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Adinkras are graphical tools for studying off-shell representations of supersymmetry. In this paper we efficiently classify the
automorphism groups of Adinkras relative to a set of local parameters. Using this, we classify Adinkras according to their
equivalence and isomorphism classes. We extend previous results dealing with characterization of Adinkra degeneracy via matrix
products and present algorithms for calculating the automorphism groups of Adinkras and partitioning Adinkras into their
isomorphism classes.

1. Introduction

Several recent studies [1–10] have introduced and developed
a novel approach to the off-shell problem of supersymmetry.
In particular, a graph theoretic tool has emerged to tackle this
problem by encoding representations of supersymmetry into
a family of graphs termed Adinkras. This graphical encoding
has the advantage of allowing convenient manipulation of
these objects, with the goal of achieving a deeper understand-
ing of the underlying representations.

The classification of Adinkras is a natural goal of this
work, and various aspects of this have been dealt with
extensively in previous studies [2, 4, 8, 11], in which many
of the properties of Adinkra graphs have been ascertained.
The works of [2, 3] relate topological properties of Adinkras
to doubly even codes and Clifford algebras. The work in
[11] is particularly striking as apparently Betti numbers and
functions similar to those of catastrophe theory seem on the
horizon.However, wewill not direct our current effort toward
these observations.

The GAAC (Garden Algebra/Adinkra/Codes) Program
began [12–15] with a series of observations of what appeared
to be universal matrix algebra structures that seem to occur
in all off-shell supersymmetrical theories. Two unexpected
transformations have occurred since this start. First, there
emerged Adinkras providing a graphical technology to rep-
resent these matrix algebras and second the connection of

Adinkras to codes. As the ultimate goal of this program is
to provide a definitive classification of all off-shell supersym-
metrical theories, the appearance of these new unexpected
discoveries continues to be encouraging that the goal can be
reached despite the pessimism surrounding this over thirty-
year-old unsolved problem.

The goal of this paper is to present a method of efficiently
distinguishing Adinkras, in other words, a way of efficiently
solving the graph isomorphism problem, restricted to this
particular class of graphs. This is achieved via a classification
of their automorphism group, together with an efficient algo-
rithm for computing this automorphism group for any given
Adinkra. In particular, we specify the automorphism group
of an Adinkra in terms of its associated doubly even code.
These codes are characterized in terms of local properties
of Adinkras, such that the codes, and hence the associated
equivalence and isomorphism classes of these graphs, can be
efficiently computed.

The structure of the paper is as follows: Section 2 provides
a formal graph theoretic definition of Adinkras, introduc-
ing some graph theoretic terms related to their study and
discussing some basic properties that are derived from the
definition. Section 3 defines the notions of equivalence and
isomorphism on the class of Adinkras. We relate Adinkra
graphs to doubly even codes, citing a result from [2] that all
Adinkras have an associated code. The work of [3] relating
properties of Adinkras to Clifford algebras is also discussed,
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and we define a standard form for Adinkras, used in the
proof of later results. Section 4 establishes the main result
of this work, classifying the automorphism group of valise
Adinkras in terms of the related doubly even code. In
Section 5 these results are used to generalize some results of
[5] and provide a polynomial that partitions Adinkras into
their equivalence classes. In Section 6 this is extended to
isomorphism classes of nonvalise Adinkras, and we provide
an associated algorithm that accomplishes this partitioning.
Section 7 details some of the associated numerical methods
and results and provides some additional examples.

2. Adinkra Graphs

2.1. Graph-Theoretic Notation. TheAdinkra graphs dealt with
in this work are simple, undirected, bipartite, edge-N-partite,
and edge- and vertex-colored graphs. Note that in previous
work [1–3] Adinkras are considered to be directed graphs.
However, as this information is naturally encoded into the
height assignment component of the vertex coloring, we
remove the edge directions here to simplify the analysis.

We define a few of the graph theoretic terms below. For a
more complete treatment, see [16].

A simple, undirected graph 𝐺 = (𝑉, 𝐸) consists of a vertex
set 𝑉 together with an edge set 𝐸 ⊆ 𝑉 ×𝑉 of unordered pairs
of 𝑉.

A graph is bipartite if its vertex set can be partitioned into
two disjoint sets such that no edges lie wholly within either
set. Equivalently, this is a graph containing no odd-length
cycles.

A graph 𝐺 = (𝑉, 𝐸) is edge-N-partite if its edge set 𝐸
can be partitioned into𝑁 disjoint sets, such that every vertex
V ∈ 𝑉 is incident with exactly one edge from each of these
𝑁 sets. In other words, a graph is edge-𝑁-partite if it has a
1-factorisation.

Finally, a coloring of the edge or vertex set of a graph
is a partitioning of these sets into different colour classes.
Formally, this restricts the automorphism group of the graph
to the subset that setwise stabilises these colour classes, the
subset that does not map vertices (resp., edges) in one colour
class to vertices (resp., edges) in another.

2.2. Definition and Properties. Adinkra graphs were intro-
duced in [1] to study off-shell representations of super-
symmetry. Thorough definitions are provided in [2, 3, 8],
although, as mentioned above, they vary slightly from the
definition presented here in that for the purposes of this study
we will consider them to be undirected graphs. The most
current and complete definition of Adinkras can be found in
Definition 3.2 in the work of [2]. With that in mind, we use
the following definition of Adinkras for the remainder of this
work.

Definition 1. An Adinkra graph 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋) is a
bipartite, vertex- and edge-coloured graph with the following
properties.

Each vertex in 𝑉 is coloured in two ways:
(i) a colouring 𝜒 : 𝑉 → Z2 corresponding naturally to

the bipartition (labelled as bosons and fermions);

(ii) each vertex being given a height assignment, hgt:𝑉 →

Z such that adjacent vertices are at adjacent heights.

The edges are also coloured in two ways:

(i) a partition into𝑁 colour classes corresponding to an
edge-𝑁-partition of the graph;

(ii) an edge parity assignment𝜋 : 𝐸 → Z2; we term these
two edge types dashed and solid.

Finally, the connections in the graph are essentially binary
in the following manner. Every path of length two having
edge colours (𝑖, 𝑗) defines a unique 4-cycle with edge colours
(𝑖, 𝑗, 𝑖, 𝑗). That is to say, of all 4-cycles including these two
edges, only one has the edge colours (𝑖, 𝑗, 𝑖, 𝑗). Such 4-cycles
all have an odd number of dashed edges.

We refer to the valence of an Adinkra as its dimension.
Hence an Adinkra with 𝑁 edge colours (not counting edge
parity) is an 𝑁-dimensional Adinkra. There will generally
be an assumed ordering of the edge colours from 1 to 𝑁,
with the term 𝑖’th edges or 𝑖’th edge dimension referring to all
edges of the 𝑖’th colour. The edge parity is often referred to
as dashedness (see, e.g., [5]). In this work we also refer to it
as the switching state of an edge or set of edges, motivated by
a forthcoming analogy to switching and two graphs. Relative
to the edge-colour ordering, the switching state of an edge
𝑒 = (𝑢, V) of colour 𝑖will be denoted alternately by𝜋

𝑖
(𝑢),𝜋
𝑖
(V),

or 𝜋(𝑒) (referring to the 𝑖’th edge of the vertex 𝑢 or V or simply
the edge 𝑒).

The above conditions imply several additional properties.
The edge-𝑁-partite restriction requires equal numbers of
bosons and fermions; hence the bipartition must consist
of two sets of equal size. Moreover, we have the following
important property.

Lemma 2. The number of vertices of any Adinkra is a power
of two.

Proof. Since the Adinkra is 𝑁-regular and edge-𝑁-partite
and satisfies the 4-cycle property, there exists some 𝑛 ∈

Z+, 𝑛 ≤ 𝑁, such that, for any 𝑛-length subset of the edge
colours (i.e., removing all of the edges whose colour does
not lie within this subset), the Adinkra is simply an 𝑛-
dimensional hypercube or 𝑛-cube. Hence we have that the
number of vertices is equal to 2𝑛. Note that if 𝑛 = 𝑁,
then ignoring edge and vertex colouring the resulting graph
is simply the 𝑁-cube. Hence we term the corresponding
Adinkra the𝑁-cube Adinkra (in Section 4 we show that this
is unique to𝑁). Where 𝑛 ̸= 𝑁, we denote the corresponding
Adinkra to be an (𝑁, 𝑘) Adinkra, where 𝑘 = 𝑁 − 𝑛.

When drawing Adinkra graphs, we represent the bipar-
tition by black and white vertices. As in previous work by
Doran et al. [3], the height assignments will be represented
by arranging the vertices in rows, incrementally, according to
height.

Example 3. The Adinkras of Figure 1 satisfy all requirements
listed above. Note that nodes in the same bipartition (bosons
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Figure 1: (i) A 3-cube Adinkra and (ii) a (4, 1) Adinkra.

or fermions) must be at the same height of modulo 2 and
that every 4-cycle containing only two edge colours has an
odd number of dashed/solid edges. In case (i), this is simply
every 4-cycle; however case (ii) also contains 4-cycles with
four edge colours.

It is also worthmentioning at this point that the questions
of whether dashed edges correspond to even or odd parity,
and which of the black or white node sets correspond to
bosons or fermions, have been left ambiguous, as they do
not impact on the following analysis and often represent a
symmetry in the system. Also note that the absolute height
values of height assignments are also currently ambiguous, as
only relative values of height will be relevant to the following
work. Finally, we note that since this work is concerned only
with questions of equivalence and isomorphism of Adinkras,
the assumption of connectedness will be made throughout to
simplify the analysis, without loss of generality.

3. Alternative Representations and
Models of Adinkras

There are other particularly useful ways of defining andmod-
elling Adinkras. Before describing these it will be appropriate
to introduce some more terminology, specifically relating to
linear codes andClifford algebras.Wemust also consider how
to define notions of equivalence and isomorphism between
Adinkras.

3.1. Equivalence and Isomorphism Definitions

Definition 4. Given an Adinkra (𝑉, 𝐸, hgt, 𝜒, 𝜋), the topology
of the Adinkra is defined as (𝑉, 𝐸), thus giving the underlying
vertex and edge sets with all the colourings (including edge
parity and height assignments) removed. When only the
colourings associated with edge parity and height assign-
ments are removed, the resulting graph (𝑉, 𝐸, 𝜒) is termed the
chromotopology of the original Adinkra.

Twooperations relative to a definition of equivalence have
been defined on Adinkras [8]. The vertex lowering/raising
operation consists of changing the height of a given set of ver-
tices while preserving the requirement that adjacent vertices
are at adjacent heights. Hence two Adinkras (𝑉, 𝐸, hgt1, 𝜒, 𝜋)

and (𝑉, 𝐸, hgt2, 𝜒, 𝜋) are related by a vertex lowering/raising
operation if and only if ∀𝑢, V ∈ 𝑉, |hgt1(𝑢) − hgt1(V)| = 1 ⇒
|hgt2(𝑢) − hgt2(V)|.

The operation of switching a vertex consists of reversing
the parity of all edges incident with it. We note briefly that
this preserves the property that 4-cycles with only two edge
colours have an odd number of dashed edges.

This switching operation is analogous to Seidel switching
of graphs (see [17, 18]) in which adjacency and nonadjacency
are swapped. In this case, adjacency has been replaced by
parity/dashedness for the purposes of switching. Continuing
this analogy, we define the switching class of an Adinkra 𝐺
to be the set of all Adinkras that can be obtained from 𝐺 by
switching some subset of its vertices.

Any Adinkras in the same switching class will be consid-
ered isomorphic. Adinkras related via vertex raising/lowering
operations will be considered equivalent, but not necessarily
isomorphic.

Hence the definitions of equivalence and isomorphism
considered here differ slightly. Permuting the vertex labels,
switching and raising/lowering operations all preserve equiv-
alence, whereas the only operations preserving isomorphism
are those of switching and permutations of vertex labels.

Example 5. All three Adinkras drawn in Figure 2 are in
the same equivalence class; however only the first two are
isomorphic.

An automorphism of an (𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt,
𝜒, 𝜋) is a permutation of the vertex set, 𝑝 : 𝑉 → 𝑉, 𝑝 ∈

Sym(2𝑁−𝑘) that is also an isomorphism.
Note that as the ultimate goal of introducing Adinkras is

a greater understanding of representations of off-shell super-
multiplets, useful definitions of equivalence and isomor-
phism regardingAdinkras should be related to the underlying
supermultiplets that they encode. However notions of iso-
morphism applied to supermultiplets are inherently context-
specific. A pertinent discussion relating to automorphisms of
supermultiplets can be found in Appendix B of [6]. Here we
cover a few of the points relating directly to Adinkras. In gen-
eral, supermultiplets can be regarded as a triple (𝑄,R

𝜙
,R
𝜓
),

where R
𝜙
and R

𝜓
are vector spaces corresponding to the

bosonic and fermionic component fields 𝜙 and 𝜓, and
𝑄 = {𝑄1, . . . , 𝑄𝑁} denotes the set of 𝑁 supercharges, or
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Figure 2: Three Adinkras belonging to the same equivalence class. The first two are isomorphic, whereas the third belongs to a separate
isomorphism class.

supersymmetry transformation operators mapping between
R
𝜙
and R

𝜓
and their derivatives. An Adinkra graph 𝐺 =

(𝑉, 𝐸, hgt, 𝜒, 𝜋) can then be related to a supermultiplet M,
with each vertex in 𝑉 representing a component field ofM.

Transformations acting on a supermultiplet are grouped
into two classes, inner and outer transformations. This dis-
tinction reflects the property that general supersymmetric
models will consist of several supermultiplets, each consisting
of distinct (R

𝜙
,R
𝜓
) pairs whilst sharing the same set of

supercharges 𝑄. An inner transformation is one affecting a
single supermultiplet while leaving the others unchanged.
For instance, permuting the labels of the component fields of
some (R

𝜙
,R
𝜓
) pair affects only that supermultiplet. However

a transformation of the set {𝑄1, . . . , 𝑄𝑁} affects all supermul-
tiplets of a given supersymmetric model and is hence termed
an outer transformation.

A transformation induces an automorphism when the
result is indistinguishable from the original when its image
and preimage are the same. However “indistinguishability”
is inherently contextual, and so there are several notions
of equivalence between supermultiplets. Whether an outer
transformation induces an automorphism can depend on the
particularmodel being studied; hence permutations of the𝑄-
labels may or may not preserve equivalence.

Consequently, the definitions of equivalence and isomor-
phism provided above for Adinkras are not the only possible
definitions, and as such a general classification of Adinkras
must address a broader class of possible equivalences. One
such alternative which is considered in Section 6.1 involves
the inclusion of edge-colour permutations as an operation
preserving isomorphism. As the edge colours (alternatively
known as edge dimensions) correspond to the supercharges
of the underlying supermultiplet, this situation simply
involves allowing permutations of the set {𝑄1, . . . , 𝑄𝑁} to
preserve isomorphism.

To introduce the tools necessary to classify the automor-
phism group properties of Adinkras, it will first be necessary
to give a brief description of linear codes and Clifford
algebras.

3.2. Linear Codes. A binary linear (𝑁, 𝑘) code 𝐶 ⊆ Z𝑛2
consists of a set of 2𝑘 elements, known as codewords, which
form a subgroup of (Z𝑛2, +). Hence for all 𝑢, V ∈ 𝐶, 𝑢 + V ∈ 𝐶.
When dealing with a codeword 𝑢 of length𝑁 we will use the
notation𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑁), where𝑢𝑖 is the 𝑖’th coordinate of
𝑢. When giving explicit examples of codewords, we will often
omit the commas in this representation, as all coordinates are
elements of Z2. We also consider all subsequent codes to be

both binary and linear; these terms are henceforth dropped
from their description.

A generating set of 𝐶 is a set 𝐷 ⊆ 𝐶, consisting of 𝑘
codewords, such that all codewords in 𝐶 can be formed by
a linear combination of elements of 𝐷. The minimal value of
𝑘 for which a generating set exists is called the dimension of
the code and is invariant with respect to the particular choice
of generating set.

The weight of a codeword 𝑢, denoted by wt(𝑢), or simply
|𝑢|, is the number of 1’s in 𝑢. If every codeword in a code has a
weight of 0 (mod 4) the code is called doubly even. The inner
product of two codewords 𝑢 and V of length𝑁 is defined as

⟨𝑢, V⟩ ≡
𝑁

∑

𝑖=1
𝑢
𝑖
V
𝑖 (mod 2) . (1)

Then a doubly even code has the property that any two of its
codewords have an inner product of 0.

Definition 6. A standard form generating set 𝐷 of an (𝑁, 𝑘)
code𝐶 is defined to be of the form𝐷 = (𝐼 | 𝐴), where 𝐼 is the
𝑘 × 𝑘 identity matrix and 𝐴 is a 𝑘 × (𝑁 − 𝑘)matrix being the
remainder of each codeword in𝐷.

Example 7. By applying a permutation of the coordinates of
codewords and considering an alternative generating set, the
code 𝑑8, generated by (

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

), can be written in terms
of a standard form generating set. In order to do so, first we
will interchange some coordinates bymoving columns𝐶8 →

𝐶3 → 𝐶2 → 𝐶8 to give ( 1 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 0 1

). We then perform

row operation 𝑅1 + 𝑅2 → 𝑅1 to give (
1 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 0 1

) which is
in the standard form for a generating set.

Note that the freedom to interchange coordinates means
that there are numerous standard form generating sets that
we could produce, which in turn would have different codes
associated with them. Given the nature of the standard
form however, any code with an associated standard form
generating set will have a unique standard form generating
set.

Note also that generating sets will be assumed to be
minimal in that the codewords comprising the set are
linearly independent.Thus, a generating set with 𝑛 codewords
corresponds to a code with 2𝑛 distinct codewords.

Observation 1. For any (𝑁, 𝑘) code, there exists a generating
set 𝐷 and permutation of the coordinates of the codewords
𝑝 ∈ Sym(𝑁) such that𝐷 is a standard form generating set.
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Figure 3: A 3-cube Adinkra shown together with a codeword representation for each vertex.

Thenotion of codewords can be effectively used to furnish
a further organisation of the edge and vertex sets of an
Adinkra. If we order the edge colours of an𝑁-cube Adinkra
from 1 to 𝑁, then assign each of these edge colours to the
corresponding coordinate in an𝑁-length codeword; each of
the 2𝑁 vertices in the Adinkra can be represented by such a
codeword. These codewords are allocated in such a way that
two vertices connected by the 𝑖’th edge differ precisely in the
𝑖’th element of their respective codewords.

Example 8. Applying this codeword representation to the
vertices of a 3-cube Adinkra yields the graph of Figure 3.
Note that, for an𝑁-cube Adinkra, two vertices are connected
by an edge if and only if their corresponding codeword
representations have a Hamming distance of 1 (differing in
only one position).

An important theorem of [2] links general (𝑁, 𝑘)
Adinkras to doubly even codes. We paraphrase it, combined
with other results from the same work, below.

Theorem9 (see [2]). Every (𝑁, 𝑘)Adinkra (up to equivalence)
class can be formed from the𝑁-cube Adinkra by the process of
quotienting via some doubly even (𝑁, 𝑘) code.

This quotienting process works as follows. We start with
a doubly even (𝑁, 𝑘) code 𝐶 and an 𝑁-cube Adinkra with
a corresponding edge-colour ordering and codeword repre-
sentation.We then identify vertices (and their corresponding
edges) related via any codeword in 𝐶, ensuring first that
identified vertices have identical edge parities relative to the
ordering of edge colours. In this process an (𝑁, 𝑘) code
identifies groups of 2𝑘 vertices and reduces the order of the
vertex set from 2𝑁 to 2𝑁−𝑘, producing an (𝑁, 𝑘) Adinkra.
Doran et al. [2] showed that the topology of an Adinkra
is uniquely determined by a doubly even code, with a 1-1
correspondence between the two.

Example 10. If we take the 4-cube Adinkra, with codewords
given by the elements of Z4

2 and we quotient by the doubly
even (4, 1) code 𝐶 = {(0000), (1111)}, we produce the (4, 1)
Adinkra of Figure 1. Quotienting by 𝐶 identifies pairs of
codewords that differ by (1111) (e.g., (0000) and (1111); (0001)

and (1110)), thus reducing the number of vertices from 16 to
8. We observe that this identification is consistent with the
topology of the 4-cube Adinkra in that any edge joining two
vertices V1 and V2 of the 4-cube Adinkra can also be identified
with an edge joining vertices V1 + (1111) and V2 + (1111) in
the 4-cube Adinkra.

3.3. Clifford Algebras

Definition 11. One will consider the Clifford algebra 𝐶𝑙(𝑛)
to be the algebra over Z2 with 𝑛 multiplicative generators
𝛾1, 𝛾2, . . . , 𝛾𝑛, with the property

{𝛾
𝑖
, 𝛾
𝑗
} := 𝛾

𝑖
𝛾
𝑗
+ 𝛾
𝑗
𝛾
𝑖
= 2𝛿
𝑖𝑗
1, (2)

where 𝛿
𝑖𝑗

is the Kronecker delta. In other words, each
of the generators is a root of 1, and any two generators
anticommute.

It will be convenient to view the 4-cycle of Adinkras
in terms of the anticommutativity property of Clifford
generators. If we consider each position in the codeword
representation of a vertex of an 𝑁-cube Adinkra to corre-
spond to a given generator of 𝐶𝑙(𝑁), with the vertex itself
being related to the product of these Clifford generators,
then the 𝑖’th edge dimension can be naturally viewed as the
transformations corresponding to left Clifford multiplication
by the 𝑖’th Clifford generator.

For example, a vertex with codeword representation
(01100) corresponds to the product of Clifford generators
𝛾2𝛾3 ∈ 𝐶𝑙(5), and the edge connecting the vertex (01100)
to (01101) is related to the mapping 𝛾2𝛾3 󳨃→ (𝛾5)(𝛾2𝛾3) =
𝛾2𝛾3𝛾5. Then the condition that every 4-cycle which consists
of exactly two edge colours must have an odd number of
dashed edges corresponds to the anticommutativity property
of Clifford generators, 𝛾

𝑖
𝛾
𝑗
= −𝛾
𝑗
𝛾
𝑖
for 𝑖 ̸= 𝑗.

In connection with this Clifford generator notation, we
define a standard form for the switching state of an 𝑁-cube
Adinkra.

Definition 12. A standard form 𝑁-cube Adinkra has edge
parity as follows. The 𝑖’th edge of vertex V = (V1, V2, . . . , V𝑁)
has edge parity given by
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𝜋
𝑖 (V) ≡ (V1 + V2 + ⋅ ⋅ ⋅ + V𝑖−1) (mod 2) . (3)

This corresponds to left Clifford multiplication of V by 𝛾
𝑖
.

Note that this standard form is defined relative to some given
codeword labelling of the vertex set. Since fixing the labelling
of a single vertex fixes that of all vertices, we will sometimes
refer to a standard form as being relative to a source node,
being the vertex with label (00 ⋅ ⋅ ⋅ 0), or simply standard form
relative to 0.

Example 13. The 3-cube Adinkra of Example 8 is in standard
form. Vertices are ordered into heights relative to their
codewords, such that heights range from 0 (at the bottom) to
3, and vertices at height 𝑖 have weight 𝑖.The edges are ordered
from left to right, such that green corresponds to 𝛾1 and red
corresponds to 𝛾3.

As we have seen, many Adinkras can be formed by
quotienting the𝑁-cube Adinkra with respect to some doubly
even code (as we have not yet investigated the case ofGnomon
Adinkras defined by the “zippering” process presented in
[19], the extension of our results to these cases requires
further study). However in practice this method can be
quite inefficient. The following alternative method for con-
structing an (𝑁, 𝑘) Adinkra with associated code 𝐶 is due
to 𝐺. Landweber (personal communication) is used by the
Adinkramat software package:

(1) Start with the standard form (𝑁 − 𝑘)-cube Adinkra
induced on the first𝑁 − 𝑘 edge dimensions.

(2) Find a standard form generating set for𝐶, of the form
𝐷 = (𝐼 | 𝐴).

(3) Associate the (𝑁 − 𝑘 + 𝑖)th edge dimension with the
product of Clifford generators given by 𝐴

𝑖
, the 𝑖’th

row of 𝐴.
(4) The 𝑖’th edge connects a vertex V to the vertex V ⋅ 𝐴

𝑖
,

with switching state corresponding to right Clifford
multiplication of V by 𝐴

𝑖
, up to a factor of (−1)𝐹.

The factor of (−1)𝐹, termed the fermion number operator,
simply applies a (−1) factor to fermions and leaves bosons
unchanged. This factor is required to ensure the parity of
an edge remains the same in either direction. Again, note
that the choice of whether even- or odd-weight vertices
are bosons remains ambiguous. For simplicity, we consider
odd-weight vertices to be fermions for the purposes of the
(−1)𝐹 factor, with the symmetry encoded by a graph-wide
factor of ±1 in the switching state of the extra 𝑘 edge
dimensions, corresponding to two potentially inequivalent
(𝑁, 𝑘) Adinkras.

DefineS
𝜒
(𝐶) to be the set of all Adinkras obtained by the

above construction method using the associated doubly even
(𝑁, 𝑘) code 𝐶, with fermion/boson assignment determined
by 𝜒. It remains to be seen whether S

𝜒
(𝐶) coincides with

an equivalence class of (𝑁, 𝑘) Adinkras with associated code
𝐶. To our knowledge this has not been explicitly proven
in previous work; hence we present a proof of this as
follows.

Theorem 14. Given a doubly even (𝑁, 𝑘) code 𝐶 and a fermi-
on/boson assignment function 𝜒, for any Adinkra 𝐺 ∈ S

𝜒
(𝐶)

the equivalence class of 𝐺 coincides with S
𝜒
(𝐶).

Proof. As we are only considering equivalence classes, the
height assignments will be ignored.

Consider an 𝑁-cube Adinkra quotiented with respect to
an (𝑁, 𝑘) code 𝐶 with standard form generating set 𝐷 =

(𝐼 | 𝐴), producing an (𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋).
Assume without loss of generality that the vertices remaining
after quotienting all have fixed (𝑁 − 𝑘 + 1)th → 𝑁th
codeword characters (e.g., all fixed as 0). Then the rows of 𝐴
represent the vertices identified by the quotienting process.
We want to show that, up to isomorphism, there are at
most two different ways this quotienting operation can be
performed.

Isolating any set of 𝑁 − 𝑘 edge dimensions of 𝐺 yields
an induced (𝑁−𝑘)-cube Adinkra,𝐻 = (𝑉, 𝐸

󸀠
, hgt, 𝜒, 𝜋), with

𝐸
󸀠
⊂ 𝐸 and𝜋 restricted to𝐸󸀠.Wewill see in Section 4 that, for

fixed 𝑚, all 𝑚-cube Adinkras belong to a single equivalence
class. Hence without loss of generality 𝐻 can be considered
to be in standard form. This in turn fixes the switching state
of all edges belonging to the chosen𝑁 − 𝑘 edge dimensions.
Now only a single degree of freedom remains in the switching
states of the remaining 𝑘 edge dimensions, due to the 4-
cycle condition. In other words, fixing the switching state
of any one of the remaining edges fixes all remaining edges.
This choice corresponds to a graph-wide factor of ±1 in the
switching state of the additional 𝑘 edge dimensions and is
determined by 𝜒.

Since this graph-wide factor of ±1 matches the difference
between the two possibly inequivalent Adinkras produced
by the above construction method, it remains to show that
the construction method does indeed produce valid (𝑁, 𝑘)
Adinkras. Hence me must verify that the 4-cycle condition
holds.

As odd-weight vertices are considered to be fermions, the
(−1)𝐹 factor can be replaced by an additive factor of∑𝑁−𝑘

𝑗=1 𝑥𝑗,
for a given vertex 𝑥 ∈ 𝑉. Then for 𝑖 > 𝑁 − 𝑘, 𝑥 ∈ 𝑉, 𝐴

𝑖
=

(𝑎1, 𝑎2, . . . , 𝑎𝑁−𝑘),

𝜋
𝑖 (𝑥) ≡

𝑁−𝑘

∑

𝑗=1
𝑥
𝑗
+𝑥 ⋅ 𝐴

𝑖

≡

𝑁−𝑘

∑

𝑗=1
𝑥
𝑗
+𝑥2 (𝑎1) + 𝑥3 (𝑎1 + 𝑎2) + ⋅ ⋅ ⋅

+ 𝑥
𝑁−𝑘

(𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎(𝑁−𝑘−1)) (mod 2) .

(4)

The 4-cycles in 𝐺 with two edge colours 𝑖 and 𝑗 will be split
into three cases:

(i) 𝑖, 𝑗 ≤ 𝑁 − 𝑘, 𝑖 < 𝑗,
(ii) 𝑖 ≤ 𝑁 − 𝑘, 𝑗 > 𝑁 − 𝑘,
(iii) 𝑖, 𝑗 > 𝑁 − 𝑘.

Note that a given vertex 𝑥 ∈ 𝑉 defines a unique such 4-cycle.
In case (i), consider two antipodal points of such a 4-cycle, 𝑥
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(111) (111)

(110) (110)(101) (101)(011) (011)

(100) (100)(001) (001)

(000) (000)

(010) (010)

Figure 4: Two (4, 1) Adinkras with switching state in standard form.

and 𝑥 + 𝑖 + 𝑗. Then the sum of the edge parities of the 4-cycle
equals

(𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖−1) + (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑗−1) + (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖−1)

+ (𝑥1 + ⋅ ⋅ ⋅ + (𝑥𝑗 + 1) + ⋅ ⋅ ⋅ + 𝑥𝑗−1) ≡ 1 (mod 2) .
(5)

Hence the 4-cycle condition holds (note that this is the only
case present in the construction of the standard form𝑁-cube
Adinkra).

For case (ii), the antipodal points are 𝑥 and 𝑧, where

𝑧 ≡ (𝑥1 + 𝑎1, . . . , 𝑥𝑖 + 𝑎𝑖 + 1, . . . , 𝑥𝑁−𝑘 + 𝑎𝑁−𝑘)

≡ 𝑥+𝐴
𝑗
+ 𝑖 (mod 2) ,

(6)

and by substituting (4), the sum becomes

(𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖−1) +(
𝑁−𝑘

∑

𝑙=1
𝑥
𝑙
+𝑥 ⋅ 𝐴

𝑗
)

+ (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖−1) + (𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1)

+(

𝑁−𝑘

∑

𝑙=1
𝑧
𝑙
+ 𝑧 ⋅ 𝐴

𝑗
) (mod 2) .

(7)

However |𝐴
𝑗
| ≡ 3 (mod 4), so |𝑥| ≡ |𝑧| (mod 2). Then the

first and third terms cancel, as do the second and fifth, leaving

𝑥 ⋅ 𝐴+ 𝑧 ⋅ 𝐴+ (𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1)

≡ 2 (𝑥 ⋅ 𝐴) + 2 (𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1) + 𝑎2 (𝑎1)

+ 𝑎3 (𝑎1 + 𝑎2) + ⋅ ⋅ ⋅ + 𝑎𝑁−𝑘 (𝑎1 + ⋅ ⋅ ⋅ 𝑎(𝑁−𝑘−1))

≡
󵄨󵄨󵄨󵄨󵄨
𝐴
𝑗
− 1󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑗
− 2󵄨󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 1 ≡

1
2
|𝐴 − 1| |𝐴|

(mod 2) .

(8)

Now |𝐴| ≡ 3 (mod 4); hence
1
2
|𝐴 − 1| |𝐴| ≡ 3 (mod 4)

≡ 1 (mod 2) ,
(9)

and case (ii) is verified.

Case (iii) proceeds similarly to case (ii).
Hence the graphs produced via this construction method

are indeed (𝑁, 𝑘) Adinkras. Since [2] showed that all (𝑁, 𝑘)
Adinkras can be produced via the quotienting method, there
can be at most two equivalence classes of Adinkras with the
same associated code, and hence theAdinkras produced from
the two methods must coincide.

Definition 15. A standard form (𝑁, 𝑘) Adinkra has switching
state given by the above construction, relative to an associated
doubly even code.

Example 16. The smallest nontrivial (𝑁, 𝑘) Adinkra has
parameters𝑁 = 4, 𝑘 = 1, with associated doubly even code
(1111).The standard form ofDefinition 15 is shown in Figure 4,
for each choice of the graph-wide factor of ±1.

In this case the two Adinkras formed belong to different
equivalence classes, as we demonstrate in the following
section.

This construction provides a much simpler practical
method of constructing Adinkras, and the standard formwill
be convenient in the proof of later results. Note that all (𝑁, 𝑘)
Adinkras have an associated doubly even code, withmatching
parameters of length and dimension. For these purposes the
𝑁-cubeAdinkra is considered an (𝑁, 0)Adinkrawith a trivial
associated code of dimension 0.

4. Automorphism Group
Properties of Adinkras

We now have sufficient tools to derive the main result of this
part: classifying the automorphism group of an Adinkra with
respect to the local parameters of the graph, namely, the asso-
ciated doubly even code. We start with several observations
regarding the automorphism properties of Adinkras.

Lemma 17. Ignoring height assignments, the𝑁-cube Adinkra
is unique to𝑁, up to isomorphism.

Note that equivalently, wemay consider Adinkras with only
two heights to correspond to the assignment of bosons and
fermions, and we call these valise Adinkras. Those with more
than two heights are called nonvalise Adinkras.



8 Advances in Mathematical Physics

Proof. It suffices to show that any 𝑁-cube Adinkra can be
mapped to standard form via some set of vertex switching
operations. Such a mapping can be trivially constructed.
For example, start with a single vertex. The parity of its
edge set can be mapped to any desired form by a set of
vertex switching operations applied only to its neighbours.
In particular the edge parities can be mapped to those of
the corresponding standard form Adinkra. Since the 4-cycle
restriction of Section 2.2 holds, this process can be continued
consistently for the set of vertices at each subsequent distance
from this original vertex. For example, there will be 𝑁𝐶

2

vertices at a distance of two from the original vertex and
each of these vertices will belong to one of the 𝑁𝐶

2
unique

4-cycles defined by the pairs of edges joining the original
vertex to its neighbours. For each of these 4-cycles, since we
have already fixed two of its edges to have the correct parity
(those joining the original vertex to its neighbours), the 4-
cycle property (that the cycle must contain an odd number
of dashed edges) ensures that the remaining two edges both
must either have the correct parity (requiring no vertex
switching) or have incorrect parity (which can be rectified
by switching the vertex). This process can then be continued
in the same manner for vertices at further distances. The
Adinkra resulting from this process will then be in standard
form relative to this original vertex, regardless of the initial
switching state of the Adinkra.

Lemma 18. 𝑁-cube valise Adinkras are vertex-transitive up
to the boson/fermion bipartition. That is to say, given any
two vertices V1 and V2 of the 𝑁-cube Adinkra, there exists an
automorphism 𝛾 which maps V1 → V2.

Proof. To show this, we begin with a standard form 𝑁-cube
Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋), with switching state defined by
left multiplication by the corresponding Clifford generators,
as in Definition 12. Since 𝑁-cube Adinkras are unique up to
isomorphism, in the sense of Lemma 17, this can be done
without loss of generality.

Then the switching state of edge (𝑥, 𝑦), where 𝑥 = 𝑖 ⋅ 𝑦, is
of the form 𝑥1 +𝑥2 + ⋅ ⋅ ⋅ +𝑥𝑖−1 (mod 2). Consider a nontrivial
permutation 𝜌 : 𝑉 󳨃→ 𝑉. Since 𝜌 is nontrivial, there are two
vertices 𝑢, V ∈ 𝑉, 𝑢 ̸= V, such that 𝜌 : 𝑢 󳨃→ V. If 𝜌 is to
preserve the topology of 𝐺, we must have 𝜌 : 𝑥 󳨃→ (𝑢 ⋅ V)𝑥,
∀ 𝑥 ∈ 𝑉. Note that 𝜌 has no fixed points and is completely
defined in terms of (𝑢 ⋅ V). Any automorphism 𝛾 of 𝐺 which
permutes 𝑉 according to 𝜌 must also switch some set of
vertices in such a way that edge parity is preserved. However
𝜌 maps the edge (𝑥, 𝑦), where 𝑥 = 𝑖 ⋅ 𝑦, with edge parity
𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑖−1 (mod 2), to the edge (𝜌(𝑥), 𝜌(𝑦)), with
edge parity of

(𝑥1 +𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑖−1)

+ ((𝑢1 + V1) + (𝑢2 + V+ 2) + ⋅ ⋅ ⋅ + (𝑢𝑖−1 + V𝑖−1))

(mod 2) .

(10)

Hence the change in edge parity of (𝑥, 𝑦) does not depend on
either endpoint explicitly, only on themapping𝜌 and the edge
dimension 𝑖. In other words, 𝜌 either preserves the switching

state of all edges of a given edge dimension or reverses the
parity of all such edges. Note that any single edge dimension
can be switched (while leaving all other edges unchanged) via
a set of vertex switching operations; hence an automorphism
𝛾 exists for all such 𝜌. Furthermore, 𝛾 is unique to 𝜌, which is
in turn unique to the choice of (𝑢 ⋅ V).

Note that if 𝐺 is in standard form, we term the automor-
phism mapping vertex 𝑥 to vertex 0 = (00 ⋅ ⋅ ⋅ 0) as putting
𝐺 in standard form relative to 𝑥. By this terminology, 𝐺 was
initially in standard form relative to 0.

Corollary 19. The 𝑁-cube Adinkra is minimally vertex-
transitive (up to the bipartition), in the sense that the pointwise
stabiliser of the automorphism group is the identity, and
|Aut(𝐺)| = (1/2)|𝑉| = 2𝑁−1. In other words, no automor-
phisms exist that fix any points of the𝑁-cube Adinkra.

Consider any (𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋). The
sub-Adinkra 𝐻 = (𝑉, 𝐸

󸀠
, hgt, 𝜒, 𝜋) induced on any set 𝑆 of

(𝑁−𝑘) edge dimensions of𝐺will be an (𝑁−𝑘)-cubeAdinkra.
Also, for all such 𝑆 there exists some set of vertex switching
operations such that the induced Adinkra 𝐻 is in standard
form. In the case where 𝑆 = (1, 2, . . . , 𝑁 − 𝑘), the induced𝐻
is in standard form if and only if 𝐺 is in standard form.

Observation 2. Given some (𝑁, 𝑘) Adinkra, containing a
standard form (𝑁 − 𝑘)-cube Adinkra induced on the first
(𝑁−𝑘) edge dimensions (or equivalently an induced (𝑁−𝑘)-
cube Adinkra in any given form), the switching state of the
𝑖’th edge dimension, 𝑖 > (𝑁 − 𝑘), is fixed up to a graph wide
factor of −1.

In particular, fixing the parity of the extra edges 𝑖, where
𝑖 > (𝑁 − 𝑘), of a single vertex fixes the parity of all
extra edges in the graph. This is a direct consequence of
the anticommutativity property of 4-cycles with two edge
colours.

This reduces the problem of finding automorphisms of
a general (𝑁, 𝑘) Adinkra to that of local mappings between
vertices. In particular, for any two nodes 𝑥, 𝑦 ∈ 𝑉, there
will be a unique automorphism of the induced (𝑁 − 𝑘)-
cube Adinkra mapping 𝑥 to 𝑦. This will extend to a full
automorphism of 𝐺 if and only if it preserves the switching
state of the additional 𝑘 edges of 𝑥. Hence we arrive at the
following result.

Theorem 20. Consider an (𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt,
𝜒, 𝜋) having an associated code 𝐶. Two vertices 𝑥, 𝑦 ∈

𝑉 are equivalent (disregarding vertex colouring, there is an
automorphism mapping between them) if and only if their
relative inner products with respect to each codeword in 𝐶 are
equal. In other words, ∃𝛾 ∈ Aut(𝐺) such that 𝛾 : 𝑥 󳨃→ 𝑦 iff
∀𝑐 ∈ 𝐶, ⟨𝑥, 𝑐⟩ ≡ ⟨𝑦, 𝑐⟩ (mod 2).

Proof. Consider without loss of generality the case where 𝐺
is in standard form, and take 𝐻 = (𝑉, 𝐸

󸀠
, hgt, 𝜒, 𝜋) to be the

sub-Adinkra induced on the first 𝑁 − 𝑘 edge dimensions.
By Lemma 18, 𝐻 is vertex transitive if we disregard vertex
colouring. So consider the automorphism 𝜌 of𝐻, 𝜌 : 𝑥 󳨃→ 𝑦,
where 𝑥, 𝑦 ∈ 𝑉. Now 𝜌 consists of two parts: a permutation
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of the vertex set, 𝜌 : V 󳨃→ 𝑥 ⋅ 𝑦 ⋅ V, ∀ V ∈ 𝑉, and a set of
vertex switching operations, such that the switching state of
𝐻 is preserved.

We wish to know when 𝜌 switches 𝑥 relative to 𝑦 (i.e.,
when 𝑥 is switched but 𝑦 is not, or vice versa, and when
either both or neither are switched). Where 𝜋

𝑖
(𝑥) denotes the

switching state of the 𝑖’th edge of 𝑥 (in 𝐺 or𝐻), we use 𝜋󸀠
𝑖
(𝑥)

to denote the equivalent switching state of 𝑥 in 𝜌(𝐺) or 𝜌(𝐻)
(we also denote 𝜌(𝐺) and 𝜌(𝐻) by𝐺󸀠 and𝐻󸀠, resp.). Note that
𝑥 in 𝐺󸀠 is the image of 𝑦 in 𝐺 under 𝜌.

For edge dimension 𝑖 ≤ 𝑁 − 𝑘, we see that since 𝜌 is an
automorphism of𝐻, 𝜋

𝑖
(𝑥) = 𝜋

󸀠

𝑖
(𝑦), and similarly 𝜋

𝑖
(V ⋅ 𝑥) =

𝜋
󸀠

𝑖
(V ⋅ 𝑦) ∀ V ∈ 𝑉. For the case 𝑖 > 𝑁 − 𝑘, 𝜋

𝑖
(V) is given by (4)

in the proof of Theorem 14, but what about 𝜋󸀠
𝑖
(V)?

The value of 𝜋󸀠
𝑖
(V) can be found by considering the path

𝑃
𝑖
(𝑥) in𝐻 joining 𝑥 to 𝑥 ⋅𝐴

𝑖
, where A

𝑖
= (𝑎1, 𝑎2, . . . , 𝑎𝑁−𝑘). If

we denote by𝐴
𝑖
the associated product of Clifford generators

𝐴
𝑖
=

𝑛

∏

𝑗=1
𝛾
𝑠𝑗
, (11)

where 𝑠
𝑗
denote the 1’s of 𝐴

𝑖
, we have

𝑃
𝑖 (𝑥) = (𝑥, 𝑥 ⋅ 𝑎𝑠1

, (𝑥 ⋅ 𝑎
𝑠1
) ⋅ 𝑎
𝑠2
, . . . , 𝑥 ⋅ 𝐴

𝑖
) . (12)

Then 𝜌will preserve the parity of edge (𝑥, 𝑥 ⋅𝐴
𝑖
) if and only if

the number of dashed edges in paths𝑃
𝑖
(𝑥) and𝑃

𝑖
(𝑦) are equal

(mod 2). In other words,

𝜋
𝑖 (𝑥) = 𝜋

󸀠

𝑖
(𝑥) iff ∑

𝑒∈𝑃𝑖(𝑥)

𝜋 (𝑒) ≡ ∑

𝑒∈𝑃𝑖(𝑦)

𝜋 (𝑒)

(mod 2) .
(13)

Now 𝜋
𝑠1
(𝑥) ≡ 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑠1−1 (mod 2), . . . , 𝜋

𝑠𝑛
(𝑥 ⋅ 𝐴

𝑖
) ≡

(𝑥1𝑎1) + ⋅ ⋅ ⋅ + (𝑥𝑠𝑛𝑎𝑠𝑛) (mod 2), where 𝑎
𝑖
= 1 for 𝑖 ∈ {𝑠

𝑗
: 1 ≤

𝑗 ≤ 𝑛}, and 𝑎
𝑖
= 0 elsewhere. Hence this can be rearranged as

∑

𝑒∈𝑃𝑖(𝑥)

𝜋 (𝑒) ≡ 𝑎2 (𝑥1) + 𝑎3 (𝑥1 +𝑥2) + ⋅ ⋅ ⋅

+ 𝑎
𝑁−𝑘

(𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑁−𝑘−1)

≡ 𝑥1 (𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑁−𝑘) + ⋅ ⋅ ⋅

+ 𝑥
𝑁−𝑘−1 (𝑎𝑁−𝑘) (mod 2) .

(14)

Hence, 𝜋
𝑖
(𝑥) ≡ |𝑥| + 𝑥 ⋅ 𝐴

𝑖
(mod 2), and 𝜋󸀠

𝑖
(𝑦) ≡ 𝜋

𝑖
(𝑥) +

(∑
𝑒∈𝑃𝑖(𝑥)

𝜋(𝑒)−∑
𝑒∈𝑃𝑖(𝑦)

𝜋(𝑒)), and note that∑
𝑒∈𝑃𝑖(𝑥)

𝜋(𝑒)+𝑥⋅𝐴
𝑖

simplifies to

󵄨󵄨󵄨󵄨𝐴 𝑖
󵄨󵄨󵄨󵄨 |𝑥| −

𝑁−𝑘

∑

𝑗=1
(𝑥
𝑗
𝑎
𝑗
) , (15)

so we have, for 𝑖 > 𝑁 − 𝑘,

𝜋
𝑖 (𝑥) − 𝜋

󸀠

𝑖
(𝑦) ≡ |𝑥| +

󵄨󵄨󵄨󵄨𝐴 𝑖
󵄨󵄨󵄨󵄨 |𝑥| +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐴 𝑖
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

+

𝑁−𝑘

∑

𝑗=1
(𝑥
𝑗
𝑎
𝑗
) +

𝑁−𝑘

∑

𝑗=1
(𝑦
𝑗
𝑎
𝑗
)

(mod 2) .

(16)

Since |𝐴
𝑖
| ≡ 1 (mod 2), we have |𝑥|(|𝐴

𝑖
| + 1) ≡ 0 (mod 2),

and the first 4 terms cancel, leaving

𝜋
𝑖 (𝑥) − 𝜋

󸀠

𝑖
(𝑦) ≡

𝑁−𝑘

∑

𝑗=1
(𝑥
𝑗
𝑎
𝑗
) +

𝑁−𝑘

∑

𝑗=1
(𝑦
𝑗
𝑎
𝑗
)

≡ ⟨𝑥, 𝐴
𝑖
⟩ + ⟨𝑦, 𝐴

𝑖
⟩ (mod 2) ,

(17)

which completes the proof.

Observation 3. Two vertices having the same relative inner
products with respect to each element of a set 𝑆 of codewords
also have the same relative inner product with respect to the
group generated by 𝑆, under addition modulo 2.

Corollary 21. Conversely to Theorem 20, consider a single
orbit 𝜙 of the (𝑁, 𝑘) Adinkra 𝐺 with associated doubly even
code 𝐶. If all elements of 𝜙 have fixed inner product relative to
an𝑁-length codeword 𝑐, then 𝑐 ∈ 𝐶, the code by which 𝐺 has
been quotiented.

Theorem 20 leads to several important corollaries regard-
ing the automorphism group properties of Adinkras. Recall
that there are at most two equivalence classes of Adinkras
with the same associated doubly even code. Theorem 20
implies that, disregarding the vertex colourings, there is in
fact only one such equivalence class. Hence including the
vertex bipartition, we see that two equivalence classes exist if
and only if the respective vertex sets of bosons and fermions
are setwise nonisomorphic. This in turn occurs if and only if
at least one orbit (and hence all orbits) of 𝐺 is of fixed weight
modulo 2.

In [2, 5], one such case was investigated, for Adinkras
with parameters 𝑁 = 4, 𝑘 = 1. In this case, the Klein
flip operation, which exchanges bosons for fermions, was
found in [2, 5] to change the equivalence class of the resulting
Adinkra. We term this property Klein flip degeneracy and
note the following corollary of Theorem 20.

Corollary 22. An (𝑁, 𝑘) Adinkra with associated code 𝐶
has Klein flip degeneracy if and only if the all-1 codeword
(11 ⋅ ⋅ ⋅ 1) ∈ 𝐶. This in turn occurs only if𝑁 ≡ 0 (mod 4).

Corollary 23. The automorphism group of a valise (𝑁, 𝑘)
Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋) has size 2𝑁−2𝑘−𝑎, with 2𝑘+𝑎 orbits
of equal size, where 𝑎 = 0 if 𝐶 contains the all-1 codeword, and
𝑎 = 1 otherwise.

Proof. 𝐺 has 2𝑁−𝑘 nodes. By Theorem 20, disregarding the
vertex bipartition there are 2𝑘 orbits of equal size, partitioning
the vertex set. Including the bipartition, these orbits are split
into 2 once more whenever they contain nodes of variable
weight modulo 2 (i.e., whenever 𝐶 does not contain the all-1
codeword).

5. Characterising Adinkra Degeneracy

In the work of Gates et al. [5] the Klein flip degeneracy in
the𝑁 = 4 case of Example 16 was investigated. It was shown
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that Adinkras belonging to these two equivalence classes can
be distinguished via the trace of a particular matrix derived
fromeachAdinkra.Wewill briefly introduce these results and
generalise them to general (𝑁, 𝑘) Adinkras.

Throughout the following section we will consider an
(𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋) with corresponding
code 𝐶. Note that 𝐺 has 2𝑁−𝑘 vertices, each of degree
𝑁.

5.1. Notation

Definition 24. The adjacencymatrix𝐴(𝐺) (or simply𝐴where
the relevant Adinkra is clear from the context) is a 2𝑁−𝑘 ×
2𝑁−𝑘 symmetric matrix containing all the information of
the graphical representation, except the vertex colouring
associated with height assignments. Each element of the
main diagonal represents either a boson or a fermion,
denoted by +𝑖 for bosons and −𝑖 for fermions. The off-
diagonal elements represent edges of𝐺, numbered according
to edge dimension, with sign denoting dashedness. For
example, if position 𝐴

𝑥,𝑦
= −4, there is a dashed edge

of the fourth edge colour between boson/fermion 𝑥 and
fermion/boson 𝑦. Hence the sign of the main diagonal
elements represents the vertex bipartition, the sign of off-
diagonal elements represents the edge parity, the absolute
value of off-diagonal elements represents edge colour, and
the position of the elements encodes the topology of the
Adinkra.

Example 25. Consider the 3-cube Adinkra of Example 8.
If we order the vertex set into bosons and fermions, this

Adinkra can be represented by the matrix:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑖 0 0 0 1 2 3 0

0 𝑖 0 0 −2 1 0 3

0 0 𝑖 0 −3 0 1 −2

0 0 0 𝑖 0 −3 2 1

1 −2 −3 0 −𝑖 0 0 0

2 1 0 −3 0 −𝑖 0 0

3 0 1 2 0 0 −𝑖 0

0 3 −2 1 0 0 0 −𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (18)

Note that the symmetric nature of the adjacency matrix
arises naturally out of the definition, and requiring that this
property be upheld imposes no further restrictions in and of
itself.

We define 𝐿 and 𝑅 matrices similarly, as in [5], to repre-
sent a single edge dimension of the Adinkra. 𝐿 and𝑅matrices
encode this edge dimension, with rows corresponding to
bosons and fermions, respectively. As each edge dimension
is assigned a separate matrix, the elements corresponding to
edges are all set to ±1. Then the Adinkra of Example 25 has 𝐿
matrices:

𝐿
1
=

[
[
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]
]
]

]

,

𝐿
2
=

[
[
[
[
[

[

0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

]
]
]
]
]

]

,

𝐿
3
=

[
[
[
[
[

[

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

]
]
]
]
]

]

.

(19)

These matrices can be read directly off the top right quadrant
of the adjacency matrix. Similarly, the 𝑅 matrices can be
read off the lower left quadrant. In this case, we have 𝑅

𝑖
=

𝐿
𝑇

𝑖
, where 𝑇 denotes the matrix transpose. Note that 𝐿 and

𝑅 matrices taken directly from the adjacency matrix will
always be related viamatrix transpose. Furthermore, since we
are considering only off-shell supermultiplets, these matrices
must also be square.Wewill assume that all subsequent 𝐿 and
𝑅matrices are related in this way. We define a further object,
𝛾i, to be a composition of 𝐿 and 𝑅matrices of the form

𝛾
𝑖
= [

0 𝐿
𝑖

𝑅
𝑖
0
] . (20)

Further details regarding these objects can be found in
[5]. In particular, it was shown in [5] that the Klein flip
degeneracy of several (4, 1) Adinkras can be characterised by
the trace of quartic products of these matrices, according to
the formula

Tr (𝐿
𝑖
(𝐿
𝑗
)
𝑇

𝐿
𝑘
(𝐿
𝑙
)
𝑇
)

= 4 (𝛿
𝑖𝑗
𝛿
𝑘𝑙
− 𝛿
𝑖𝑘
𝛿
𝑗𝑙
+ 𝛿
𝑖𝑙
𝛿
𝑗𝑘
+𝜒
0
𝜖
𝑖𝑗𝑘𝑙
) ,

(21)

where 𝛿 represents the Kronecker delta and 𝜖 the Levi-Civita
symbol and where 𝜒

0
= ±1 distinguishes between the

(4, 1) Adinkras belonging to the two equivalence classes of
Example 16. It is also conjectured in [5] that this samemethod
for distinguishing equivalence classes can be generalised to all
values of the parameters𝑁 and 𝑘. We prove this conjecture in
the following section.

5.2. Degeneracy for General 𝑁. In order to generalise (21) to
higher 𝑁, we wish to determine the form taken by the trace
of products of these 𝛾 matrices and establish exactly when
this can be used to partition Adinkras into their equivalence
classes. Firstly we note the following properties of Adinkras.

Lemma 26. The cycles of an 𝑁-cube Adinkra consist entirely
of paths containing each edge dimension 0 (mod 2) times.
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Lemma 27. The cycles of an (𝑁, 𝑘) Adinkra with associated
code 𝐶 consist of paths in which

(i) each edge dimension is traversed 0 (mod 2) times;
(ii) at least one edge dimension is traversed 1 (mod 2)

times.

In case (ii), the set of such edge dimensions traversed 1 (mod 2)
times corresponds to a codeword in 𝐶.

In fact, the codeword (00 ⋅ ⋅ ⋅ 0) is in any such code 𝐶, so
all cycles have this property; however case (i) is considered a
trivial instance.

Consider the product of 𝑡 𝛾 matrices of 𝐺, denoted by
𝑀 = 𝛾

𝑖1
𝛾
𝑖2
⋅ ⋅ ⋅ 𝛾
𝑖𝑡
. As we are considering only 𝐿 and𝑅matrices

such that 𝐿
𝑖
= 𝑅
𝑇

𝑖
, all 𝛾matrices defined as in (20) will be real

and symmetric. This leads to the following property for𝑀.

Lemma 28. The elements of the main diagonal of 𝑀 are
nonzero if and only if the path 𝑃

𝑀
= (𝑖1, 𝑖2, . . . , 𝑖𝑡) represents

a closed loop within the Adinkra. This can occur by one of two
ways:

(i) trivially, if each edge dimension contained in 𝑝 is
present 0 (mod 2) times,

(ii) if 𝑝 corresponds to a codeword (or set of codewords) in
𝐶.

Proof. Consider the case 𝑃
𝑀
= (𝑖, 𝑗). If 𝑖 = 𝑗,𝑀 is trivially

the identity, and hence (i) holds. If 𝑖 ̸= 𝑗, then𝑀
𝑥,𝑦

̸= 0 if and
only if vertices 𝑥 and 𝑦 are connected via a path (𝑖, 𝑗) (i.e., if
𝑥 = 𝑖 ⋅ 𝑗 ⋅ 𝑦). Extending to general𝑀, if𝑀

𝑥,𝑥
̸= 0 for some

𝑥 ∈ 𝑉, this implies that 𝑥 is connected to itself via the path
𝑃
𝑀
, a closed loop/cycle in𝐺. Hence Lemma 27 completes the

proof.

Corollary 29. 𝑀
𝑥,𝑥

̸= 0 for some 𝑥 ∈ 𝑉 if and only if this is
true for all 𝑥 ∈ 𝑉.

Lemma 30. In case (ii) of Lemma 28, with𝑀
𝑥,𝑥
= ±1 for all

𝑥 ∈ 𝑉,𝑀
𝑥,𝑥
= 𝑀
𝑦,𝑦

if and only if 𝑥 and 𝑦 have the same inner
product with respect to the codeword corresponding to 𝑃

𝑀
.

Proof. Consider the product of Clifford generators corre-
sponding to path 𝑃

𝑀
. Since (ii) holds, after cancelling

repeated elements we are left with some codeword 𝑝 ∈ 𝐶,
such that 𝑝 = 𝑎𝑃

𝑀
, where 𝑎 = ±1, depending on whether

𝑃
𝑀
corresponds to an even or odd permutation of 𝑝, relative

to shifting and cancelling of Clifford generators. Since 𝐶 is a
group, either

(i) 𝑝 ∈ 𝐷, a standard form generating set of 𝐶, or
(ii) 𝑝 = (𝑔1 +𝑔2 + ⋅ ⋅ ⋅ + 𝑔𝑟), where 𝑔𝑖 ∈ 𝐷, for any such𝐷.

Assume (i) holds.Then 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑡) such that 𝑝𝑖 ≤
(𝑁 − 𝑘) for 𝑖 ̸= 𝑡, and 𝑝

𝑡
> (𝑁 − 𝑘), with the first (𝑁 − 𝑘)

edge dimensions defined relative to the particular standard
form generating set𝐷 being considered. In other words, 𝑝

𝑡
=

𝑝1 ⋅ 𝑝2 ⋅ . . . ⋅ 𝑝𝑡−1. Then ∀𝑥 ∈ 𝐺, 𝑥 = (𝑥1𝑥2, . . . , 𝑥𝑁−𝑘), and

the sign of 𝑀
𝑥,𝑥

, omitting a factor of (𝑎 − 1)/2, is given by
(substituting the formulas for 𝜋

𝑖
(𝑥) of Section 3)

(𝑝1 ⋅ 𝑥 + 𝑝2 ⋅ 𝑥 + ⋅ ⋅ ⋅ + 𝑝𝑡−1 ⋅ 𝑥) + 𝑥 ⋅ 𝑝𝑡

≡ 𝑝2 (𝑥1) + 𝑝3 (𝑥1 +𝑥2) + ⋅ ⋅ ⋅

+ 𝑝
𝑡−1 (𝑥1 +𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑡−2)

+ 𝑝1 (𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑡−1) + ⋅ ⋅ ⋅ + 𝑝𝑡−2 (𝑥𝑡−1) + |𝑥|

≡ (
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 − 1) |𝑥| −

𝑡−1
∑

𝑖=1
(𝑝
𝑖
𝑥
𝑖
) + |𝑥| ≡ |𝑥|

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 + ⟨𝑥, 𝑝⟩

(mod 2) .

(22)

Note that |𝑝| ≡ 0 (mod 4), so the first term disappears. The
same arguments can be followed to show that this holds for
case (ii) also.Then since the factor of (𝑎 − 1)/2 is constant for
all 𝑥 ∈ 𝐺, it follows that, for all 𝑥, 𝑦 ∈ 𝐺, 𝑀

𝑥,𝑥
= 𝑀
𝑦,𝑦

if and
only if ⟨𝑥, 𝑝⟩ = ⟨𝑦, 𝑝⟩.

One immediate corollary of the preceding lemma is that
the trace of 𝑀 will vanish whenever 𝑃

𝑀
corresponds to a

codeword in 𝐶. In fact, Tr(𝑀) will only be nonzero in the
trivial case where path 𝑃

𝑀
consists of a set of pairs of edges

of the same colour. These are the paths corresponding to
the Kronecker delta terms of (21). In particular, this implies
that Tr(𝑀) cannot distinguish between equivalence classes
of Adinkras directly. However if we instead consider powers
of 𝐿 and 𝑅 matrices, the preceding lemma suggests a direct
generalisation of (21) to all (𝑁, 𝑘) Adinkras.

Given an (𝑁, 𝑘) Adinkra, consider the product of 𝑡 𝐿
matrices, 𝐿

𝑖1
𝐿
𝑇

𝑖2
⋅ ⋅ ⋅ 𝐿
𝑇

𝑖𝑡
. Denoting path 𝑝 = (𝑖1, 𝑖2, . . . , 𝑖𝑡), we

define value 𝜎
𝑝
such that 𝜎

𝑝
= 0 if there exists an edge

dimension in 𝑝 that is present 1 (mod 2) times, and 𝜎
𝑝
= 𝑎

otherwise. Here 𝑎 = ±1, corresponding to the sign of the
related product of Clifford generators (since 𝑝 consists of
pairs of edges of the same colour, this product of Clifford
generators equals ±1). Then we have the following result.

Lemma 31. The trace of 𝐿
𝑖1
𝐿
𝑇

𝑖2
⋅ ⋅ ⋅ 𝐿
𝑖𝑁−1
𝐿
𝑇

𝑖𝑁
, where 𝑝 =

(𝑖1, 𝑖2, . . . , 𝑖𝑁), equals

2𝑁−𝑘−1 (𝜎
𝑝
+𝜒0𝜖𝑝) , (23)

where 𝜒0 = ±1 depending on the equivalence class of the (𝑁, 𝑘)
valise Adinkras.

Proof. The 𝜎
𝑝
term follows directly from Lemmas 28 and 30.

In Section 4, we show that (𝑁, 𝑘) Adinkras with the same
associated code 𝐶 are all in a single equivalence class, except
where (11 ⋅ ⋅ ⋅ 1) ∈ 𝐶. In this case, the two equivalence classes
are related via the Klein flip operation, exchanging bosons
and fermions. Moreover, since 𝑐 = (11 ⋅ ⋅ ⋅ 1) ∈ 𝐶, the Klein
flip operation switches the sign of ⟨𝑥, 𝑐⟩, for each 𝑥 ∈ 𝑉.
Then by Lemma 30, the Adinkras from different equivalence
classes correspond to 𝜒0 values of opposite sign.

Note that if 𝑁 = 4 and 𝑝 = (𝑖, 𝑗, 𝑘, 𝑙), then 𝜎
𝑝
= 𝛿
𝑖𝑗
𝛿
𝑘𝑙
−

𝛿
𝑖𝑘
𝛿
𝑗𝑙
+ 𝛿
𝑖𝑙
𝛿
𝑗𝑘
, and the result of (21) follows. These results can
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Figure 5: Two equivalent, nonisomorphic Adinkras with the same
values of 𝜇(ℎ, 𝑎), for all possible values of ℎ and 𝑎.

be simplified in some respects if we consider the products of 𝛾
matrices instead. Recall the definition𝑀 = 𝛾

𝑖1
𝛾
𝑖2
⋅ ⋅ ⋅ 𝛾
𝑖𝑡
, where

𝑃
𝑀
= (𝑖1, 𝑖2, . . . , 𝑖𝑡), and the fermion number operator (−1)𝐹.

Instead of taking the trace of 𝑀, consider the trace of 𝑀 ⋅

(−1)𝐹. We have

𝛾
𝑖
= [

0 𝐿
𝑖

𝑅
𝑖
0
] ,

(−1)
𝐹
= [

1 0

0 −1
] ,

(24)

and we are considering only 𝐿 = 𝑅𝑇, so for even 𝑡,

𝑀 = [

𝐿
𝑖1
𝐿
𝑇

𝑖2
⋅ ⋅ ⋅ 𝐿
𝑇

𝑖𝑡
0

0 𝐿
𝑇

𝑖1
𝐿
𝑖2
⋅ ⋅ ⋅ 𝐿
𝑖𝑡

] . (25)

Replacing 𝐿 matrices by 𝑅 matrices in Lemma 31 simply
changes the sign of 𝜒0, so for an (𝑁, 𝑘) Adinkra,

Tr (𝑀 ⋅ (−1)𝐹) = 2𝑁−𝑘𝜒0𝜖𝑝. (26)

6. Identifying Isomorphism
Classes of Adinkras

The results up to this point deal with equivalence classes of
valise Adinkras, where we consider only 2-level Adinkras.
For the nonvalise case, we require a method of partitioning
general (𝑁, 𝑘) Adinkras into their isomorphism classes. The
essential problem in establishing such amethod is in classify-
ing the topology of an Adinkra relative to the automorphism
group of its underlying 1-level Adinkra (in which vertex
colouring is ignored). Wemight consider simply partitioning
the vertex set into the orbits of this underlying automorphism
group and then classifying each height by the number of ver-
tices of each orbit that it possesses. However this method will
clearly be insufficient, as it ignores the relative connectivity
between vertices at different heights. For example, the two
Adinkras of Figure 5 are in the same equivalence class by use
of this set of definitions. They also have the same number
of vertices from each orbit at each height, and yet they
are clearly nonisomorphic; no relabelling of the vertices or
vertex switching operations canmap between them.However
even this simple method does come close to partitioning
nonvalise Adinkras into their isomorphism classes. Recall

that a pointwise stabiliser of the automorphism group of
any Adinkra is the identity; no nontrivial automorphisms
exist that fix any vertex. Note that here the term nontrivial
refers to the corresponding permutation of the vertex set.
An automorphism which switches vertices but leaves the
ordering of the vertex set unchanged is considered trivial. In
fact fixing any vertex of anAdinkra yields a natural, canonical
ordering of the vertex set, relative to some ordering of the
edge dimensions, according to the following construction.

Construction 1. Suppose we are given an (𝑁, 𝑘) Adinkra
𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋), together with an ordering of the edge
dimensions of (𝑖1, 𝑖2, . . . , 𝑖𝑁). Then fix (choose) any vertex
V ∈ 𝑉. We define an ordering 𝜆V of the vertex set relative to V,
where 𝜆V : 𝑉 󳨃→ [2𝑁−𝑘], in the following way.

Consider

(i) 𝜆V(V) = 1.
(ii) Order the neighbours of V from 2 to𝑁 + 1 according

to the ordering of the corresponding edge dimensions
(𝜆V(𝑖𝑛V) = 1 + 𝑛, where 1 ≤ 𝑛 ≤ 𝑁).

(iii) Repeat this for vertices at distance 2, beginning with
the neighbours of 𝑖1V and ending with the neighbours
of 𝑖
𝑁
V.

(iv) Repeat this similarly for vertices at each distance, until
all vertices have been assigned an ordering in [2𝑁−𝑘].

In other words, 𝜆V firstly orders the vertex set according
to distance from V; then for each of these sets, each vertex 𝑥 is
assigned an ordering based on the lexicographically smallest
path from V to 𝑥.

To formalise the partitioning of heights discussed above,
consider an (𝑁, 𝑘) Adinkra 𝐺 = (𝑉, 𝐸, hgt, 𝜒, 𝜋) with ℎ
different height assignments. Let Γ

𝐺
be the automorphism

group of the corresponding 1-level Adinkra (ignoring the
vertex colouring of 𝐺). Relative to a particular ordering
of the edge dimensions, and a particular generating set of
the associated doubly even codes, order the 2𝑘 orbits of Γ

𝐺

according to 𝜏 : 𝑉 󳨃→ [2𝑘]. We then define 𝜇
𝐺
(ℎ, 𝑎) to be the

number of vertices at height ℎ belonging to the 𝑎th orbit of
Γ
𝐺
, such that

𝜇
𝐺 (ℎ, 𝑎) =

󵄨󵄨󵄨󵄨{V ∈𝑉 : hgt (V) = ℎ, 𝜏 (V) = 𝑎}
󵄨󵄨󵄨󵄨 . (27)

Consider a pair of Adinkras 𝐺 = (𝑉, 𝐸, hgt1, 𝜒1, 𝜋1) and𝐻 =

(𝑉, 𝐸
󸀠
, hgt2, 𝜒2, 𝜋2) belonging to the same equivalence class,

both having 𝑡 distinct heights. Then 𝐺 and 𝐻 have the same
associated code 𝐶. If 𝜇

𝐺
(ℎ, 𝑎) = 𝜇

𝐻
(ℎ, 𝑎), for all 1 ≤ ℎ ≤ 𝑡,

relative to a given edge-colour ordering and generating set
of 𝐶, then choose any vertex V ∈ 𝑉, which when viewed in
each Adinkra (as the two Adinkras share the same vertex set)
belongs to the same orbit and height. Relative to this vertex V,
consider the unordered set

cert
𝐺 (V) = {(𝜆V (𝑥) , hgt (𝑥) , 𝜏 (𝑥)) : 𝑥 ∈𝑉} . (28)

Theorem 32. Consider two Adinkras 𝐺 = (𝑉, 𝐸, hgt1, 𝜒1, 𝜋1)
and 𝐻 = (𝑉, 𝐸

󸀠
, hgt2, 𝜒2, 𝜋2) and a vertex V ∈ 𝑉 with the
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Figure 6: Two equivalent, nonisomorphic (5, 1) Adinkras. They
differ precisely in the switching state of the yellow edges.

properties described above. Then cert
𝐺
(V) = cert

𝐻
(V) if and

only if 𝐺 and𝐻 are isomorphic.

Proof. If 𝐺 and 𝐻 are isomorphic then this is trivially true.
Conversely, assume cert

𝐺
(V) = cert

𝐻
(V). Then since 𝐺 and𝐻

belong to the same equivalence class and 𝜏
𝐺
(V) = 𝜏

𝐻
(V), there

exists an isomorphism 𝛾mapping𝐺 to𝐻 (ignoring the vertex
colourings).Then 𝛾 extends to a full isomorphism (including
the vertex colourings) if it preserves height assignments.This
follows directly from cert

𝐺
(V) = cert

𝐻
(V); hence 𝐺 and𝐻 are

isomorphic.

The preceding theorem provides an efficient method of
classifying Adinkras according to their isomorphism class.
Note that the classification is relative to a given ordering of
the edge colours and requires a knowledge of the associated
doubly even code. In cases where the associated code is
unknown, Lemma 27 suggests an efficientmethod for finding
the code and hence relating a given (𝑁, 𝑘) Adinkra to its
“parent” 𝑁-cube Adinkra, in the sense of Theorem 9. In
particular, Lemma 27 implies the following result.

Corollary 33. Given an (𝑁, 𝑘) Adinkra with related code 𝐶,
the codewords of 𝐶 correspond exactly to the cycles of 𝐺 in
which at least 1 edge dimension appears once (modulo 2).

We provide an example of the above certificates below.
Consider the two Adinkras of Figure 6.These are both height
3, (5, 1) Adinkras. They are in the same equivalence class;
however by calculating the above certificate for each we show
that they are nonisomorphic.

To analyse the above Adinkras, we first order the edge
colours from green to purple, such that, in the codeword

representation, green corresponds to the last coordinate and
purple to the first. Note that henceforth we will order the
right-most coordinate to the left-most coordinate, consis-
tent with a bit-string interpretation of codewords in the
computational application. Alternatively, the green edges are
associated with the first Clifford generator and the purple
edges with the fifth generator. As these are (5, 1) Adinkras,
they have an associated (5, 1) doubly even code. By inspection
or by explicitly finding the nontrivial cycles in the Adinkras,
we note that the associated code is (11110), corresponding to
a 4-cycle comprising edge colours {red, yellow, blue, purple}.
By Theorem 20, the induced 1-level Adinkra has two orbits,
corresponding to the sets of nodeswith the same parity (inner
product modulo 2) relative to this code. Denote the two
Adinkras by 𝐺 and 𝐻, respectively. Then by applying the
results of Section 4, we obtain 𝜇 values of

𝜇
𝐺 (3, 1) = 2,

𝜇
𝐺 (3, 2) = 0,

𝜇
𝐺 (2, 1) = 𝜇𝐺 (2, 2) = 4,

𝜇
𝐺 (1, 1) = 2,

𝜇
𝐺 (1, 2) = 4,

𝜇
𝐻 (3, 1) = 0,

𝜇
𝐻 (3, 2) = 2,

𝜇
𝐻 (2, 1) = 𝜇𝐻 (2, 2) = 4,

𝜇
𝐻 (1, 1) = 4,

𝜇
𝐻 (1, 2) = 2.

(29)

In other words, the two height 3 vertices of𝐺 are in a different
orbit to those of 𝐻. Hence cert

𝐺
̸= cert

𝐻
, and the two

Adinkras are in different isomorphism classes.

6.1. Partitioning into Isomorphism Classes: Further Examples.
In [20] it was shown that simply recording the number
of vertices at each height is not sufficient to characterise
Adinkras. In particular, they provide examples of pairs of
Adinkras which are in the same equivalence class, but not
isomorphic, despite having the same number of vertices at
each height. In this section, we analyse the examples of [20]
using the techniques described above.

Firstly however, we note that a different definition of
isomorphism is considered in [20]. Specifically, they con-
sider the situation where permutations of the edge colours
preserve isomorphism, a variation discussed in Section 3.1.
Allowing this more general definition of isomorphism results
in several changes to the results of the preceding sections.
In particular, note that the automorphism group of the 𝑁-
cube Adinkra would simply become that of the 𝑁-cube: the
hyperoctahedral group of order 2𝑁𝑁!. A permutation of the
edge colours corresponds to a reordering of the codeword
associated with each vertex (or equivalently a permutation of
the Clifford generators associatedwith each edge dimension).
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Hence the automorphism group of (𝑁, 𝑘) Adinkras will be
extended according to the following lemma.

Lemma 34. Allowing permutations of the edge colours to
preserve isomorphism, an (𝑁, 𝑘) Adinkra 𝐺 with associated
doubly even code 𝐶 has an automorphism group (ignoring
height assignments) of order

2𝑁

22𝑘+a
|Aut (𝐶)| , (30)

where Aut(𝐶) is the automorphism group of the code 𝐶 and
where 𝑎 = 1 if 𝐶 contains the all-1 codeword, and 𝑎 = 0
otherwise.

In otherwords, any permutations that correspond to sym-
metries of the code will extend naturally to automorphisms
of the Adinkra. Conversely, if a permutation of the codeword
is not in the automorphism group of the code, then trivially
it cannot be an automorphism of the Adinkra. Note that
Lemma 34 applies trivially to 𝑁-cube Adinkras, for which
𝑘 = 0 and 𝐶 = (00 ⋅ ⋅ ⋅ 0); hence |Aut(𝐶)| = 𝑁!.

Hence, Klein flip degeneracy no longer necessarily
exhibits for Adinkras containing the all-1 codeword. Instead,
note that any automorphism of the associated doubly even
code corresponding to an odd permutation of the edge
colours (or alternatively the underlying supercharges) effec-
tively performs a Klein flip, substituting bosons for fermions
and vice versa. Hence, Klein flip degeneracy occurs if and
only if the associated code contains the all-1 codeword
and the automorphism group of the code contains no odd
permutations, hence narrowing down the possible candidates.

Somewhat fortuitously, a recent result regarding doubly
even codes sheds some light on this situation. Doran et al.
[20] prove that the automorphism group of self-dual doubly
even codes is always contained in the alternating group.Given
a doubly even binary (𝑁, 𝑘) code 𝐶, its dual 𝐶⊥ is given by

𝐶
⊥
= {V= (V1, . . . , V𝑛) ∈Z

𝑛

2 : ⟨V, 𝑐⟩ = 0 ∀𝑐 ∈𝐶} . (31)

A self-dual code is simply a code equal to its own dual; a
doubly even (𝑁, 𝑘) code is self-dual if and only if 𝑘 = 𝑁/2
and𝑁 ≡ 0(mod 8). Hence the following result holds.

Lemma 35. An (𝑁, 𝑘) Adinkra exhibits Klein flip degeneracy
(relative to this definition of isomorphism, allowing edge-colour
permutations) if𝑁 = 2𝑘 and𝑁 ≡ 0(mod 8).

However, the question of whether any other Adinkras
with Klein flip degeneracy (again allowing for edge-colour
permutations) exist still remains. This is equivalent to asking
whether any doubly even codes exist, which are both not self-
dual and contain no nontrivial even-permutation automor-
phisms, and is the subject of continuing work. Furthermore,
if the automorphism group of doubly even codes turns out to
be sufficiently rich, a greatly simplified certificate encoding
the isomorphism class of an Adinkra could be developed, as
will be discussed briefly in Section 8.

In [20], two pairs of equivalent but nonisomorphic
Adinkras are presented, each pair having the same number

Figure 7: Two nonisomorphic height 3, (5, 1) Adinkras belonging
to the same equivalence class.

of vertices at each height. The first pair comprises two height
3, (5, 1) Adinkras, isomorphic (up to a permutation of edge
colours) to those of Figure 7. Note that the second Adinkra
of Figure 7 is identical to the first Adinkra of Figure 6.

Applying the methods described in the previous section
to this pair proceeds as in the analysis of the Adinkras of
Figure 6. As in that example, after ordering the edge colours
from blue to green, each Adinkra has associated code (11110).
We see that the top two nodes of the first Adinkra belong to
different orbits of the corresponding 1-level Adinkra, whereas
the top two nodes of the second Adinkra belong to the same
orbit. Hence the two Adinkras are trivially distinguished.
In particular, following the conventions in the equations of
Example (29), the 𝜇 values of these two Adinkras, labelled by
𝐺 and𝐻, respectively, are

𝜇
𝐺 (3, 1) = 1 (32)

𝜇
𝐺 (3, 2) = 1

𝜇
𝐺 (2, 1) = 𝜇𝐺 (2, 2) = 4

𝜇
𝐺 (1, 1) = 3

𝜇
𝐺 (1, 2) = 3

𝜇
𝐻 (3, 1) = 2

𝜇
𝐻 (3, 2) = 0

𝜇
𝐻 (2, 1) = 𝜇𝐻 (2, 2) = 4

𝜇
𝐻 (1, 1) = 2

𝜇
𝐻 (1, 2) = 4.

(33)
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Hence cert
𝐺

̸= cert
𝐻
, and the two Adinkras are in different

isomorphism classes. Also, note that the “orbit spread,”
the number of vertices in each orbit at each height, has
a different character in each Adinkra. So regardless of the
ordering of the orbits, these two Adinkras must remain in
different isomorphism classes if edge-colour permutations
are allowed.

The second pair of Adinkras in [20] comprises two
height 3, (6, 2) Adinkras, isomorphic to the pair displayed in
Figure 8.

In this case, after ordering the edge colours fromdark blue
to green, as for the top left node of the first Adinkra, both
Adinkras have the associated code generated by ( 1 1 1 1 0 0

0 0 1 1 1 1 ),
and hence each has four orbits in the automorphism group of
the corresponding 1-level Adinkras. The top two nodes of the
first Adinkra are connected via the length 2 paths (001001)
and (000110), having odd inner product with each of the
codewords in the generating set above. Hence these nodes
are in different orbits of the automorphismgroup.Conversely,
the top twonodes of the secondAdinkra are connected via the
length 2 paths (110000), (001100), and (000011), having even
inner product with each of the codewords. Hence they are
in the same orbit. As a result, the certificates of Theorem 32
are different for each Adinkra, and hence they are in different
isomorphism classes. Again, following the conventions in the
equations of Example (29), we obtain 𝜇 values of

𝜇
𝐺 (3, 1) = 𝜇𝐺 (3, 2) = 1

𝜇
𝐺 (2, 𝑖) = 2, ∀𝑖 ∈ [4]

𝜇
𝐺 (1, 1) = 𝜇𝐺 (1, 2) = 1

𝜇
𝐺 (1, 3) = 𝜇𝐺 (1, 4) = 2

𝜇
𝐻 (3, 2) = 2

𝜇
𝐻 (2, 𝑖) = 2, ∀𝑖 ∈ [4]

𝜇
𝐻 (1, 2) = 0

𝜇
𝐻 (1, 1) = 𝜇𝐺 (1, 3) = 𝜇𝐺 (1, 4) = 2.

(34)

Hence, as in the previous example, cert
𝐺

̸= cert
𝐻
, and

moreover the Adinkras remain in different isomorphism
classes if edge-colour permutations are allowed.

7. Numerical Results

The automorphism group results of the preceding sections
were also verified numerically, independently to the analyt-
ical results. All (𝑁, 𝑘)Adinkras up to𝑁 ≤ 16 were produced,
and the related automorphism group and equivalence classes
were calculated for each suchAdinkra.The results foundwere
consistent with the analytical results described in the earlier
sections. In particular,

(i) all (𝑁, 𝑘) Adinkras with the same associated code 𝐶
were found to be in the same equivalence class, except
in the cases where (11 ⋅ ⋅ ⋅ 1) ∈ 𝐶. In these cases,
the Adinkras were split into two equivalence classes,

Figure 8: Two nonisomorphic height 3, (6, 2) Adinkras belonging
to the same equivalence class.

related via the Klein flip operation, as described in
Corollary 22;

(ii) all 1-level (𝑁, 𝑘) Adinkras had 2𝑘 orbits, each con-
sisting of sets of vertices with the same set of inner
products with the codewords in 𝐶, according to
Theorem 20.

All doubly even (𝑁, 𝑘) codes up to 𝑁 = 28 (and many
larger parameter sets) can be found online (Miller, [21]).
For each parameter set (𝑁, 𝑘), the two possibly inequivalent
standard form Adinkras corresponding to the construction
method ofTheorem 14 were produced relative to each doubly
even code on these parameters. As we were considering
only equivalence classes and automorphism groups of valise
Adinkras, it sufficed to use the adjacency matrix form
defined in Section 5 for this analysis, as height assignments
need not be encoded in the representation. The orbits were
then calculated from the adjacency matrices by forming a
canonical form relative to each node via a set of switching
operations and a permutation of the vertex set. A canonical
form is defined to be amapping𝜋, consisting of a permutation
of the vertex labels and set of vertex switching operations,
such that for any two Adinkras 𝐺 and 𝐻, 𝜋(𝐺) = 𝜋(𝐻) if
and only if 𝐺 and𝐻 are isomorphic.

Then given a vertex V and adjacencymatrix𝐴 of an (𝑁, 𝑘)
Adinkra (together with an ordering of the edge colours), we
define the following canonical form of 𝐴 relative to V.

(i) Permute the ordering of the vertices relative to their
connections to V and the ordering of edge colours,
such that the vertices are ordered:

(V, 𝑖1V, . . . , 𝑖𝑁V, 𝑖2𝑖1V, . . . , 𝑖𝑁𝑖1V, 𝑖3𝑖2V, . . . , 𝑖𝑁𝑖𝑁−1

⋅ ⋅ ⋅ 𝑖1V) .
(35)



16 Advances in Mathematical Physics

Figure 9: Standard form valise Adinkra.

Figure 10: Adinkra after step (i).

(ii) Switch vertices (𝑖1V, . . . , 𝑖𝑁V) such that all edges of V
have even parity.

(iii) Repeat for neighbours of vertex 𝑖1V.
(iv) Repeat for each vertex, in the ordering above, such

that edges appearing lexicographically earlier in the
adjacency matrix are of even parity where possible.

This defines a unique switching state of the Adinkra, up to
isomorphism. Furthermore it is a canonical form, in that any
two vertices belonging to the same orbit result in identical
matrix forms. To illustrate the above process, we consider a
(6, 2) Adinkra with associated code generated by ( 1 0 1 1 1 0

0 1 1 1 0 1 ).
The standard form valise Adinkra is shown in Figure 9, where
the top leftmost vertex has codeword (0000), and its edges are
ordered lexicographically from left to right.

Consider the process of converting this Adinkra to
canonical form, relative to vertex (0011) (the fifthwhite vertex
from the left in Figure 9). If we order the vertices by height
first, then from left to right, step (i) corresponds to the set of
vertex lowering operations leading to the Adinkra shown in
Figure 10.

Steps (ii) and (iii) correspond to a set of switching
operations, permuting the switching state in the following
stages, as shown in Figure 11.

Step (iv) then involves the remaining set of transforma-
tions, shown in Figure 12.

At this point the Adinkra is now in canonical form. The
particular switching state of this resulting Adinkra is unique
to choices of source vertices in the same orbit, in this case the
set of vertices (0000), (0011), (1110), (1101).

8. Conclusions and Future Work

This work provides a graph theoretic characterisation of
Adinkras, in particular classifying their automorphism
groups according to an efficiently computable set of local
parameters. In the current work, a number of compar-
isons are made to previous work. The connection between
Adinkras and codes [4] has been reexamined and found

to be robust. However, this connection is also exploited to
utilise the standard form leading to more computationally
efficient algorithms for the study of Adinkras. As well, the
observations based on matrix methods used within the
context of 𝑑 = 𝑁 = 4 [5] have now been extended by a
formal proof to all values of 𝑑 and𝑁. Also as emphasised in
Section 7, numerical studies up to values of 𝑁 = 16 provide
additional concurrence. These results support the proposal
that 𝜒0 “chi-null” is a class valued function defined on valise
Adinkras.

All nonvalise Adinkras through a series of node raising
and lowering can be brought to the form of a valise Adinkra.
In this sense 𝜒0 is defined for all Adinkras. However, for
nonvalise Adinkras, 𝜒0 is not sufficient to define classes. For
this purpose, the new certificate 𝜇A(ℎ, 𝑎), where A is an
arbitrary Adinkra, seems to fill in a missing gap.

Additionally, the classificationmethod used here is robust
in the sense that it can be readily adapted to address a variety
of definitions of isomorphism/equivalence, relevant to the
particular supersymmetric system of interest. For instance, in
Section 6.1 the generalised definition of isomorphism includ-
ing edge-colour permutations yields a generalised certificate.

8.1. Open Questions. It is the work of future investigations to
explore whether these tools (𝜒0 and 𝜇A(ℎ, 𝑎)) are sufficient
to attack the problem of the complete classification of one-
dimensional off-shell supersymmetrical systems. One obvi-
ous future avenue of study is to investigate the role codes play
in Gnomon Adinkras [19] and Escheric Adinkras [1]. This,
as part of continuing to attack the general problem, presents
continuing challenges.

Note that when edge-colour permutations are allowed,
the calculation of the certificate encoding the isomorphism
class of an Adinkra, as detailed in Section 6, is currently more
complex, compared to the situation when edge-colour per-
mutations do not preserve isomorphism in that the automor-
phism group of the doubly even codemust also be calculated.
One future direction of research is the investigation of the
properties of these automorphism groups. It is already known
that self-dual doubly even codes have automorphism groups
contained in the alternating group [22]; however further
properties must be discovered to determine all possible Klein
flip degenerate Adinkras in this case.
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