros of

𝑃(𝜆, 𝑒

−𝜆𝜏1
, . . . , 𝑒

−𝜆𝜏𝑚
) in the open right half plane can change,

and only a zero appears on or crosses the imaginary axis.

In the sequel, we consider five cases.

Case 1. 𝜏
1
= 𝜏

2
= 0. Equation (7) becomes

𝜆

2
− (𝑝

1
+ 𝑝

3
+ 𝑝

4
+ 𝑝

6
) 𝜆

2

+ (𝑝

3
𝑝

4
+ 𝑝

1
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
) = 0.

(9)

All roots of (9) have a negative real part if the following
condition holds:

(H2)

𝑝

1
+ 𝑝

3
+ 𝑝

4
+ 𝑝

6
< 0,

𝑝

3
𝑝

4
+ 𝑝

1
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
> 0.

(10)

Then the equilibrium point 𝐸(𝑥∗, 𝑦∗) is locally asymptot-
ically stable when the conditions (H1) and (H2) are satisfied.

Case 2. 𝜏
1
= 0, 𝜏
2
> 0. Equation (7) becomes

𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 + 𝑝

3
𝑝

4
+ 𝑝

1
𝑝

4

− (𝑝

6
𝜆 + 𝑝

2
𝑝

5
− 𝑝

1
𝑝

6
− 𝑝

3
𝑝

6
) 𝑒

−𝜆𝜏2
= 0.

(11)

For 𝜔 > 0, let 𝑖𝜔 be a root of (11). Then it follows that

(𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
) cos𝜔𝜏

2
− 𝑝

6
𝜔 sin𝜔𝜏

2

= 𝜔

2
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

4
,

𝑝

6
𝜔 cos𝜔𝜏

2
+ (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
) sin𝜔𝜏

2

= − (𝑝

1
+ 𝑝

3
+ 𝑝

4
) 𝜔

(12)

which is equivalent to

𝜔

4
+ 𝑟

1
𝜔

2
+ 𝑟

2
= 0, (13)

where

𝑟

1
= (𝑝

1
+ 𝑝

3
+ 𝑝

4
)

2

− 2 (𝑝

3
𝑝

4
− 𝑝

1
𝑝

4
) − 𝑝

2

6
,

𝑟

2
= (𝑝

3
𝑝

4
− 𝑝

1
𝑝

4
)

2

− (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
)

2

.

(14)

Define Δ
1
= 𝑟

2

1
− 4𝑟

2
. Following Cao and Xiao [29] and

Theorem 2.1 in Ge and Yan [30], we have the following result.

Lemma 2. If (H1) holds, then

(i) if 𝑟
1
< 0 and Δ

1
= 0, then (11) with 𝜏

2
= 𝜏

+

2𝑛
has a pair

of pure imaginary roots ±𝑖𝜔
+
;

(ii) if 𝑟
1
< 0 and Δ

1
> 0, then (11) with 𝜏

2
= 𝜏

+

2𝑛
has two

pairs of pure imaginary roots ±𝑖𝜔
+
and ±𝑖𝜔

−
, where

𝜏

±

2𝑛
=

1

𝜔

±

arccos [
(𝜔

2

±
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

4
) (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
) − 𝑝

6
(𝑝

1
+ 𝑝

3
+ 𝑝

4
) 𝜔

2

±

(𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
)

2

+ (𝑝

6
𝜔

±
)

2
] +

2𝑛𝜋

𝜔

±

(15)
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Figure 4: Trajectory portrait and phase portrait of system (57) with 𝜏
2
= 1.8, 𝜏

1
= 0.75 < 𝜏

10
≈ 0.8013. The positive equilibrium 𝐸(5.61, 7.02)

is asymptotically stable. The initial value is (5.6, 7.45).

and 𝜔
±
satisfies

𝜔

2

+
=

−𝑟

1
+ √Δ

1

2

, 𝜔

2

−
=

−𝑟

1
− √Δ

1

2

;

(16)

(iii) if 𝑟
1
> 0 or Δ

1
< 0, then all the roots of (11) have

negative real parts for 𝜏
2
≥ 0. From Lemma 2, one has

the following result.

Theorem 3. Let 𝜏±
2𝑛

be defined by (15). Under the condition
(H1),

(i) if 𝑟
1
< 0 and Δ

1
= 0, then the trivial solution (𝑥

∗
, 𝑦

∗
)

𝑇

of (11) is asymptotically stable for all 𝜏
2
∈ [0, 𝜏

20
) and

unstable for 𝜏
2
> 𝜏

20
. That is, Hopf bifurcation occurs

when 𝜏
2
= 𝜏

20
;

(ii) if 𝑟
1
> 0 or Δ

1
< 0, then there are Hopf bifurcations

near the trivial solution (𝑥
∗
, 𝑦

∗
)

𝑇 of (11)when 𝜏
2
= 𝜏

+

2𝑛

and 𝜏
2
= 𝜏

−

2𝑛
.

Case 3. 𝜏
1
> 0, 𝜏
2
= 0. Equation (7) takes the form

𝜆

2
− (𝑝

1
+ 𝑝

3
+ 𝑝

4
+ 𝑝

6
) 𝜆 + 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

1
𝑝

4

− (𝑝

3
𝜆 − 𝑝

3
𝑝

4
− 𝑝

3
𝑝

6
) 𝑒

−𝜆𝜏1
= 0.

(17)

For 𝜂 > 0, let 𝑖𝜂 be a root of (17). Then it follows that

(𝑝

3
𝑝

4
+ 𝑝

3
𝑝

6
) cos 𝜂𝜏

1
− 𝑝

3
𝜂 sin 𝜂𝜏

1

= 𝜂

2
+ 𝑝

2
𝑝

5
− 𝑝

1
𝑝

6
− 𝑝

1
𝑝

4
,
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Figure 5: Trajectory portrait and phase portrait of system (57) with 𝜏
2
= 1.8, 𝜏

1
= 0.98 > 𝜏

10
≈ 0.8013. Hopf bifurcation occurs from the

positive equilibrium 𝐸(5.61, 7.02). The initial value is (5.6, 7.45).

𝑝

3
𝜂 cos 𝜂𝜏

1
+ (𝑝

3
𝑝

4
+ 𝑝

3
𝑝

6
) sin 𝜂𝜏

1

= − (𝑝

1
+ 𝑝

4
+ 𝑝

6
) (18)

which is equivalent to

𝜂

4
+ 𝑠

1
𝜂

2
+ 𝑠

2
= 0, (19)

where
𝑠

1
= (𝑝

1
+ 𝑝

4
+ 𝑝

6
)

2

+ 2 (𝑝

2
𝑝

5
− 𝑝

1
𝑝

6
− 𝑝

1
𝑝

4
) − 𝑝

2

3
,

𝑠

2
= (𝑝

2
𝑝

5
− 𝑝

1
𝑝

6
− 𝑝

1
𝑝

4
)

2

− (𝑝

3
𝑝

4
+ 𝑝

3
𝑝

6
)

2

.

(20)

Define Δ
2
= 𝑠

2

1
− 4𝑠

2
. Following the Theorem 2.1 in Ge

and Yan [30], we have the following result.

Lemma 4. If (H1) holds, then

(i) if 𝑠
1
< 0 and Δ

2
= 0, then (17) with 𝜏

1
= 𝜏

+

1𝑛
has a pair

of pure imaginary roots ±𝑖𝜂
+
;

(ii) if 𝑠
1
< 0 and Δ

2
> 0, then (17) with 𝜏

1
= 𝜏

+

1𝑛
has two

pairs of pure imaginary roots ±𝑖𝜂
+
and ±𝑖𝜂

−
, where

𝜏

±

1𝑛
=

1

𝜂

±

arccos [
(𝜂

2

±
+ 𝑝

2
𝑝

5
− 𝑝

1
𝑝

6
− 𝑝

1
𝑝

4
) (𝑝

3
𝑝

4
+ 𝑝

3
𝑝

6
) − 𝑝

3
(𝑝

1
+ 𝑝

4
+ 𝑝

6
) 𝜂

±

(𝑝

3
𝑝

4
+ 𝑝

3
𝑝

6
)

2

+ (𝑝

3
𝜂

±
)

2
] +

2𝑛𝜋

𝜂

±

(21)
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Figure 6: Bifurcation diagram with respect to the time delay 𝜏
1
for

system (57) with 𝜏
2
= 1.8.

and 𝜂
±
satisfies

𝜂

2

+
=

−𝑠

1
+ √Δ

2

2

, 𝜂

2

−
=

−𝑠

1
− √Δ

2

2

;

(22)

(iii) if 𝑠
1
> 0 or Δ

2
< 0, then all the roots of (17) have

negative real parts for 𝜏
1
≥ 0.

From Lemma 4, we have the following result.

Theorem 5. Let 𝜏±
1𝑛

be defined by (21). Under the condition
(H1),

(i) if 𝑠
1
< 0 and Δ

2
= 0, then the trivial solution (𝑥

∗
, 𝑦

∗
)

𝑇

of (17) is asymptotically stable for all 𝜏
1
∈ [0, 𝜏

10
) and

unstable for 𝜏
1
> 𝜏

10
. That is, Hopf bifurcation occurs

when 𝜏
1
= 𝜏

10
;

(ii) if 𝑠
1
> 0 or Δ

2
< 0, then there are Hopf bifurcations

near the trivial solution (𝑥
∗
, 𝑦

∗
)

𝑇 of (17)when 𝜏
1
= 𝜏

+

1𝑛

and 𝜏
1
= 𝜏

−

1𝑛
.

Case 4. 𝜏
1
> 0, 𝜏

2
> 0. We consider (7) with 𝜏

2
in its

stable interval, by regarding 𝜏
1
as a parameter. Without loss

of generality, we consider system (1) under the assumptions
(H1) and (H2). Let 𝑖𝜂∗(𝜂∗ > 0) be a root of (7). Then we can
obtain

𝜂

∗4
+ 𝑘

1
𝜂

∗3
+ 𝑘

2
𝜂

∗2
+ 𝑘

3
𝜂

∗
+ 𝑘

4
= 0, (23)

where

𝑘

1
= 2𝑝

6
sin 𝜂∗𝜏

2
,

𝑘

2
= 𝑝

2

6
sin2𝜂∗𝜏

2
− 2 (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) cos 𝜂∗𝜏

2

+ (𝑝 − 1 + 𝑝

4
+ 𝑝

6
cos 𝜂∗𝜏

2
)

2

,

𝑘

3
= −2𝑝

6
(𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) sin 𝜂∗𝜏

2
cos 𝜂∗𝜏

2
,

𝑘

4
= 𝑝

6
(𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
)

2

+ (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
)

2sin2𝜂∗𝜏
2

+ 2 (𝑝

1
+ 𝑝

4
+ 𝑝

6
cos 𝜂∗𝜏

2
) (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) sin 𝜂∗𝜏

2

− (𝑝

3
+ 𝑝

4
+ 𝑝

3
𝑝

6
cos 𝜂∗𝜏

2
)

2

− (𝑝

3
𝜂 + 𝑝

3
𝑝

6
sin 𝜂∗𝜏

2
)

2

.

(24)

Denote

𝐻(𝜂

∗
) = 𝜂

∗4
+ 𝑘

1
𝜂

∗3
+ 𝑘

2
𝜂

∗2
+ 𝑘

3
𝜂

∗
+ 𝑘

4
. (25)

Assume that
(H3)

𝑘

4
< 0. (26)

It is easy to check that 𝐻(0) < 0 if (H5) holds and
lim
𝜂
∗
→+∞

𝐻(𝜂

∗
) = +∞. We can obtain that (25) has

finite positive roots 𝜂∗
1
, 𝜂

∗

2
, . . . , 𝜂

∗

𝑛
. For every fixed 𝜂∗

𝑖
, 𝑖 =

1, 2, 3, . . . , 𝑘, there exists a sequence {𝜏𝑗
1𝑖
| 𝑗 = 1, 2, 3, . . .}, such

that (25) holds. Let

𝜏

10
= min {𝜏𝑗

1𝑖
| 𝑖 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2, . . .} . (27)

When 𝜏
1
= 𝜏

10
, (7) has a pair of purely imaginary roots

±𝑖𝜂

∗ for 𝜏
2
∈ [0, 𝜏

20
).

In the following, we assume that
(H4)

[

𝑑 (Re 𝜆)
𝑑𝜏

1

]

𝜆=𝑖𝜂
∗

̸= 0. (28)

Thus, by the general Hopf bifurcation theorem for FDEs
in Hale [31], we have the following result on the stability and
Hopf bifurcation in system (1).

Theorem 6. For system (1), suppose that (H1), (H2), (H3),
and (H4) are satisfied and 𝜏

2
∈ [0, 𝜏

20
). Then the positive

equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) is asymptotically stable when 𝜏

1
∈

[0, 𝜏

10
), and system (1) undergoes a Hopf bifurcation at the

positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) when 𝜏

1
= 𝜏

10
.

Case 5. 𝜏
1
> 0, 𝜏

2
> 0. We consider (7) with 𝜏

1
in its

stable interval, by regarding 𝜏
2
as a parameter. Without loss

of generality, we consider system (1) under the assumptions
(H1) and (H2). Let 𝑖𝜔∗(𝜔∗ > 0) be a root of (7). Then we can
obtain

𝜔

∗4
+ 𝑡

1
𝜔

∗3
+ 𝑡

2
𝜔

∗2
+ 𝑡

3
𝜔

∗
+ 𝑡

4
= 0, (29)

where

𝑡

1
= 2𝑝

3
sin𝜔∗𝜏

1
,

𝑡

2
= 𝑝

2

3
sin2𝜔∗𝜏

1
− 2𝑝

3
𝑝

4
cos𝜔∗𝜏

1

− (𝑝

1
+ 𝑝

4
+ 𝑝

3
cos𝜔∗𝜏

1
)

2

,

𝑡

3
= 2𝑝

3
𝑝

4
(𝑝

1
+ 𝑝

4
+ 𝑝

3
sin𝜔∗𝜏

1
) sin𝜔∗𝜏

1
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Figure 7: Trajectory portrait and phase portrait of system (57) with 𝜏
2
= 0, 𝜏

1
= 0.90 < 𝜏

10
≈ 0.9122. The positive equilibrium 𝐸(5.61, 7.02)

is asymptotically stable. The initial value is (5.6, 8).

− 2𝑝

2

3
𝑝

4
sin𝜔∗𝜏

1
cos𝜔∗𝜏

1
,

𝑡

4
= (𝑝

3
𝑝

4
)

2sin2𝜔∗𝜏
2
− (𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
cos𝜔∗𝜏

1
)

2

− (𝑝

6
𝜔

∗
+ 𝑝

3
𝑝

6
sin𝜔∗𝜏

1
)

2

.

(30)

Denote

𝐻

∗
(𝜔

∗
) = 𝜔

∗4
+ 𝑡

1
𝜔

∗3
+ 𝑡

2
𝜔

∗2
+ 𝑡

3
𝜔

∗
+ 𝑡

4
. (31)

Obviously, 𝐻(0) < 0 if (H5) holds and
lim
𝜔
∗
→+∞

𝐻

∗
(𝜔

∗
) = +∞. We can obtain that (31) has

finite positive roots 𝜔

∗

1
, 𝜔

∗

2
, . . . , 𝜔

∗

𝑛
. For every fixed 𝜔

∗

𝑖
,

𝑖 = 1, 2, 3, . . . , 𝑘, there exists a sequence {𝜏𝑗
2𝑖
| 𝑗 = 1, 2, 3, . . .},

such that (31) holds. Let

𝜏

20
= min {𝜏𝑗

2𝑖
| 𝑖 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2, . . .} . (32)

When 𝜏
2
= 𝜏

20
, (7) has a pair of purely imaginary roots

±𝑖𝜔

∗ for 𝜏
1
∈ [0, 𝜏

10
).

In the following, we assume that

(H5)

[

𝑑(Re 𝜆)
𝑑𝜏

2

]

𝜆=𝑖𝜔
∗

̸= 0. (33)

In view of the general Hopf bifurcation theorem for FDEs
in Hale [31], we have the following result on the stability and
Hopf bifurcation in system (1).

Theorem 7. For system (1), assume that (𝐻1), (𝐻2), (𝐻3),
and (𝐻5) are satisfied and 𝜏

1
∈ [0, 𝜏

10
). Then the positive

equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) is asymptotically stable when 𝜏

2
∈

[0, 𝜏

20
), and system (1) undergoes a Hopf bifurcation at the

positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) when 𝜏

2
= 𝜏

20
.
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Figure 8: Trajectory portrait and phase portrait of system (57) with 𝜏
2
= 0, 𝜏

1
= 1.0 > 𝜏

10
≈ 0.9122. Hopf bifurcation occurs from the positive

equilibrium 𝐸

0
(5.61, 7.02). The initial value is (5.6, 7.45).

Case 6. 𝜏
1
= 𝜏

2
= 𝜏. Equation (7) becomes

𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 + 𝑝

1
𝑝

4

− [(𝑝

2
+ 𝑝

6
) 𝜆 − (𝑝 − 3𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
)] 𝑒

−𝜆𝜏

+ 𝑝

3
𝑝

6
𝜆𝑒

−2𝜆𝜏
= 0,

(34)

which is equivalent to

[𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 + 𝑝

1
𝑝

4
] 𝑒

𝜆𝜏

− [(𝑝

2
+ 𝑝

6
) 𝜆 − (𝑝

3
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
)]

+ 𝑝

3
𝑝

6
𝜆𝑒

−𝜆𝜏
= 0. (35)

When 𝜏 = 0, (35) becomes

𝜆

2
− (𝑝

1
+ 𝑝

3
+ 𝑝

4
+ 𝑝

6
) 𝜆

2

+ (𝑝

1
𝑝

4
+ 𝑝

3
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
+ 𝑝

3
𝑝

6
) = 0.

(36)
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Figure 9: Bifurcation diagram with respect to the time delay 𝜏
1
for

system (57) with 𝜏
2
= 0.

It is easy to see that if the condition (H2) holds, then all
roots of (36) have a negative real part. Then the equilibrium
point 𝐸(𝑥∗, 𝑦∗) is locally asymptotically stable when the
conditions (H1) and (H2) are satisfied.

For 𝜃 > 0, let 𝑖𝜃 be a root of (35). Then it follows that

(𝑝

1
𝑝

4
− 𝜃

2
+ 𝑝

3
𝑝

6
) cos 𝜃𝜏

2
+ (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
+ 𝜃

2
) sin 𝜃𝜏

= 𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
,

(𝑝

1
+ 𝑝

4
) 𝜃 cos 𝜃𝜏 + (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
+ 𝜃

2
) sin 𝜃𝜏

= − (𝑝

3
+ 𝑝

6
) 𝜃

(37)

which is equivalent to

sin 𝜃𝜏 =
(𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

1
+ 𝑝

4
) 𝜃 + (𝑝

3
+ 𝑝

6
) 𝜃 (𝑝

1
𝑝

4
− 𝜃

2
+ 𝑝

3
𝑝

6
)

[(𝑝

1
+ 𝑝

4
) 𝜃]

2

− (𝑝

3
𝑝

6
)

2

+ (𝑝

1
𝑝

4
− 𝜃

2
)

2
, (38)

cos 𝜃𝜏 =
(𝑝

3
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
+ 𝜃

2
) − (𝑝

3
+ 𝑝

6
) 𝜃 (𝑝

1
+ 𝑝

4
) 𝜃

[(𝑝

1
+ 𝑝

4
) 𝜃]

2

− (𝑝 − 3𝑝

6
)

2

+ (𝑝

1
𝑝

4
− 𝜃

2
)

2
. (39)

It follows from sin2𝜃𝜏 + cos2𝜃𝜏 = 1 that

[ (𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

1
+ 𝑝

4
) 𝜃

+ (𝑝

3
+ 𝑝

6
) 𝜃 (𝑝

1
𝑝

4
− 𝜃

2
+ 𝑝

3
𝑝

6
) ]

2

+ [(𝑝

3
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
+ 𝜃

2
)

− (𝑝

3
+ 𝑝

6
) 𝜃 (𝑝

1
+ 𝑝

4
) 𝜃]

2

= {[(𝑝

1
+ 𝑝

4
) 𝜃]

2

− (𝑝

3
𝑝

6
)

2

+ (𝑝

1
𝑝

4
− 𝜃

2
)

2

}

2

.

(40)

Then we have

𝜃

8
+ 𝑢

3
𝜃

6
+ 𝑢

2
𝜃

4
+ 𝑢

1
𝜃

2
+ 𝑢

0
= 0, (41)

where

𝑢

0
= [(𝑝

1
𝑝

4
)

2

− (𝑝

3
𝑝

6
)

2

]

2

− [(𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
)]

2

,

𝑢

1
= 2[(𝑝

1
𝑝

4
)

2

− (𝑝

3
𝑝

6
)

2

] [(𝑝

1
+ 𝑝

2
)

2

− 2𝑝

1
𝑝

4
]

2

− [(𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

1
+ 𝑝

4
)

+ (𝑝

3
+ 𝑝

6
) (𝑝

1
𝑝

4
+ 𝑝

3
𝑝

6
)]

− 2 (𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

1
+ 𝑝

4
)

× [(𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
)

+ (𝑝

3
+ 𝑝

6
) (𝑝

1
+ 𝑝

4
)] ,

𝑢

2
= 2 [(𝑝

1
𝑝

4
)

2

− (𝑝

3
𝑝

6
)

2

] + [(𝑝

1
+ 𝑝

2
)

2

− 2𝑝

1
𝑝

4
]

2

+ 2 [(𝑝

2
𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) (𝑝

1
+ 𝑝

4
)

+ (𝑝

3
+ 𝑝

6
) (𝑝

1
𝑝

4
+ 𝑝

3
𝑝

6
)] (𝑝

3
+ 𝑝

6
)

− [(𝑝 − 2𝑝

5
− 𝑝

3
𝑝

4
− 𝑝

1
𝑝

6
) + (𝑝

3
+ 𝑝

6
) (𝑝

1
+ 𝑝

4
)]

2

,

𝑢

3
= 2 [(𝑝

1
+ 𝑝

2
)

2

− 2𝑝

1
𝑝

4
] − (𝑝

3
+ 𝑝

6
)

2

.

(42)

Let 𝑧 = 𝜃2. Then (41) becomes

𝑧

4
+ 𝑢

3
𝑧

3
+ 𝑢

2
𝑧

2
+ 𝑢

1
𝑧 + 𝑢

0
= 0. (43)

Denote

ℎ (𝑧) = 𝑧

4
+ 𝑢

3
𝑧

3
+ 𝑢

2
𝑧

2
+ 𝑢

1
𝑧 + 𝑢

0
. (44)

Then

ℎ

󸀠
(𝑧) = 4𝑧

3
+ 3𝑢

3
𝑧

2
+ 2𝑢

2
𝑧 + 𝑢

1
. (45)
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Figure 10: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 0.5, 𝜏

2
= 0.5 < 𝜏

20
≈ 0.7723. The positive equilibrium 𝐸(5.61, 7.02)

is asymptotically stable. The initial value is (5.6, 7.45).

Set

4𝑧

3
+ 3𝑢

3
𝑧

2
+ 2𝑢

2
𝑧 + 𝑢

1
= 0. (46)

Let 𝑦 = 𝑧 + 𝑢
3
/4. Then (46) becomes

𝑦

3
+ 𝑝

1
𝑦 + 𝑞

1
= 0, (47)

where

𝑝

1
=

𝑢

2

2

−

3

16

𝑢

2

3
, 𝑞

1
=

𝑢

3

3

32

−

𝑢

3
𝑢

2

8

+

𝑢

1

4

.

(48)

Define

𝐷 = (

𝑞

1

2

)

2

+ (

𝑝

1

3

)

3

, 𝜎 =

−1 +
√
3

2

,

𝑦

1
=

3
√
−

𝑞

1

2

+

√

𝐷 +

3
√
−

𝑞

1

2

−

√

𝐷,

𝑦

2
=

3
√
−

𝑞

1

2

+

√

𝐷𝜎 +

3
√
−

𝑞

1

2

−

√

𝐷𝜎

2
,

𝑦

3
=

3
√
−

𝑞

1

2

+

√

𝐷𝜎

2
+

3
√
−

𝑞

1

2

−

√

𝐷𝜎,

𝑧

𝑖
= 𝑦

𝑖
−

𝑝

1

4

, 𝑖 = 1, 2, 3.

(49)
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Figure 11: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 0.5, 𝜏

2
= 1.6 > 𝜏

20
≈ 0.7723. Hopf bifurcation occurs from the

positive equilibrium 𝐸(5.61, 7.02). The initial value is (5.6, 7.45).

From [32, 33], we have the following result.

Lemma 8. If 𝑢
0
< 0, then (43) has at least one positive root.

Lemma 9. Assume that 𝑢
0
≥ 0. Then one has the following:

(i) if𝐷 ≥ 0, then (43)has positive roots if and only if 𝑧
1
> 0

and ℎ󸀠(𝑧
1
) < 0;

(ii) if𝐷 < 0, then (43) has positive roots if and only if there
exists at least one 𝑧∗ ∈ {𝑧

1
, 𝑧

2
, 𝑧

3
} such that 𝑧∗ > 0 and

ℎ

󸀠
(𝑧

∗
) ≤ 0.

Without loss of generality, we assume that (43) has four
positive roots, defined by 𝑧

1
, 𝑧
2
, 𝑧
3
, 𝑧
4
, respectively.Then (41)

has four positive roots

𝜃

1
= √𝑧1

, 𝜃

2
= √𝑧2

,

𝜃

3
= √𝑧3

, 𝜃

4
= √𝑧4

.

(50)

By (39), if we denote

𝜏

(𝑗)

𝑘
=

1

𝜃

𝑘

{arccos[
(𝑝

3
𝑝

4
+ 𝑝

1
𝑝

6
− 𝑝

2
𝑝

5
) (𝑝

3
𝑝

6
− 𝑝

1
𝑝

4
+ 𝜃

2
) − (𝑝

3
+ 𝑝

6
) 𝜃 (𝑝

1
+ 𝑝

4
) 𝜃

[(𝑝

1
+ 𝑝

4
) 𝜃]

2

− (𝑝 − 3𝑝

6
)

2

+ (𝑝

1
𝑝

4
− 𝜃

2
)

2
] + 2𝑗𝜋} , (51)
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Figure 12: Bifurcation diagram with respect to the time delay 𝜏
2
for

system (57) with 𝜏
1
= 0.5.

where 𝑘 = 1, 2, 3, 4; 𝑗 = 0, 1, . . ., then ±𝑖𝜃
𝑘
are a pair of purely

imaginary roots of (35) with 𝜏(𝑗)
𝑘
. Define

𝜏

0
= 𝜏

(0)

𝑘0
= min
𝑘∈{1,2,3,4}

{𝜏

(0)

𝑘
} , 𝜃

0
= 𝜃

𝑘0
. (52)

Based on above analysis, we have the following result.

Lemma 10. For 𝜏
1
= 𝜏

2
= 𝜏, if (H1) and (H2) hold, then all

roots of (1) have a negative real part when 𝜏 ∈ [0, 𝜏
0
), and (1)

admits a pair of purely imaginary roots ±𝜃
𝑘
𝑖when 𝜏 = 𝜏(𝑗)

𝑘
(𝑘 =

1, 2, 3, 4, 𝑗 = 0, 1, 2, . . .).

Let 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝜃(𝜏) be a root of (35) near 𝜏 = 𝜏(𝑗)
𝑘
, and

let 𝛼(𝜏(𝑗)
𝑘
) = 0 and 𝜃(𝜏(𝑗)

𝑘
) = 𝜃

𝑘
. Due to functional differential

equation theory, for every 𝜏(𝑗)
𝑘
, 𝑘 = 1, 2, 3, 4, 𝑗 = 0, 1, 2, . . .,

there exists 𝜀 > 0 such that 𝜆(𝜏) is continuously differentiable
in 𝜏 for |𝜏 − 𝜏(𝑗)

𝑘
| < 𝜀. Substituting 𝜆(𝜏) into the left-hand side

of (35) and taking derivative with respect to 𝜏, we have

[

𝑑𝜆

𝑑𝜏

]

−1

= −

[2𝜆 − (𝑝

1
+ 𝑝

4
)] 𝜆𝑒

𝜆𝜏
− (𝑝

2
+ 𝑝

6
) + 𝑝

3
𝑝

6
𝑒

−𝜆𝜏

𝜆 [𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 + 𝑝

1
𝑝

4
] 𝑒

𝜆𝜏
+ 𝑝

3
𝑝

6
𝜆

2
𝑒

−𝜆𝜏

−

𝜏

𝜆

.

(53)

We can easily obtain

[

𝑑 (Re 𝜆 (𝜏))
𝑑𝜏

]

−1

𝜏=𝜏
(𝑗)

𝑘

=−Re{
[2𝜆 − (𝑝

1
+ 𝑝

4
)] 𝜆𝑒

𝜆𝜏
− (𝑝

2
+ 𝑝

6
) + 𝑝

3
𝑝

6
𝑒

−𝜆𝜏

𝜆 [𝜆

2
− (𝑝

1
+ 𝑝

4
) 𝜆 + 𝑝

1
𝑝

4
] 𝑒

𝜆𝜏
+ 𝑝

3
𝑝

6
𝜆

2
𝑒

−𝜆𝜏
}

𝜏=𝜏
(𝑗)

𝑘

= −Re{𝐴1 − 𝐴2𝑖
𝐵

1
+ 𝐵

2
𝑖

} = −

𝐴

1
𝐵

1
− 𝐴

2
𝐵

2

𝐵

2

1
+ 𝐵

2

2

, (54)

where

𝐴

1
= (𝑝

3
𝑝

6
− 2𝜃

2

𝑘
) cos 𝜃

𝑘
𝜏

(𝑗)

𝑘

+ (𝑝

1
+ 𝑝

4
) 𝜃

𝑘
sin 𝜃
𝑘
𝜏

(𝑗)

𝑘
− (𝑝

2
+ 𝑝

6
) ,

𝐴

2
= (𝑝

1
+ 𝑝

4
) 𝜃

𝑘
𝜏

(𝑗)

𝑘
cos 𝜃
𝑘
𝜏

(𝑗)

𝑘
+ (2𝜃

2

𝑘
+ 𝑝

3
𝑝

6
) sin 𝜃

𝑘
𝜏

(𝑗)

𝑘
,

𝐵

1
= (𝑝

1
+ 𝑝

4
) 𝜃

2

𝑘
cos 𝜃
𝑘
𝜏

(𝑗)

𝑘

− (𝑝

1
𝑝

4
− 𝜃

2

𝑘
) 𝜃

𝑘
sin 𝜃
𝑘
𝜏

(𝑗)

𝑘
− 𝑝

3
𝑝

6
𝜃

2

𝑘
,

𝐵

2
= (𝑝

1
+ 𝑝

4
) 𝜃

2

𝑘
sin 𝜃
𝑘
𝜏

(𝑗)

𝑘
+ (𝑝

1
𝑝

4
− 𝜃

2

𝑘
) 𝜃

𝑘
cos 𝜃
𝑘
𝜏

(𝑗)

𝑘

+ 𝑝

3
𝑝

6
𝜃

2

𝑘
sin 𝜃
𝑘
𝜏

(𝑗)

𝑘
.

(55)

Now we assume that

(H6)

𝐴

1
𝐵

1
̸= 𝐴

2
𝐵

2
. (56)

In view of the above analysis and the results of Kuang [33]
and Hale [31], we have the following.

Theorem 11. For 𝜏 = 0, if (𝐻1) and (H2) hold, then the
positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) of system (1) is asymptotically

stable for 𝜏 ∈ [0, 𝜏

0
). In addition to the conditions (H1)

and (H2), one further assumes that (H6) holds. Then system
(1) undergoes a Hopf bifurcation at the positive equilibrium
𝐸(𝑥

∗
, 𝑦

∗
) when 𝜏 = 𝜏(𝑗)

𝑘
, 𝑘 = 1, 2, 3, 4, 𝑗 = 0, 1, 2, . . ..

3. Computer Simulations

In this section, we present some numerical results of system
(1) to verify the analytical predictions obtained in the previ-
ous section. Let us consider the following system:

𝑥̇ (𝑡) = 2𝑥 (𝑡 − 𝜏

1
) − 0.12𝑥

2
−

2𝑥𝑦

0.77𝑦 + 𝑥

,

̇𝑦 (𝑡) =

0.205𝑥 (𝑡 − 𝜏

2
) 𝑦 (𝑡 − 𝜏

2
)

0.77𝑦 (𝑡 − 𝜏

2
) + 𝑥 (𝑡 − 𝜏

2
)

− 0.1𝑦,

(57)

which has a positive equilibrium 𝐸(5.61, 7.02). We can easily
obtain that (H1)–(H6) hold true. When 𝜏

1
= 0, applying

MATLAB 7.0, we can get 𝜔
0
≈ 0.5524, 𝜏

20
≈ 2.3345. The

positive equilibrium 𝐸(5.61, 7.02) is asymptotically stable for
𝜏

2
< 𝜏

20
≈ 2.3345 and unstable for 𝜏

2
> 𝜏

20
≈ 2.3345 which

is shown in Figure 1. When 𝜏
2
= 𝜏

20
≈ 2.3345, (57) under-

goes a Hopf bifurcation around the positive equilibrium
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Figure 13: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 0𝜏

2
= 𝜏 = 1.0 < 𝜏

0
≈ 1.2032. The positive equilibrium 𝐸(5.61, 7.02)

is asymptotically stable. The initial value is (5.6, 7.45).

𝐸(5.61, 7.02). That is, a small amplitude periodic solution
occurs near 𝐸(5.61, 7.02) when 𝜏

1
= 0 and 𝜏

2
is close to 𝜏

20
=

2.3345 which is shown in Figure 2. The bifurcation diagram
of the case is shown in Figure 3.

Let 𝜏
2
= 0.25 ∈ (0, 1.8), and choose 𝜏

1
as a parameter. We

have 𝜏
10
≈ 0.8013. Then the positive equilibrium is asymp-

totically stable when 𝜏
1
∈ [0, 𝜏

10
). The Hopf bifurcation value

of (57) is 𝜏
10
≈ 0.8013(see Figures 4 and 5) The bifurcation

diagram of the case is shown in Figure 6.
When 𝜏

2
= 0, using MATLAB 7.0, we obtain 𝜂

0
≈ 0.9056,

𝜏

10
≈ 0.9122.The positive equilibrium𝐸(5.61, 7.02) is asymp-

totically stable for 𝜏
1
< 𝜏

10
≈ 0.9122 and unstable for 𝜏

1
>

𝜏

10
≈ 0.9122 which is shown in Figure 7. When 𝜏

1
= 𝜏

10
≈

0.9122, (57) undergoes a Hopf bifurcation at the positive
equilibrium𝐸

0
(5.61, 7.02).That is, a small amplitude periodic

solution occurs around 𝐸(5.61, 7.02) when 𝜏
2
= 0 and 𝜏

1
is

close to 𝜏
10

= 0.9122 which is illustrated in Figure 8. The
bifurcation diagram of the case is shown in Figure 9.

Let 𝜏
1
= 0.5 ∈ (0, 0.9122), and choose 𝜏

2
as a parameter.

We have 𝜏
20

≈ 0.7723. Then the positive equilibrium is
asymptotically stable when 𝜏

2
∈ [0, 𝜏

20
).TheHopf bifurcation

value of (57) is 𝜏
20

≈ 0.7723 (see Figures 10 and 11). The
bifurcation diagram of the case is shown in Figure 12.

When 𝜏
1
= 𝜏

2
= 𝜏, using MATLAB 7.0, we obtain 𝜃

0
≈

0.8725, 𝜏
0
≈ 1.2032. The positive equilibrium 𝐸(5.61, 7.02)

is asymptotically stable for 𝜏 < 𝜏

0
≈ 1.2032 and unstable

for 𝜏 > 𝜏

0
≈ 1.2032 which is shown in Figure 13. When

𝜏 = 𝜏

0
≈ 1.2032, (57) undergoes a Hopf bifurcation at the

positive equilibrium 𝐸

0
(5.61, 7.02).That is, a small amplitude

periodic solution occurs around 𝐸(5.61, 7.02) when 𝜏 is
close to 𝜏

0
≈ 1.2032 which is illustrated in Figure 14. The

bifurcation diagram of the case is shown in Figure 15.
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Figure 14: Trajectory portrait and phase portrait of system (57) with 𝜏
1
= 𝜏

2
= 𝜏 = 1.25 > 𝜏

0
≈ 1.2032. Hopf bifurcation occurs from the

positive equilibrium 𝐸(5.61, 7.02). The initial value is (5.6, 7.45).

4. Conclusions

In this paper, we have investigated local stability of the
positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) and local Hopf bifurcation of

a ratio-dependent predator-prey model with two delays. It is
shown that if some conditions hold true and 𝜏

2
∈ [0, 𝜏

20
), then

the positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) is asymptotically stable

when 𝜏
1
∈ (0, 𝜏

10
). When the delay 𝜏

1
increases, the positive

equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) loses its stability and a sequence of

Hopf bifurcations occur at the positive equilibrium𝐸(𝑥

∗
, 𝑦

∗
).

That is, a family of periodic orbits bifurcates from the the
positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
). We also showed that if a

certain condition is satisfied and 𝜏

1
∈ [0, 𝜏

10
), then the

positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) is asymptotically stable when

𝜏

2
∈ (0, 𝜏

20
), when the delay 𝜏

2
increases, the positive

equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) loses its stability and a sequence of

Hopf bifurcations occur at the positive equilibrium𝐸(𝑥

∗
, 𝑦

∗
).

In case 𝜏
1
= 𝜏

2
= 𝜏, we have shown that if some conditions

are satisfied, and 𝜏 ∈ [0, 𝜏

0
), then the positive equilibrium

𝐸(𝑥

∗
, 𝑦

∗
) is asymptotically stable when 𝜏 ∈ (0, 𝜏

0
). When

the delay 𝜏 increases, the positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) loses

its stability and a sequence of Hopf bifurcations occur at
the positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
) which means a family of

periodic orbits bifurcates from the the positive equilibrium
𝐸(𝑥

∗
, 𝑦

∗
). Some numerical simulations verifying our theo-

retical results are carried out. In addition, we must point
out that although Ko and Ryu [6] have also investigated the
the existence of Hopf bifurcation for system (1) with respect
to positive equilibrium 𝐸(𝑥

∗
, 𝑦

∗
), it is assumed that 𝜏

1
+ 𝜏

2

in a certain range and choose the delay 𝜏
2
as bifurcation

parameter to consider the Hopf bifurcation nature. But what
effect different time delays have on the dynamics of system
(1)? Ko andRyu [6] did not deal with this issue. It is important
for us to consider what effect the two different time delays has
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Figure 15: Bifurcation diagram with respect to the time delay 𝜏 for
system (57) with 𝜏

1
= 𝜏

2
= 𝜏.

on the dynamical behavior of system (1). Thus we think that
our work generalizes the known results of Ko and Ryu [6]. In
addition, we can study the Hopf bifurcation nature of system
(1) by regarding the delay 𝜏

2
as bifurcation parameter.We will

further focus on the topic elsewhere in the near future.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (no. 11261010 and no. 11101126), the Soft Sci-
ence and Technology Program of Guizhou Province (no.
2011LKC2030), Natural Science and Technology Foundation
of Guizhou Province (J[2012]2100), Governor Foundation of
Guizhou Province ([2012]53) and Doctoral Foundation of
Guizhou University of Finance and Economics (2010).

References

[1] R. Bhattacharyya and B. Mukhopadhyay, “On an eco-epide-
miological model with prey harvesting and predator switching:
local and global perspectives,” Nonlinear Analysis: Real World
Applications, vol. 11, no. 5, pp. 3824–3833, 2010.

[2] T. K. Kar and A. Ghorai, “Dynamic behaviour of a delayed pre-
dator-prey model with harvesting,” Applied Mathematics and
Computation, vol. 217, no. 22, pp. 9085–9104, 2011.

[3] K. Chakraborty, M. Chakraborty, and T. K. Kar, “Bifurcation
and control of a bioeconomic model of a prey-predator system
with a time delay,”Nonlinear Analysis: Hybrid Systems, vol. 5, no.
4, pp. 613–625, 2011.

[4] R. Bhattacharyya and B. Mukhopadhyay, “Spatial dynamics
of nonlinear prey-predator models with prey migration and
predator switching,”Ecological Complexity, vol. 3, no. 2, pp. 160–
169, 2006.

[5] X. Chang and J. Wei, “Hopf bifurcation and optimal control in
a diffusive predator-prey system with time delay and prey har-
vesting,” Lithuanian Association of Nonlinear Analysts (LANA),
vol. 17, no. 4, pp. 379–409, 2012.

[6] W. Ko and K. Ryu, “Coexistence states of a nonlinear Lotka-
Volterra type predator-prey model with cross-diffusion,” Non-
linear Analysis: Theory, Methods & Applications, vol. 71, no. 12,
pp. e1109–e1115, 2009.

[7] S. Gao, L. Chen, and Z. Teng, “Hopf bifurcation and global
stability for a delayed predator-prey system with stage structure
for predator,” Applied Mathematics and Computation, vol. 202,
no. 2, pp. 721–729, 2008.

[8] T. K. Kar and U. K. Pahari, “Modelling and analysis of a prey-
predator systemwith stage-structure and harvesting,”Nonlinear
Analysis: Real World Applications, vol. 8, no. 2, pp. 601–609,
2007.

[9] Y. Kuang and Y. Takeuchi, “Predator-prey dynamics in models
of prey dispersal in two-patch environments,” Mathematical
Biosciences, vol. 120, no. 1, pp. 77–98, 1994.

[10] K. Li and J. Wei, “Stability and Hopf bifurcation analysis of
a prey-predator system with two delays,” Chaos, Solitons &
Fractals, vol. 42, no. 5, pp. 2606–2613, 2009.

[11] R. M. May, “Time delay versus stability in population models
with two and three trophic levels,” Ecology, vol. 54, no. 2, pp.
315–325, 1973.

[12] Prajneshu and P. Holgate, “A prey-predator model with switch-
ing effect,” Journal of Theoretical Biology, vol. 125, no. 1, pp. 61–
66, 1987.

[13] S. Ruan, “Absolute stability, conditional stability and bifurca-
tion in Kolmogorov-type predator-prey systems with discrete
delays,”Quarterly of AppliedMathematics, vol. 59, no. 1, pp. 159–
173, 2001.

[14] Y. Song and J. Wei, “Local Hopf bifurcation and global periodic
solutions in a delayed predator-prey system,” Journal of Mathe-
matical Analysis and Applications, vol. 301, no. 1, pp. 1–21, 2005.

[15] E. Teramoto, K. Kawasaki, and N. Shigesada, “Switching effect
of predation on competitive prey species,” Journal ofTheoretical
Biology, vol. 79, no. 3, pp. 303–315, 1979.

[16] R. Xu, M. A. J. Chaplain, and F. A. Davidson, “Periodic
solutions for a delayed predator-prey model of prey dispersal
in two-patch environments,” Nonlinear Analysis: Real World
Applications, vol. 5, no. 1, pp. 183–206, 2004.

[17] R. Xu and Z. Ma, “Stability and Hopf bifurcation in a ratio-
dependent predator-prey system with stage structure,” Chaos,
Solitons & Fractals, vol. 38, no. 3, pp. 669–684, 2008.

[18] T. Zhao, Y. Kuang, and H. L. Smith, “Global existence of peri-
odic solutions in a class of delayed Gause-type predator-prey
systems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 28, no. 8, pp. 1373–1394, 1997.

[19] X. Zhou, X. Shi, and X. Song, “Analysis of nonautonomous
predator-prey model with nonlinear diffusion and time delay,”
Applied Mathematics and Computation, vol. 196, no. 1, pp. 129–
136, 2008.

[20] N. Bairagi andD. Jana, “On the stability andHopf bifurcation of
a delay-induced predator-prey system with habitat complexity,”
Applied Mathematical Modelling, vol. 35, no. 7, pp. 3255–3267,
2011.

[21] L. Zhang and C. Lu, “Periodic solutions for a semi-ratio-
dependent predator-prey system with Holling IV functional
response,” Journal of Applied Mathematics and Computing, vol.
32, no. 2, pp. 465–477, 2010.

[22] X. Tian and R. Xu, “Global dynamics of a predator-prey
system with Holling type II functional response,” Lithuanian
Association ofNonlinearAnalysts (LANA), vol. 16, no. 2, pp. 242–
253, 2011.



Journal of Applied Mathematics 17

[23] M. Xiao and J. Cao, “Hopf bifurcation and non-hyperbolic
equilibrium in a ratio-dependent predator-prey model with
linear harvesting rate: analysis and computation,”Mathematical
and Computer Modelling, vol. 50, no. 3-4, pp. 360–379, 2009.

[24] Y. Xia, J. Cao, andM. Lin, “Discrete-time analogues of predator-
prey models with monotonic or nonmonotonic functional
responses,” Nonlinear Analysis: Real World Applications, vol. 8,
no. 4, pp. 1079–1095, 2007.

[25] Z. Cheng, Y. Lin, and J. Cao, “Dynamical behaviors of a partial-
dependent predator-prey system,” Chaos, Solitons and Fractals,
vol. 28, no. 1, pp. 67–75, 2006.

[26] M. Xiao and J. Cao, “Genetic oscillation deduced from Hopf
bifurcation in a genetic regulatory network with delays,”Math-
ematical Biosciences, vol. 215, no. 1, pp. 55–63, 2008.

[27] W.-Y. Wang and L.-J. Pei, “Stability and Hopf bifurcation of a
delayed ratio-dependent predator-prey system,” Acta Mechan-
ica Sinica, vol. 27, no. 2, pp. 285–296, 2011.

[28] S. Ruan and J. Wei, “On the zeros of transcendental functions
with applications to stability of delay differential equations
with two delays,”Dynamics of Continuous, Discrete & Impulsive
Systems A, vol. 10, no. 6, pp. 863–874, 2003.

[29] J. Cao and M. Xiao, “Stability and Hopf bifurcation in a
simplified BAM neural network with two time delays,” IEEE
Transactions on Neural Networks, vol. 18, no. 2, pp. 416–430,
2007.

[30] Z. Ge and J. Yan, “Hopf bifurcation of a predator-prey system
with stage structure and harvesting,”NonlinearAnalysis:Theory,
Methods & Applications, vol. 74, no. 2, pp. 652–660, 2011.

[31] J. Hale, Theory of Functional Differential Equations, vol. 3,
Springer, Berlin, Germany, 2nd edition, 1977.

[32] H. Hu and L. Huang, “Stability and Hopf bifurcation analysis
on a ring of four neurons with delays,”AppliedMathematics and
Computation, vol. 213, no. 2, pp. 587–599, 2009.

[33] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, vol. 191 of Mathematics in Science and
Engineering, Academic Press; INC, Boston, Mass, USA, 1993.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


