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Pawlak’s classical rough set theory has been applied in analyzing ordinary information systems and decision systems. However,
few studies have been carried out on the attribute selection problem in incomplete decision systems because of its complexity. It
is therefore necessary to investigate effective algorithms to deal with this issue. In this paper, a new rough conditional entropy-
based uncertainty measure is introduced to evaluate the significance of subsets of attributes in incomplete decision systems.
Furthermore, some important properties of rough conditional entropy are derived and three attribute selection approaches are
constructed, including an exhaustive search strategy approach, a heuristic search strategy approach, and a probabilistic search
strategy approach for incomplete decision systems. Moreover, several experiments on real-life incomplete data sets are conducted
to assess the efficiency of the proposed approaches. The final experimental results indicate that two of these approaches can give
satisfying performances in the process of attribute selection in incomplete decision systems.

1. Introduction

Rough set theory, proposed by Pawlak [1–3], is an extension
of set theory for the study of the intelligent systems char-
acterized by uncertain, imprecise, incomplete, and incon-
sistent data. It has been proven to be an innovative and
efficient mathematic tool, compared with other traditional
data processing strategies like PCA, neural networks, SVM
and so forth [4–7]. Unlike those methods, rough set theory
allows knowledge discovering process to be conducted auto-
matically by the data themselves without any dependence
on the prior knowledge. By using the concepts of upper
and lower approximations in rough set model to deal with
the data, knowledge hidden in information systems could
be discovered and expressed in the form of decision rules.
Rough set methodology presents a novel paradigm to deal
with uncertainty and then it has been successfully applied
into feature selection [8], rule extraction [9, 10], uncertainty
reasoning [11–13], decision evaluation [14], granular comput-
ing [15, 16], and so on.

It has been known that Pawlak’s classical rough set
model can only be used to tackle the problems of complete

information systems [17]. Nevertheless, because of the error
of data measuring, the impreciseness from the limitation
of data acquisition manners and other probable factors, in
the real database it is inevitable to meet the empty values,
which stand for the inaccessible information in the database
for the moment. In other words, the incomplete informa-
tion systems with missing values often exist in practical
knowledge acquisition. For now, two main approaches have
been proposed to cope with incomplete information systems.
One is indirect approach, which transforms an incomplete
information system into a complete information system by
eliminating objects with missing values or filling up missing
values with processed data. The other is direct approach,
which extends some basic notions in the classical rough set
models [18, 19]. In the past decade, with respect to different
requirements, various extensions of the rough set models
have been proposed, such as variable precision rough set
models [20, 21], rough set models based on tolerance relation
[22, 23], fuzzy rough set models [24], and weighted attributes
values rough set models [25].

In many fields such as data mining, machine learning,
and pattern recognition, data sets containing huge numbers
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of attributes can often be encountered. In such cases, feature
selection, or attribute reduction as we know, is necessary. It is
well known that irrelevant and redundant attributes in input
attributes not only complicate the problem but also degrade
solution accuracy [26, 27]. As a significant step among data
preprocessing procedures, the main objective of attribute
selection is to determine a minimal attribute subset, which
is also called reduction, from a problem domain, which can
retain a relatively high accuracy in replacing the original
attributes.

In comparison with the study of attribute selection
from complete information systems, scant effort has been
made to develop the tolerance relation-based methods of
attribute selection for incomplete information systems [28–
31]. Furthermore, there is a lack of the study of attribute
selection of incomplete decision systems, compared with the
above. As an effective method for attribute selection, rough
set can preserve the meaning of the attributes. The essence of
rough set approach for attribute selection is to find a subset
of attributes, which can predict the decision concepts as well
as the original attribute set. So far, there have been some
new widespread approaches which are usually considered to
develop the classical rough set theory as follows: tolerance-
based rough set model [32], covering rough set model
[33, 34], and dominance-based rough set model [35, 36].
However, they still have some inherent disadvantages and
are not suitable for attribute selection of incomplete decision
systems.

As we know, finding theminimal reduct in an incomplete
decision system is an NP-hard problem [37]. The general
method of solving this kind of problems is adopting a
heuristic search, which always depends on themeasurements
associated with the attributes [38]. However, little investiga-
tion has addressed the issue of measuring the uncertainty of
knowledge of the tolerance relation-based rough set models
in incomplete decision system until now. Hence, a further
study on uncertainty measures applicable for evaluating the
roughness and accuracy of a set in an incomplete decision
system is of both theoretical and practical importance.

The main aim of this paper is to construct an effective
uncertainty measure evaluating the roughness and accuracy
of knowledge to find a heuristic attribute selection algorithm
of incomplete decision systems. The rest of this paper is
organized as follows. In Section 2, we briefly review some
fundamental concepts concerning the main subject of this
paper. Section 3 introduces the concept of entropy-based
uncertainty measures and demonstrates several heuristic
attribute selection algorithms of incomplete decision systems.
Experimental comparisons and results are illustrated and
analyzed in Section 4. Finally, some conclusions are presented
in Section 5.

2. Preliminary

Classical rough set theory is originated by Qian et al. to deal
with imprecise or vague concepts [39]. In the last decade,
many generalized rough set models have been proposed

and developed. In this section, we will only introduce some
notions being used in this paper.

Pawlak’s classical rough set is to be defined at the first
place. An information system in rough set theory is a pair
(𝑈, 𝐴), where 𝑈 = {𝑥

1
, . . . , 𝑥

𝑛
} denotes a nonempty finite set

of objects, called universe of discourse, and 𝐴 = {𝑎
1
, . . . , 𝑎

𝑚
}

denotes a finite condition attribute set. With every attribute
𝑎 ∈ 𝐴 we associate a set 𝑉

𝑎
, of its values, called the

domain of 𝑎. Then, a data pattern (𝑎
1
(𝑥), . . . , 𝑎

𝑚
(𝑥)) can be

defined by the object 𝑥 and attributes from 𝐴. A decision
table, abbreviated as DT, is a special system with the form
(𝑈, 𝐶 ∪ {𝑑}), where 𝑑 ∉ 𝐶 denotes decision attribute. Let 𝑉

𝑑

denote the domain of decision attribute mapping 𝑑(𝑥). For
the application of pattern classification, the attribute set is just
the feature set and the universe of the discoursemay represent
a training pattern set or a sign set of training pattern sets.

Let 𝑅 be an equivalence relation on 𝑈, which means
relation 𝑅 satisfies reflexivity, symmetry, and transitivity.
Relation 𝑅 generates a partition 𝑈/𝑅 = IND(𝑅) = {[𝑥]

𝑅
|

𝑥 ∈ 𝑈} on 𝑈, where IND(𝑅) denotes the equivalence classes,
as well as indiscernible class, generated by the equivalence
relation 𝑅. These are also called elementary sets of 𝑅 in rough
set theory. Let 0 denote the empty sets. For any 𝑋 ⊆ 𝑈, we
can describe𝑋 by elementary sets of 𝑅 and the two sets

𝑅
−
(𝑋) = {[𝑥]𝑅 | [𝑥]𝑅 ⊆ 𝑋} ,

𝑅
−
(𝑋) = {[𝑥]𝑅 | [𝑥]𝑅 ∩ 𝑋 ̸= 0}

(1)

which are called the lower and upper approximations of 𝑋,
respectively. Then, the concepts of positive region,

POS (𝑋) = 𝑅
−
(𝑋) , (2)

negative region,

NEG (𝑋) = 𝑈 − 𝑅
−
(𝑋) , (3)

boundary region,

BN (𝑋) = 𝑅
−
(𝑋) − 𝑅

−
(𝑋)

= {[𝑥]𝑅 | [𝑥]𝑅 ∩ 𝑋 ̸= 0} − {[𝑥]𝑅 | [𝑥]𝑅 ⊆ 𝑋} ,
(4)

and approximation measure,

𝛼
𝑅
(𝑋) =

𝑅− (𝑋)


|𝑅− (𝑋)|
, (5)

are introduced, where𝑋 ̸= 0.The lower approximation, which
is equivalent to the positive region, is the complete set of the
objects in the universe that can be unambiguously classified
as belonging to the target set 𝑋. In contrast, the upper
approximation is the complete set of the objects that are
possibly members of the target set 𝑋. In other words, these
objects cannot be positively classified as belonging to the
complement of the target set 𝑋, that is, 𝑋. Furthermore,
the negative region contains the set of objects that can be
definitely ruled out as themembers of the target set𝑋. Finally,
the approximation measure 𝛼

𝑅
(𝑋) is intended to capture
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the degree of completeness of our knowledge about the target
set𝑋.

In most cases, some precise values of particular attributes
in an information system are not known, which means
missing or known partially. Then such a system is called an
incomplete information system and is still denoted without
any confusion by a pair (𝑈, 𝐴). As for an incomplete informa-
tion system, a missing value 𝑎(𝑥) may be represented by the
set of all the possible values for the corresponding attribute;
that is, 𝑎(𝑥) = 𝑉

𝑎
. Moreover, if 𝑎(𝑥) is known partially, for

instance, which implies that 𝑎(𝑥) cannot be 𝑏, 𝑐 ∈ 𝑉
𝑎
, then

the value of 𝑎(𝑥) is specified as 𝑉
𝑎
− {𝑏, 𝑐}.

In what follows, we only take the consideration of the
incomplete information systems with missing values. In such
a case, the special symbol “∗” is to be used to indicate that the
specific value of an attribute is missing. Let 𝑆 = (𝑈, 𝐴𝑇) be
an incomplete information system. Each subset of attributes
𝐴 ⊆ 𝐴𝑇 determines a similarity relation

SIM (𝐴) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐴,

𝑎 (𝑥) = 𝑎 (𝑦) ∪ 𝑎 (𝑥) = ∗ ∪ 𝑎 (𝑦) = ∗} .
(6)

The incomplete information system can be described by a set-
valued information system with 𝑎(𝑥) = 𝑉

𝑎
when 𝑎(𝑥) = ∗. In

such a case, the similarity relation SIM(𝐴) can be equivalently
defined as

SIM (𝐴) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐴, 𝑎 (𝑥) ∩ 𝑎 (𝑦) ̸= 0} .

(7)

With the similarity relation SIM(𝐴), two objects are con-
sidered to be possibly indiscernible in terms of the values
of attributes 𝐴. Furthermore, a similarity relation satisfies
reflexive and symmetric, butmay not be transitive, so it is one
of the tolerance relations.

3. Rough Entropy-Based Uncertainty Measures

In this section, the concept of rough entropy is introduced
to measure the uncertainty or roughness of knowledge in
incomplete information systems. And then, some rough
entropy-based uncertainty measures are presented in incom-
plete information systems and incomplete decision systems.
Some important properties concerning the uncertainty mea-
sures are derived, respectively, and the relationship among
them is discussed as well.

For a given information system, we need to assess its
uncertainty or roughness for a target object or a target
decision. A form of uncertainty measure, which is called
rough entropy, has been mentioned in rough sets, rough
relational databases, and information systems to calculate the
roughness of knowledge. The following definition gives the
description of the rough entropy in incomplete information
systems.

3.1. Rough Entropy in IIS and IDS. Let IIS = (𝑈, 𝐴) denote
an incomplete information system with ∗ ∈ 𝑉 and 𝑃 ⊆ 𝐴,
and 𝑈/SIM(𝑃) = {𝑆

𝑃
(𝑢
1
), 𝑆
𝑃
(𝑢
2
), . . . , 𝑆

𝑃
(𝑢
|𝑈|
)}. According to

Shannon’s theory of information entropy, the rough entropy
of knowledge 𝑃 on 𝑈 is denoted by

EN (𝑃) = −
1

|𝑈|

|𝑈|

∑
𝑖=1

log
2

1
𝑆𝑃 (𝑢𝑖)


, (8)

where 1/|𝑆
𝑃
(𝑢
𝑖
)| represents the probability of an element

within the tolerance class 𝑆
𝑃
(𝑢
𝑖
) [40].

Let IIS = (𝑈, 𝐴) be an incomplete information system,
with 𝑃,𝑄 ⊆ 𝐴. If there exists a one-to-one onto function ℎ :

𝑈/SIM(𝑃) → 𝑈/SIM(𝑄) such that |ℎ(𝑆
𝑃
(𝑢
𝑖
))| = |𝑆

𝑄
(𝑢
𝑖
)| =

|𝑆
𝑃
(𝑢
𝑖
)| for any 𝑢

𝑖
∈ 𝑈, then EN(𝑃) = EN(𝑄). Therefore, the

rough entropy of knowledge is invariant with respect to the
different set of tolerance classes that are size isomorphic.

Let IDS = (𝑈, 𝐶 ∪ {𝑑}) denote an incomplete decision
system with ∗ ∈ 𝑉

𝐶
. For any subset of condition attributes

𝐵 ⊆ 𝐶, a tolerance relation 𝑇, which is in generalized form of
the former similarity relation, can be defined as

𝑇
𝐵
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐵,

𝑎 (𝑥) = 𝑎 (𝑦) ∪ 𝑎 (𝑥) = ∗ ∪ 𝑎 (𝑦) = ∗} .
(9)

Then, the tolerance class of an object 𝑥 with respect to an
attribute set 𝐵 is defined as

𝑇
𝐵
(𝑥) = {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ 𝑇

𝐵
} . (10)

Obviously, relation 𝑇 is reflexive and symmetric, but may not
be transitive.

Definition 1. Let IDS = (𝑈, 𝐶∪ {𝑑}), ∗ ∈ 𝑉
𝐶
be an incomplete

decision system, then the generalized decision 𝜕
𝐵
= 𝑈 → 𝑉

𝑑

is defined as follows:

𝜕
𝐵
(𝑥) = {𝑢 | 𝑦 ∈ 𝑇

𝐵
(𝑥) ∩ 𝑢 = 𝑑 (𝑦)} . (11)

Definition 2. Let IDS = (𝑈, 𝐶∪{𝑑}), ∗ ∈ 𝑉
𝐶
be an incomplete

decision system. Let 𝜕
𝐵

= 𝑈 → 𝑉
𝑑
be the generalized

decision function. If |𝜕
𝐵
(𝑥)| = 1 for any 𝑥 ∈ 𝑈, then the

incomplete decision is consistent, which implies that it is
deterministic and definite, where | ⋅ | denotes the number of
the elements of the set.

In what follows, we give an example, which was
firstly shown by Kryszkiewicz [31], to demonstrate how
tolerance relationship works in a specific incomplete
decision system. Given an incomplete decision system
shown in Table 1, where 𝑈 = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
},

𝐶 = {Price,Mileage, Size,Max-speed} = {𝑃,𝑀, 𝑆, 𝑋}



4 Mathematical Problems in Engineering

Table 1: An example of incomplete decision system.

Car Price Mileage Size Max-speed Decision
1 High High Full Low Good
2 Low ∗ Full Low Good
3 ∗ ∗ Compact High Poor
4 High ∗ Full High Good
5 ∗ ∗ Full High Excellent
6 Low High Full ∗ Good

and 𝑑 = Acceleration, and 𝑈/IND(𝑑) = {𝑆Good, 𝑆Poor, 𝑆Excel}.
By definition, we have

𝑇
𝐶
(𝑢
1
) = {𝑢

1
} , 𝑇

𝐶
(𝑢
1
∩ 𝑑Good) = {𝑢

1
} ,

𝑇
𝐶
(𝑢
1
∩ 𝑑Poor) = 𝑇

𝐶
(𝑢
1
∩ 𝑑Excellent) = 0,

𝑇
𝐶
(𝑢
2
) = {𝑢

2
, 𝑢
6
} , 𝑇

𝐶
(𝑢
2
∩ 𝑑Good) = {𝑢

2
, 𝑢
6
} ,

𝑇
𝐶
(𝑢
2
∩ 𝑑Poor) = 𝑇

𝐶
(𝑢
2
∩ 𝑑Excellent) = 0,

𝑇
𝐶
(𝑢
3
) = {𝑢

3
} , 𝑇

𝐶
(𝑢
3
∩ 𝑑Poor) = {𝑢

3
} ,

𝑇
𝐶
(𝑢
3
∩ 𝑑Good) = 𝑇

𝐶
(𝑢
3
∩ 𝑑Excellent) = 0,

𝑇
𝐶
(𝑢
4
) = {𝑢

4
, 𝑢
5
} , 𝑇

𝐶
(𝑢
4
∩ 𝑑Good) = {𝑢

4
} ,

𝑇
𝐶
(𝑢
4
∩ 𝑑Poor) = 0, 𝑇

𝐶
(𝑢
4
∩ 𝑑Excellent) = {𝑢

5
} ,

𝑇
𝐶
(𝑢
5
) = {𝑢

4
, 𝑢
5
, 𝑢
6
} , 𝑇

𝐶
(𝑢
5
∩ 𝑑Good) = {𝑢

4
, 𝑢
6
} ,

𝑇
𝐶
(𝑢
5
∩ 𝑑Poor) = 0, 𝑇

𝐶
(𝑢
5
∩ 𝑑Excellent) = {𝑢

5
} ,

𝑇
𝐶
(𝑢
6
) = {𝑢

2
, 𝑢
5
, 𝑢
6
} , 𝑇

𝐶
(𝑢
6
∩ 𝑑Good) = {𝑢

2
, 𝑢
6
} ,

𝑇
𝐶
(𝑢
6
∩ 𝑑Poor) = 0, 𝑇

𝐶
(𝑢
6
∩ 𝑑Excellent) = {𝑢

5
} ,

𝑈

IND (𝑑)
= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
6
} , {𝑢
3
} , {𝑢
5
}} .

(12)

Consequently, we get |𝜕
𝐶
(𝑢
1
)| = |𝜕

𝐶
(𝑢
2
)| = |𝜕

𝐶
(𝑢
3
)| =

|𝜕
𝐶
(𝑢
4
)| = |𝜕

𝐶
(𝑢
5
)| = |𝜕

𝐶
(𝑢
6
)| = 1, which proves that the

incomplete decision system is consistent.

Definition 3. Let IDS = (𝑈, 𝐶 ∪ {𝑑}) be an incomplete
decision system. Let𝐵 ⊆ 𝐶, then the attribute set𝐵 is a relative
reduct of IDS, if and only if

(1) 𝜕
𝐵
(𝑥) = 𝜕

𝐴
(𝑥) for all 𝑥 ∈ 𝑈,

(2) 𝑏 ∈ 𝐵, 𝜕
𝐵−{𝑏}

̸= 𝜕
𝐶

are satisfied simultaneously.

3.2. Conditional Entropy Measure for Incomplete Decision
System. The rough entropy of knowledge in IIS and IDS has
been discussed above. In this subsection, we will introduce
a new form of conditional entropy and the mutual infor-
mation based on the tolerance relationship to measure the
uncertainty of knowledge in incomplete decision systems.
And then, some important properties will be deduced.

Definition 4. Given a consistent incomplete decision sys-
tem, IDS = (𝑈, 𝐶 ∪ {𝑑}) and 𝐵 ⊆ 𝐶. Let 𝑈/𝑇

𝐵
=

{𝑇
𝐵
(𝑥
1
), 𝑇
𝐵
(𝑥
2
), . . . , 𝑇

𝐵
(𝑥
|𝑈|
)}, 𝑈/𝑑 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑚
}. The

conditional entropy of 𝐵 to 𝑑 is defined as follows:

EN (𝑑 | 𝐵)

= −

|𝑈|

∑
𝑖=1

𝑝 (𝑇
𝐵
(𝑢
𝑖
))

×

|𝑈/𝑑|

∑
𝑗=1

𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑢
𝑖
)) log
2
𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑢
𝑖
)) ,

(13)

where

𝑝 (𝑇
𝐵
(𝑢
𝑖
)) =

𝑇𝐵 (𝑢𝑖)


|𝑈|
, 𝑖 = 1, 2, . . . , |𝑈| ,

𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑢
𝑖
)) =

𝑝 (𝑇
𝐵
(𝑢
𝑖
) , 𝑑
𝑗
)

𝑝 (𝑇
𝐵
(𝑢
𝑖
))

=


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


,

𝑖 = 1, 2, . . . , |𝑈| , 𝑗 = 1, 2, . . . , 𝑚.

(14)

Hence, we have

EN (𝑑 | 𝐵)

= −

|𝑈|

∑
𝑖=1

𝑝 (𝑇
𝐵
(𝑥
𝑖
))

|𝑈/𝑑|

∑
𝑗=1

𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑥
𝑖
)) log
2
𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑥
𝑖
))

= −

|𝑈|

∑
𝑖=1

𝑇𝐵 (𝑥𝑖)


|𝑈|

|𝑈/𝑑|

∑
𝑗=1


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)



=

|𝑈|

∑
𝑖=1

|𝑈/𝑑|

∑
𝑗=1


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗



|𝑈|
log
2

𝑇𝐵 (𝑥𝑖)



𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗



.

(15)

It is obvious that EN(𝑑 | 𝐵) = 0 when 𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗
= 0.

Proposition 5. Let 𝐼𝐷𝑆 = (𝑈, 𝐶 ∪ {𝑑}) be a consistent
incomplete decision system. Then, we have 𝐸𝑁(𝑑 | 𝐶) = 0.

Proof. Since IDS is consistent, we have 𝜕
𝐶
(𝑥
𝑖
) = 1, 𝑥

𝑖
∈ 𝑈.

This means that 𝑇
𝐶
(𝑥
𝑖
) ⊆ 𝑑
𝑗
, 𝑑
𝑗
∈ 𝑈/𝑑, 𝑥

𝑖
∈ 𝑈.

Hence, we have

𝑇
𝐶
(𝑥
𝑖
) ∩ 𝑑
𝑟
= 0, ∀𝑑

𝑟
∈
𝑈

𝑑
, 𝑑
𝑟

̸= 𝑑
𝑗
. (16)
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Consequently, we know that

EN (𝑑 | 𝐶)

= −

|𝑈|

∑
𝑖=1

𝑝 (𝑇
𝐶
(𝑥
𝑖
))

|𝑈/𝑑|

∑
𝑗=1

𝑝 (𝑑
𝑗
| 𝑇
𝐶
(𝑥
𝑖
)) log
2
𝑝 (𝑑
𝑗
| 𝑇
𝐶
(𝑥
𝑖
))

= −

|𝑈|

∑
𝑖=1

𝑇𝐶 (𝑥𝑖)


|𝑈|

|𝑈/𝑑|

∑
𝑗=1


𝑇
𝐶
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐶 (𝑥𝑖)


log
2


𝑇
𝐶
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐶 (𝑥𝑖)



= −

|𝑈|

∑
𝑖=1

𝑇𝐶 (𝑥𝑖)


|𝑈|
(0 + 0 + ⋅ ⋅ ⋅ + 1 log 1 + 0 + ⋅ ⋅ ⋅ + 0) = 0.

(17)

Proposition 6. Let 𝐼𝐷𝑆 = (𝑈, 𝐶 ∪ {𝑑}) be a consistent
incomplete decision system; 𝐵 ⊆ 𝐶 is a relative reduct of 𝐶
relative to decision attribute 𝑑, if and only if

(1) 𝐸𝑁(𝑑 | 𝐶) = 𝐸𝑁(𝑑 | 𝐵);

(2) 𝐵 ⊂ 𝐵, 𝐸𝑁(𝑑 | 𝐵) ̸= 𝐸𝑁(𝑑 | 𝐵).

Proof. (1) We first prove that if EN(𝑑 | 𝐶) = EN(𝑑 | 𝐵),
∀𝐵 ⊂ 𝐵, EN(𝑑 | 𝐵) ̸=EN(𝑑 | 𝐵) then 𝐵 ⊆ 𝐶 is a relative
reduct.

By Proposition 5, we know that EN(𝑑 | 𝐶) = 0. Then
EN(𝑑 | 𝐵) = EN(𝑑 | 𝐶) = 0.

Since

0 ≤

𝑇𝐵 (𝑥𝑖)


|𝑈|
≤ 1, 0 ≤


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


≤ 1, (18)

we have

𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


≤ 0. (19)

At the same time, we know that EN(𝑑 | 𝐵) = 0 if and only
if


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


= 0, ∀𝑥

𝑖
, 𝑑
𝑗
. (20)

This implies that there exists only one 𝑑
𝑗
∈ 𝑈/𝑑 such that

𝑇
𝐵
(𝑥
𝑖
) ⊆ 𝑑

𝑗
and 𝑇

𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑟
= 0, ∀𝑑

𝑟
∈ 𝑈/𝑑, 𝑑

𝑟
̸= 𝑑
𝑗
. This

means that |𝜕
𝐵
(𝑥
𝑖
)| = 1, ∀𝑥

𝑖
∈ 𝑈. Hence, we get 𝜕

𝐵
= 𝜕
𝐶
.

From ∀𝐵 ⊂ 𝐵, EN(𝑑 | 𝐵) ̸=EN(𝑑 | 𝐵), we have
EN(𝑑 | 𝐵) ̸= 0. It follows that there at least exist 𝑥

𝑖
, 𝑑
𝑗
, and

𝑑
𝑘
such that 𝑇

𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗

̸= 0 and 𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑘

̸= 0. This means
that |𝜕

𝐵
(𝑥
𝑖
)| ≥ 2. Hence, 𝜕

𝐵
 ̸= 𝜕
𝐵
.

(2) We then prove that if 𝐵 ⊆ 𝐶 is a relative reduct, then
EN(𝑑 | 𝐶) = EN(𝑑 | 𝐵), ∀𝐵 ⊂ 𝐵, EN(𝑑 | 𝐵) ̸=E (𝑑 | 𝐵) hold.

Since 𝐵 ⊆ 𝐶 is a relative reduct, we get 𝜕
𝐵
= 𝜕
𝐶
; that is,

|𝜕
𝐵
(𝑥
𝑖
)| = |𝜕

𝐶
(𝑥
𝑖
)| = 1, ∀𝑥

𝑖
∈ 𝑈. It follows that, ∀𝑥

𝑖
∈ 𝑈,

there exists 𝑑
𝑗
∈ 𝑈/𝑑 such that𝑇

𝐵
(𝑥
𝑖
) ⊆ 𝑑
𝑗
and𝑇
𝐵
(𝑥
𝑖
)∩𝑑
𝑟
=

0, ∀𝑑
𝑟
∈ 𝑈/𝑑, 𝑑

𝑟
̸= 𝑑
𝑗
.

It follows that

𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


=

𝑇𝐵 (𝑥𝑖)


𝑇𝐵 (𝑥𝑖)

log
2

𝑇𝐵 (𝑥𝑖)


𝑇𝐵 (𝑥𝑖)


= 1 log 1 = 0, ∀𝑥
𝑖
, 𝑑
𝑗
.

(21)

Therefore, this means that
|𝑈/𝑑|

∑
𝑗=1


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


= 0, ∀𝑥

𝑖
. (22)

Consequently, we know

EN (𝑑 | 𝐵)

= −

|𝑈|

∑
𝑖=1

𝑝 (𝑇
𝐵
(𝑥
𝑖
))

|𝑈/𝑑|

∑
𝑗=1

𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑥
𝑖
)) log
2
𝑝 (𝑑
𝑗
| 𝑇
𝐵
(𝑥
𝑖
))

= −

|𝑈|

∑
𝑖=1

𝑇𝐵 (𝑥𝑖)


|𝑈|

|𝑈/𝑑|

∑
𝑗=1


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)


log
2


𝑇
𝐵
(𝑥
𝑖
) ∩ 𝑑
𝑗


𝑇𝐵 (𝑥𝑖)



= −

|𝑈|

∑
𝑖=1

𝑇𝐵 (𝑥𝑖)


|𝑈|
⋅ 0 = 0.

(23)

For ∀𝐵 ⊂ 𝐵, we know that 𝜕
𝐵
 ̸= 𝜕
𝐵
; that is, there at least exists

𝑥
𝑖
∈ 𝑈 such that 𝜕

𝐵
(𝑥
𝑖
) ̸= 𝜕
𝐵
(𝑥
𝑖
). It follows that |𝜕

𝐵
(𝑥
𝑖
)| >

|𝜕
𝐵
(𝑥
𝑖
)| = 1. Thus, there at least exist 𝑑

𝑗
∈ 𝑈/𝑑 and 𝑑

𝑟
∈ 𝑈/𝑑,

𝑑
𝑟

̸= 𝑑
𝑗
such that

𝑇
𝐵
 (𝑥
𝑖
) ∩ 𝑑
𝑗

̸= 0,

𝑇
𝐵
 (𝑥
𝑖
) ∩ 𝑑
𝑟

̸= 0.
(24)

Then, we get EN(𝑑 | 𝐵) ̸=EN(𝑑 | 𝐵).
From parts (1) and (2), we finally prove that the theorem

holds.

4. Attribute Selection Approaches Based on
Rough Conditional Entropy for IDS

Two important steps are contained in the procedure of
attribute selection: evaluation of a candidate attribute subset
and search strategy through the attribute space, which are
all for finding the most significant attributes, that is, relative
reduct. Therefore, we use the conditional entropy discussed
previously in Section 3 to evaluate the attribute subset and a
measurement is defined as follows.

Definition 7. Given a consistent decision system IDS =

(𝑈, 𝐶 ∪ {𝑑}), let 𝐵 ⊆ 𝐶 and 𝑎 ∈ 𝐶 − 𝐵. Then, the significance
of attribute relative to 𝐵 is defined as

SIG (𝑎, 𝐵, 𝑑) = EN (𝑑 | 𝐵) − EN (𝑑 | 𝐵 ∪ {𝑎}) . (25)

This definition describes the increment of discernibility
power relative to the decision caused by involving attribute 𝑎.
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It implies that the larger the difference between EN(𝑑 | 𝐵)

and EN(𝑑 | 𝐵 ∪ {𝑎}) is, the more significant the specific
condition attribute 𝑎 is for condition attribute subset 𝐵.
Thus, it can be used as a new measurement for attribute
selection in incomplete decision system. According to this
newmeasurement, three attribute selection approaches based
on different search strategies are proposed, respectively, in the
following subsections.

4.1. Breadth-First: Exhaustive Search. Breadth-first is one of
earliest feature selection or attribute selection algorithms in
machine learning area. It begins with an empty attribute set
and carries out search processwith breadth-first strategy until
it finds aminimal subset that satisfies stop criterion. Since the
Breadth-first algorithm adopts an exhaustive search strategy,
it can guarantee an optimal solution [41].Then,we present the
Breadth-first approach for attribute selection of incomplete
decision system as shown in Algorithm 1.

Example 8. Given the incomplete decision system shown in
Table 2, we have

𝐶 = {𝑃,𝑀, 𝑆, 𝑋} ,

𝑈

𝑑
= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
6
} , {𝑢
3
} , {𝑢
5
}} ,

𝑇
𝐶
(𝑢
1
) = 𝑇
𝐶
(𝑢
2
) = 𝑇
𝐶
(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝐶
(𝑢
3
) = {𝑢

3
} ,

𝑇
𝐶
(𝑢
4
) = {𝑢

4
} ,

𝑇
𝐶
(𝑢
5
) = {𝑢

5
} .

(26)

According to the previous definition of rough conditional
entropy, we can simply get

EN (𝑑 | 𝐶) = − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+
1

6
∗ (1log

2
1) +

1

6
∗ (1log

2
1)] = 0.

(27)

Consequently, we can deduce other conditional entropy
values with respect to the different condition attributes in the
same way as follows:

𝑇
𝑃
(𝑢
1
) = 𝑇
𝑃
(𝑢
4
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
6
} ,

𝑇
𝑃
(𝑢
2
) = 𝑇
𝑃
(𝑢
3
) = 𝑇
𝑃
(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑃
(𝑢
5
) = {𝑢

2
, 𝑢
3
, 𝑢
5
, 𝑢
6
} ,

EN (𝑑 | {𝑃})

= − [2 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
)

+ 3 ∗
6

6
∗ (

4

6
log
2

4

6
+
1

6
log
2

1

6
+
1

6
log
2

1

6
)

+
4

6
∗ (

2

4
log
2

2

4
+
1

4
log
2

1

4
+
1

4
log
2

1

4
)]

= 5.9581,

𝑇
𝑀
(𝑢
1
) = 𝑇
𝑀
(𝑢
2
) = 𝑇
𝑀
(𝑢
3
) = 𝑇
𝑀
(𝑢
4
)

= 𝑇
𝑀
(𝑢
5
) = 𝑇
𝑀
(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

EN (𝑑 | {𝑀})

= − [6 ∗
6

6
∗ (

4

6
log
2

4

6
+
1

6
log
2

1

6
+
1

6
log
2

1

6
)]

= 7.5098,

𝑇
𝑆
(𝑢
1
) = 𝑇
𝑆
(𝑢
2
) = 𝑇
𝑆
(𝑢
4
) = 𝑇
𝑆
(𝑢
5
)

= 𝑇
𝑆
(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑆
(𝑢
3
) = {𝑢

3
} ,

EN (𝑑 | {𝑆})

= − [5 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
) +

1

6
∗ (1log

2
1)]

= 3.0080,

𝑇
𝑋
(𝑢
1
) = 𝑇
𝑋
(𝑢
2
) = 𝑇
𝑋
(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑋
(𝑢
3
) = 𝑇
𝑋
(𝑢
4
) = 𝑇
𝑋
(𝑢
5
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} ,

EN (𝑑 | {𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) + 3 ∗

3

6

∗ (
1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)]

= 2.3774.

(28)

Then, we calculate the rough conditional entropy values with
respect to different combinations of two condition attributes:

𝑇
𝑃,𝑀

(𝑢
1
) = 𝑇
𝑃,𝑀

(𝑢
4
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
6
} ,

𝑇
𝑃,𝑀

(𝑢
2
) = 𝑇
𝑃,𝑀

(𝑢
3
) = 𝑇
𝑃,𝑀

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑃,𝑀

(𝑢
5
) = {𝑢

2
, 𝑢
3
, 𝑢
5
, 𝑢
6
} ,

EN (𝑑 | {𝑃,𝑀})

= − [2 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
)
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Input: An incomplete decision system (𝑈, 𝐶 ∪ {𝑑}).
Output: An attribute selection result 𝑅.

(1) For every size = 0 to |𝐶|
(2) For all subset SelectAttr with |SelectAttr| = size
(3) If EN (𝑑 | SelectAttr) ̸=EN (𝑑 | 𝐶), go to Step 2, otherwise return 𝑅 = SelectAttr
(4) End
(5) End

Algorithm 1: Breadth-first.

Table 2: Another example of incomplete decision system.

Car Price Mileage Size Max-speed Decision
1 High High Full Low Good
2 ∗ ∗ Full Low Good
3 ∗ ∗ Compact High Poor
4 High ∗ Full High Good
5 Low ∗ Full High Excellent
6 ∗ High Full Low Good

+ 3 ∗
6

6
∗ (

4

6
log
2

4

6
+
1

6
log
2

1

6
+
1

6
log
2

1

6
)

+
4

6
∗ (

2

4
log
2

2

4
+
1

4
log
2

1

4
+
1

4
log
2

1

4
)]

= 5.9581,

𝑇
𝑃,𝑆

(𝑢
1
) = 𝑇
𝑃,𝑆

(𝑢
4
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
6
} ,

𝑇
𝑃,𝑆

(𝑢
2
) = 𝑇
𝑃,𝑆

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑃,𝑆

(𝑢
3
) = {𝑢

3
} ,

𝑇
𝑃,𝑆

(𝑢
5
) = {𝑢

2
, 𝑢
5
, 𝑢
6
} ,

EN (𝑑 | {𝑃, 𝑆})

= − [2 ∗
4

6
∗ (

4

4
log
2

4

4
)

+ 2 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
)

+
1

6
∗ (1log

2
1) +

3

6
∗ (

2

3
log
2

2

3
+
1

3
log
2

1

3
)]

= 1.6624,

𝑇
𝑃,𝑋

(𝑢
1
) = 𝑇
𝑃,𝑋

(𝑢
2
) = 𝑇
𝑃,𝑋

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑃,𝑋

(𝑢
3
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} ,

𝑇
𝑃,𝑋

(𝑢
4
) = {𝑢

3
, 𝑢
4
} ,

𝑇
𝑃,𝑋

(𝑢
5
) = {𝑢

3
, 𝑢
5
} ,

EN (𝑑 | {𝑃,𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
)

+
3

6
∗ (

1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 1.4591,

𝑇
𝑀,𝑆

(𝑢
1
) = 𝑇
𝑀,𝑆

(𝑢
2
) = 𝑇
𝑀,𝑆

(𝑢
4
) = 𝑇
𝑀,𝑆

(𝑢
5
)

= 𝑇
𝑀,𝑆

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑀,𝑆

(𝑢
3
) = {𝑢

3
} ,

EN (𝑑 | {𝑀, 𝑆})

= − [5 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
) +

1

6
∗ (1log

2
1)]

= 3.0080,

𝑇
𝑀,𝑋

(𝑢
1
) = 𝑇
𝑀,𝑋

(𝑢
2
) = 𝑇
𝑀,𝑋

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑀,𝑋

(𝑢
3
) = 𝑇
𝑀,𝑋

(𝑢
4
) = 𝑇
𝑀,𝑋

(𝑢
5
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} ,

EN (𝑑 | {𝑀,𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) + 3 ∗

3

6

∗ (
1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)]

= 2.3774,

𝑇
𝑆,𝑋

(𝑢
1
) = 𝑇
𝑆,𝑋

(𝑢
2
) = 𝑇
𝑆,𝑋

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑆,𝑋

(𝑢
3
) = {𝑢

3
} ,

𝑇
𝑆,𝑋

(𝑢
4
) = 𝑇
𝑆,𝑋

(𝑢
5
) = {𝑢

4
, 𝑢
5
} ,
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EN (𝑑 | {𝑆, 𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+2 ∗
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 0.6667.

(29)

Finally, we calculate the rough conditional entropy values
with respect to different combinations of three condition
attributes:

𝑇
𝑃,𝑀,𝑆

(𝑢
1
) = 𝑇
𝑃,𝑀,𝑆

(𝑢
4
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
6
} ,

𝑇
𝑃,𝑀,𝑆

(𝑢
2
) = 𝑇
𝑃,𝑀,𝑆

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝑇
𝑃,𝑀,𝑆

(𝑢
3
) = {𝑢

3
} ,

𝑇
𝑃,𝑀,𝑆

(𝑢
5
) = {𝑢

2
, 𝑢
5
, 𝑢
6
} ,

EN (𝑑 | {𝑃,𝑀, 𝑆})

= − [2 ∗
4

6
∗ (

4

4
log
2

4

4
)

+ 2 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
) +

1

6
∗ (1log

2
1)

+
3

6
∗ (

2

3
log
2

2

3
+
1

3
log
2

1

3
)] = 1.6624,

𝑇
𝑃,𝑀,𝑋

(𝑢
1
) = 𝑇
𝑃,𝑀,𝑋

(𝑢
2
) = 𝑇
𝑃,𝑀,𝑋

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑃,𝑀,𝑋

(𝑢
3
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} ,

𝑇
𝑃,𝑀,𝑋

(𝑢
4
) = {𝑢

3
, 𝑢
4
} ,

𝑇
𝑃,𝑀,𝑋

(𝑢
5
) = {𝑢

3
, 𝑢
5
} ,

EN (𝑑 | {𝑃,𝑀,𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
)

+
3

6
∗ (

1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 1.4591,

𝑇
𝑃,𝑆,𝑋

(𝑢
1
) = 𝑇
𝑃,𝑆,𝑋

(𝑢
2
) = 𝑇
𝑃,𝑆,𝑋

(𝑢
6
) = {𝑢

1
, 𝑢
2
, 𝑢
6
} ,

𝑇
𝑃,𝑆,𝑋

(𝑢
3
) = {𝑢

3
} ,

𝑇
𝑃,𝑆,𝑋

(𝑢
4
) = {𝑢

4
} ,

𝑇
𝑃,𝑆,𝑋

(𝑢
5
) = {𝑢

5
} ,

EN (𝑑 | {𝑃, 𝑆, 𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+
1

6
∗ (1log

2
1) +

1

6
∗ (1log

2
1)] = 0.

(30)

Since EN(𝑑 | {𝑃, 𝑆, 𝑋}) = EN(𝑑 | 𝐶) = 0, we obtain
the desired attribute set of selected {𝑃, 𝑆, 𝑋}, which is a
relative reduct of the original condition attribute set 𝐶. It
also means that the search procedure ends at this step and
it is not necessary to calculate the entropy value of the
last combination of three attributes {𝑀, 𝑆, 𝑋} anymore. The
detailed search procedure is illustrated in Figure 1.

4.2. Depth-First: Heuristic Search. We can also use heuristic
search or greed search to find attribute reduction. At the very
beginning, the candidate attribute subset is empty. Then, a
new attribute which can maximize the significance measure
is added to the selected attribute subset each time, until the
stop criterion is satisfied.Depth-first algorithm is fast, close to
optimal, and deterministic [42]. Here, we present the Depth-
first approach for incomplete decision system, as shown in
Algorithm 2.

Example 9. Given the incomplete decision system shown in
Table 2, we have

SelectAttr = 0,

unSelectAttr = 𝐶 = {𝑃,𝑀, 𝑆, 𝑋} ,

𝑈

𝑑
= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
6
} , {𝑢
3
} , {𝑢
5
}} ,

EN (𝑑 | {𝑃})

= − [2 ∗
5

6
∗ (

4

5
log
2

4

5
+
1

5
log
2

1

5
)

+ 3 ∗
6

6
∗ (

4

6
log
2

4

6
+
1

6
log
2

1

6
+
1

6
log
2

1

6
)

+
4

6
∗ (

2

4
log
2

2

4
+
1

4
log
2

1

4
+
1

4
log
2

1

4
)]

= 5.9581,

EN (𝑑 | {𝑀})

= − [6 ∗
6

6
∗ (

4

6
log
2

4

6
+
1

6
log
2

1

6
+
1

6
log
2

1

6
)]

= 7.5098,

EN (𝑑 | {𝑆})

= − [5 ∗
5

6
∗ (

4

5
∗ log
2

4

5
+
1

5
∗ log
2

1

5
) +

1

6
∗ (1log

2
1)]

= 3.0080,
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|SelectAttr| = 1

|SelectAttr| = 2

|SelectAttr| = 3

{P} ↔ 5.9581 {M}↔ 7.5098 {S}↔ 3.0080 {X}↔ 2.3774

{P,M}↔ 5.9581 {P, S}↔ 1.6624 {P, X}↔ 1.4591 {M, S}↔ 3.0080 {M,X}↔ 2.3774 {S, X}↔ 0.6667

{P, S, X}↔ 0 R = {P, S, X}{P,M, S}↔ 1.6624 {P,M,X}↔ 1.4591

EN (d | {P, S, X}) = EN (d | C) = 0

Figure 1: The flow chart of the Breadth-first algorithm.

Input: An incomplete decision system (𝑈, 𝐶 ∪ {𝑑}).
Output: A selected attribute subset 𝑅.

(1) Initialize SelectAttr = ⌀, unSelectAttr = 𝐶

(2) For every attribute 𝑎
𝑖
∈ unSelectAttr, SelectAttr = SelectAttr ∪ {𝑎

𝑖
},

calculate the tolerance class of object 𝑢
𝑖
, 𝑇Attr (𝑢𝑖)

(3) Calculate the conditional entropy EN (𝑑 | SelectAttr) = EN (𝑑 | SelectAttr ∪ {𝑎
𝑖
})

(4) Choose the attribute 𝑎 which minimizes EN (𝑑 | SelectAttr ∪ {𝑎}), that is
choose the attribute with the maximum significance measure SIG (𝑎, SelectAttr, 𝑑)

(5) SelectAttr = SelectAttr ∪ {𝑎}, unSelectAttr = unSelectAttr − {𝑎}

(6) If EN (𝑑 | SelectAttr) ̸=EN (𝑑 | 𝐶), go to Step 2, otherwise 𝑅 = SelecAttr
(7) End

Algorithm 2: Depth-first.

EN (𝑑 | {𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) + 3 ∗

3

6

∗ (
1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)] = 2.3774.

(31)

Since EN(𝑑 | {𝑋}) has the minimum conditional entropy
value, we choose the attribute𝑋 as one of selected attributes.
Therefore, we can get

SelectAttr = SelectAttr ∪ {𝑋} = {𝑋} ,

unSelectAttr = unSelectAttr − {𝑋} = {𝑃,𝑀, 𝑆} .
(32)

Since EN(𝑑 | {𝑋}) ̸=EN(𝑑 | 𝐶), we still need to add more
attributes to SelectAttr. On the basis of the rule of heuristic
search, we only need to test and compare the conditional
entropy values of the subsets in which the condition attribute
𝑋 is included:

EN (𝑑 | {𝑃,𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
)

+
3

6
∗ (

1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)

+
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 1.4591,

EN (𝑑 | {𝑀,𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) + 3 ∗

3

6

∗ (
1

3
log
2

1

3
+
1

3
log
2

1

3
+
1

3
log
2

1

3
)] = 2.3774,

EN (𝑑 | {𝑆, 𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+2 ∗
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 0.6667.

(33)

As previously mentioned, since EN (𝑑 | {𝑆, 𝑋}) is the
minimum, we choose the attribute 𝑆 as another selected
attribute. Thus we have

SelectAttr = SelectAttr ∪ {𝑆} = {𝑆, 𝑋} ,

unSelectAttr = unSelectAttr − {𝑆} = {𝑃,𝑀} .
(34)
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Input: An incomplete decision system (𝑈, 𝐶 ∪ {𝑑}) and MaxTries.
Output: A selected attribute subset 𝑅.

(1) Initialize SelectAttr = 𝐶

(2) For 𝑗 = 0 to MaxTries
(3) Randomly choose a subset of condition attributes 𝑆

𝑗

(4) If EN (𝑑 | 𝑆
𝑗
) = EN (𝑑 | 𝐶) and 𝑆𝑗


< |SelectAttr|

(5) SelectAttr = 𝑆
𝑗

(6) End
(7) 𝑅 = SelecAttr

Algorithm 3: LVF.

Since EN(𝑑 | {𝑆, 𝑋}) ̸=EN(𝑑 | 𝐶), it is still necessary to
choose more attributes to add to the selected attributes in
which attributes 𝑆,𝑋 are definitely included:

EN (𝑑 | {𝑃, 𝑆, 𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+
1

6
∗ (1log

2
1) +

1

6
∗ (1log

2
1)] = 0,

EN (𝑑 | {𝑀, 𝑆, 𝑋})

= − [3 ∗
3

6
∗ (

3

3
log
2

3

3
) +

1

6
∗ (1log

2
1)

+2 ∗
2

6
∗ (

1

2
log
2

1

2
+
1

2
log
2

1

2
)] = 0.6667.

(35)

Obviously, since EN(𝑑 | {𝑃, 𝑆, 𝑋}) is theminimum,we choose
the attribute 𝑃. Thus, we have

SelectAttr = SelectAttr ∪ {𝑃} = {𝑃, 𝑆, 𝑋} ,

unSelectAttr = unSelectAttr − {𝑃} = {𝑀} .
(36)

And since EN(𝑑 | {𝑃, 𝑆, 𝑋}) = EN(𝑑 | 𝐶) = 0, the stop
criterion is satisfied and the algorithm terminates. Hence, the
final result of attributes selection is𝑅 = {𝑃, 𝑆, 𝑋}.The detailed
procedure of the Depth-first algorithm is shown in Figure 2.

4.3. LVF: Probabilistic Search. Las Vegas algorithm is new
for attribute subset selection and can make probabilistic
choices of subsets in search of an optimal set. Las Vegas
Filter, which is abbreviated as LVF, is a probabilistic algorithm
where probabilities of generating any subset are equal [43].
In this paper, we use the investigated conditional entropy as
LVF’s evaluation measurement. It generates attribute subsets
randomly with equal probability and records the minimal
size of attributes subset satisfying the stop criterion of
maximum tries times. LVF is fast and efficient in reducing
the number of candidate features in the early stages and can
produce optimal solutions if the computing resources permit.
The LVF approach for attribute selection in incomplete
decision system is given, as shown in Algorithm 3.

5. Experiments

In this section, the performances of our attribute selection
algorithms given in previous section are demonstrated and
compared. Several real-life incomplete data sets from UCI
Repository of Machine Learning Database at the University
of California are used in our experiments.These experiments
are performed on a personal computer with Windows 7,
Intel (R) Core (TM) i3 CPU 2.13GHz, and 4GB RAM. The
objective of these experiments is to evaluate the effectiveness
and efficiency of the previous algorithms. The summary and
statistic of the experimental data sets are shown inTable 3 and
Figure 3, respectively.

Since some incomplete data sets contain continuous con-
dition attribute values, we conduct a discretization preprocess
to turn these continuous values into discrete ones before
carrying out attribute selection. The aim of this step is to
compress the data and reduce the time consumption of
subsequent attribute selection. The running time of each
algorithm is average CPU time, expressed in seconds.

In Breadth-first algorithm, we terminate the program
when it runs beyond 5000 seconds. Moreover, we set the
parameter MaxTries in LVF algorithm to variant values for
different incomplete data sets, according to their sizes. The
running time and the size of attribute selection results are
highly concerned with the choice of the parameter MaxTries.
It means that whenMaxTries grows, the running time of LVF
approach increases linearly and the size of selected attribute
subset decreases. Both of them for each attribute selection
approach are shown in Table 4. The running time of each
approach is the average CPU time, expressed in seconds. We
can easily find that Breadth-first approach takes much more
time, even more than 5000 seconds, to obtain an attribute
reduction, compared with the other two approaches. Three
data sets out of six are too large in scale to calculate in limited
time. Furthermore, it is also easy to be observed in Table 4
that Depth-first approach tends to select fewer attributes
than LVF approach. In other words, the size of attribute
subset selected by Depth-first approach intends to be smaller
than that of attribute subset selected by LVF approach. And
Depth-first approach consumes less time than the other
two approaches in most instances. The time consumptions
of Breadth-first approach, Depth-first approach, and LVF
approach for attribute selection are𝑂(2|𝐶| ⋅|𝑈|2), 𝑂(|𝐶|4|𝑈|2),
and𝑂(MaxTries ⋅ |𝐶||𝑈|2), respectively, where MaxTries, |𝐶|,
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SelectAttr = 0

{P} ↔ 5.9581 {M}↔ 7.5098 {S}↔ 3.0080 {X}↔ 2.3774

{P, X}↔ 1.4591 {M,X}↔ 2.3774 {S, X}↔ 0.6667

{M, S, X}↔ 0.6667 {P, S, X}↔ 0

EN (d | {P, S, X}) = EN (d | C) = 0

Figure 2: The flow chart of the Depth-first algorithm.
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Figure 3: The statistical result of experimental data sets.
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Table 3: The summary of experimental data sets.

Data sets Instances Condition attributes Missing values Decision classes Incomplete rate (%)
Lung cancer 32 56 5 3 0.28
Large soybean 307 35 712 19 6.63
Dermatology 366 34 8 6 0.06
Breast cancer 699 10 16 2 0.23
Credit 690 15 71 2 0.69
Hepatitis 155 19 167 2 5.67

Table 4: Size of selected attribute subsets and running time.

Data sets Breadth-first Depth-first LVF Full attr.
Size Time (s) Size Time (s) Size Time (s) MaxTries Size

Lung cancer 4 227.59 4 0.68 5 7.34 10000 56
Large soybean N/A >5000 14 80.99 23 806.38 5000 35
Dermatology N/A >5000 6 58.22 11 44.83 200 34
Breast cancer 5 367.37 5 51.59 5 91.29 100 10
Credit N/A >5000 7 89.94 9 90.75 100 15
Hepatitis 5 349.07 6 6.07 6 35.22 500 19

Table 5: Performance of attribute selection algorithms with SVM-
RBF classifier.

Data sets Classification accuracy (%)
Breadth-first Depth-first LVF Full attr.

Lung cancer 66.92 76.42 69.26 66.67
Large soybean N/A 95.21 94.74 92.98
Dermatology N/A 91.22 91.32 83.38
Breast cancer 97.11 97.11 96.18 95.69
Credit N/A 84.77 81.69 80.88
Hepatitis 83.75 85.00 82.50 78.75

and |𝑈| denote the MaxTries parameter in LVF approach, the
total numbers of the condition attributes, and instances in
incomplete data sets, respectively. The relationships between
incomplete data sets and the number of selected attributes,
the running time of attribute selection, are illustrated in
Figures 4 and 5.

The final part of our experiments is to compare and
evaluate the efficiency of the proposed algorithms in practical
classification tasks. For each of the six data sets in Table 5,
we employ the SVM-RBF classifier, which is one of the most
frequently used classifiers. We also apply the 10-fold cross-
validationmethod to estimate the classification accuracywith
respect to the reducts generated by the proposed algorithms.
In each fold, the redundant attributes from the current
training set are removed at the beginning, according to the
proposed algorithms. Then, the test set is classified by using
the rules generated from the training set. The final results of
classification accuracies are shown in Table 5. It can be seen
that, by using attribute selection algorithms, the classification
accuracies for incomplete data sets are all raised in different

degrees, compared with the classification accuracy for the
original full attributes. It also can be noticed that the Depth-
first algorithm exhibits the highest classification accuracy on
each incomplete data set. Therefore, the experimental results
demonstrate that the proposed algorithms are effective for
attribute selection tasks in application domains.

6. Conclusion

In this paper, a rough conditional entropy-based attribute
selection approach is proposed to evaluate the significance
of condition attributes and find the minimal reduct in
incomplete decision systems. By this measure, three types
of attribute selection approaches, including the exhaustive
search strategy approach Breadth-first, the heuristic search
strategy approach Depth-first, and the probabilistic search
approach LVF, are constructed. To evaluate the effectiveness
of the introduced approaches, experiments on several real-life
incomplete data sets are conducted.The experimental results
suggest that Depth-first and LVF approaches are practical
for attribute selection for classification of high-dimensional
data with thousands of condition attributes, and they can
efficiently enhance classification accuracy with predominant
attributes. However, the process of examining exhaustively
all combinations of condition attributes for finding the
optimal one is an NP-hard problem. So far, it still cannot be
easily calculated by our approaches if there are hundreds of
thousands of condition attributes in a complex incomplete
decision system. Therefore, for large data sets, to reduce the
time consumption of the process of attribute selection, more
applicable approaches such as parallel heuristic algorithms
are desirable for incomplete decision systems with large scale.
This issue needs to be investigated in the future.
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Figure 4: Number of selected attributes versus data set.
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Figure 5: Running time of attribute selection versus data set.
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