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We study coordination mechanisms through penalty schemes to cooperate the behavior of two
firms as successive segment carriers to make transport plan separate in freight intermodal market.
Based on the different cost structure and service level constraint to two firms, we compare the
decision making in two possible decision systems, that is, centralized system and decentralized
system. In a centralized system—the first best case as a benchmark is contrastedwith decentralized
system. In the decentralized system, a Stackelberg game model is formulated between two firms.
Some discordant decisions would be made by firm I’s overestimate motivation and firm II’s
undersupply motivation. Our primary objective is to design penalty schemes to coordinate the
interactions for two firms. The study shows in a decentralized system, setting suitable penalty
schemes can coordinate the two firms’ decision. We also study the feasible range of penalty
parameters, and some important managerial insights are then deduced. In the end, a numerical
example is provided to verify the validity of results, some concluding remarks are presented
subsequently.

1. Introduction

Over the past decades, the increasing importance of international logistics has forced many
firms to consider utilizing intermodalism to substantially decrease logistics costs. Intermodal
freight transportation can be defined as the movement of goods from origins to destinations
in one and the same loading unit or vehicle by successive transportation modes. Its goal
is to provide an integration and effective seamless door-to-door service. During the whole
operation process, there are always more than two separate firms involved in one intermodal
freight transport service, therefore, the multiside participation is an outstanding feature, and
the coordination or cooperation among the multiactor’s is a core problem, which has been
considered as a challenging issue by many practitioners and researchers.
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Numerous studies have been done on the intermodal freight transportation industry.
Macharis and Bontekoning [1] and Bontekoning et al. [2] provided an insightful review of
the development and the related study in the intermodal freight transport. They argued
that intermodal freight transportation research is emerging as a new transportation research
application field, and it still is in a preparadigmatic phase. Specifically, because the physical
network can be easily modeled as a network flow problem and there are especially efficient
network flow algorithms, many researches use network to simulate actual intermodal
operations [3–7]. However, most papers above focus on the operation management by
single decision maker with the objective of expected profit maximization or expected cost
minimization, and little account of interactions based on the multiactor’s behavior is taken.
Game theory is an appropriate tool for analyzing real situations where multiple agents are
involved in decision and their actions are interrelated. Hurtely and Petersen [8] established
a game-theoretic model to analyze the equilibrium behavior between carrier and shipper in
freight transport market, by using a particular form of nonlinear tariff, they showed that
the user equilibrium and system optimum can be simultaneously satisfied in an incomplete
market. Xiao and Yang [9] subsequently developed a partially noncooperative game model
among shippers, carriers, and infrastructure companies. Zhang et al. [10] examined the
effect of multimodal integration between two different transport chains, they found an
improvement in multimodal integration by a forwarder airline alliance, and it would not
increase the alliance’s output but improve both consumer surplus and total surplus.

Nowadays, with the change of production mode from centralized system to
decentralized system, a new organization mode—virtual organization (VO)—is rising. The
cooperation and coordination have become an important management issue with which
more and more decentralized decision cases appeared in real business practice. It is a great
challenge to traditional administration and management. There were extensive literatures
which focus on the coordination among multiactors especially on supply chain management.
Since the outcome in decentralized system is inefficient, cooperation among firms by means
of coordination of actions may improve the individual profits. Nagarajan and Sosic [11]
and Guardiola et al. [12] studied the cooperation in supply chain by cooperative game
theory. Celikbas et al. [13] studied coordination mechanisms through penalty schemes
between manufacturing and marketing departments which enable organizations to match
demand forecasts with production quantities. Raju and Roy [14] studied a game model to
understand how firm and industry characteristics moderate the effect of market information
on cooperation. Cachon [15] reviewed the supply chain coordination with contracts, he
discussed numerous supply chain models, and in each model the supply chain’s actions
are identified. Nevertheless, most studies on the coordination problem in a decentralized
system are set in manufacturing industry and focus on how to coordinate interactions
among supplier, manufacturer, and retailer in supply chains, seldom involve freight transport
market, especially on how to coordinate participants’ behavior (shipper, carrier, forwarder,
etc.) in intermodal operation process. In above studies, the transport is not considered as an
independent system but incorporated in the process of supply, manufacture, or retail.

In fact, based on the increase of global business, a kind of new organization structure,
that is, VO with temporary, dynamic, and loose characteristics is being established in
intermodal business process. It does require developing proper mechanisms to coordinate
the behavior of all separate actors. In this paper, we develop incentive mechanisms
for coordination actions to make transport plan between the two separate firms which
offer complementary transportation service in an intermodal freight transport market. By
comparing the performance of centralized and decentralized system under a stochastic
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Figure 1: An intermodal market network.

demand, some theoretical analyses on game theory are deduced and some managerial
insights are proposed subsequently.

The rest of the paper is organized as follows. Section 2 describes business background
and sets up our basic model. Section 3 sets suitable penalty scheme to coordinate between the
two separate firms. In Section 4, a case study is used to testify the propositions and results. In
the end, some concluding remarks are presented in Section 5.

2. Model

2.1. Scenario and Notation

In order to describe the interactions among the different agents, we consider a simple
intermodal network, as depicted in Figure 1, the network consists of three nodes, namely, A,
B, and C. Consequently, there are three origin-destination markets, namely, AB, BC, and AC,
of which AB involves ground transportation of cargo between A and B by truck, whereas BC
involves transportation between B and C by train. While AC involves two different transport
modes and may be referred to as a potential intermodal market. We assume there are two
separate firms, firm I and firm II, that either control the transport infrastructure or provide
complementary freight transportation service in AB and BC transport market separately.
After market research, the two firms wish cooperatively in AC market to develop a long haul
intermodal freight service, in which firm I is the first segment carrier and firm II is the second
segment carrier. The two firms would make transport plan before providing the intermodal
service. We discuss the two decision systems, that is, decentralized and centralized systems.
In a centralized system—the first best case as a benchmarkwhich contrasts with decentralized
system, the two firms decide together on the quantities to distribute transport capacity by
optimizing the total expected profits. In a decentralized system, firm I and firm II distribute
transport capacity separately by maximizing their individual profit. That is a Stackelberg
game actually. Firm I, firstly, as the first segment carrier, forecasts, demands, and decides
the transport capacity. Firm II makes corresponding transport capacity decision based on the
above decision. Because of different cost structure and opportunistic behavior of two firms,
some discordant decisions would be made subsequently. In the game, firm I has overestimate
motivation based on the restriction of service level and total cost, and then, by considering
the opportunity cost, firm II always distributes less transport capacity in order to prevent
capacity waste. (In China, e.g., the railway transport capacity is always in short supply.
After considering factors such as types of car, stations, directions, among others, which is
opportunity cost actually, the railway company often distributes less transport capacity than
demand.) Their decisions are coupled. In order to solve the problem, a penalty scheme is
designed to coordinate behaviors of two firms, that is, an overestimate penalty is charged to
firm I, and an undersupply penalty is charged to firm II. The penalty scheme would be set up
by the third party with authority.
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To capture uncertainty in market demand, we assume the demand is a random
variable, and the demand distribution is assumed to be known to both two firms. The timing
of events is as follows. First, the third party with authority sets the overestimate penalties to
firm I and the undersupply penalties to firm II. Second, a Stackelberg game is played between
two firms. Firm I is the Stackelberg leader and making decision of distributing transport
capacity and then reveal it to firm II. The firm II, the follower, determines its own capacity
assignment plan based on this message. The final determinate intermodal transport capacity
realization follows the minimum quantities of two firms’ capacity assignment plan and the
firms will be penalized if necessary.

The notation used in this paper is as follows:D—demand, assumed to be an absolutely
continuous random variable; f (x), F(x)—density function and cumulative distribution
function of D, and f(x) > 0; F−1(x)—inverse function of F(x); Pu

II—under-supply penalty
of transport capacity per item for firm II; Po

I —over-estimate penalty per item for firm I;
pi—transport price per item for firm i, i = I, II; ci—variable cost for firm i, i = I, II; cwII—
opportunity cost per over-supply item for firm II; qi—optimal transport capacity by firm i
in the decentralized system, i = I, II; qc—joint optimal capacity in the centralized system;
α—given service level objective, 0 ≤ α ≤ 1; I(·)—0-1 indicator function, when (·) is satisfied,
then I(·) = 1, otherwise I(·) = 0; E(·)—expectation operator.

In this paper, we adopt the common assumption that all parameters of demand
functions are common knowledge to both firms, and pi > ci (i = I, II) is always satisfied.

2.2. Basic Model

In a decentralized system, the two separate firms distribute optimal transport capacity
sequentially based on the objective of maximizing individual profit. We assume two firms
with different cost structure. Firm I, as the first segment intermodal service provider, the
variable cost is taken into consideration, and a given service level must be satisfied at the same
time. For firm II, as the second carrier, except the variable cost, thewaste cost from oversupply
should be considered, which is an opportunity cost virtually. If not penalized, firm I will give
an overestimate transport capacity to firm II, and firm II will assign less capacity than the
given overestimate transport capacity. The final realized intermodal shipping volume which
is decided on the minimum value among two firms’ decision on transport capacity and the
demand is correspondingly reduced. Therefore, a proper penalty scheme for two firms is
designed necessarily. Firm I’s objective is given as follows:

maxRI

(
qI
)
=
(
pI − cI

)
min
{
qI , qII

(
qI
)
, D
} − Po

I

[
qI −D

]+
I
(
D ≤ qII

)

s.t. pr
{
qI ≥ D

} ≥ α.
(2.1)

RI(qI) is the profit function to firm I. The profit function consists of two parts. The first
part is the revenue for providing intermodal service, wheremin{qI , qII , D} is the final realized
intermodal shipping volume, and qII is the transport capacity amount decided by firm II in
response to firm I’s decision qI . The second part is the penalty for overestimate, that means if
the firm II’s decision qII which is caused by firm I’s overestimate decision is greater than the
realized demand D, then an overestimate penalty to firm I is given by poI [qI −D]+I(D ≤ qII),
where I(D ≤ qII) is a 0-1 indicator function and [qI − D]+ = max{qI − D, 0}. Here, the firm
I is penalized to the amounts [qI − D]+ only when the condition I(D ≤ qII) = 1 is satisfied.
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That implies if the firm II’s capacity is always in short supply (less than the realized demand
qII < D), then the firm I should not be penalized for even an overestimate decision. The
constraint means the probability that the transport demand should be satisfied is not less
than the given service level α.

The firm II’s decision is to maximize the profit function itself:

maxRII

(
qII
)
=
(
pII − cII

)
min
{
qI , qII , D

} − cwII
[
qII −min

{
D, qI

}]+ − Pu
II

[
min
{
qI,D

} − qII
]+
.

(2.2)

The profit function consists of three parts. The first part is the revenue for providing
intermodal service. The second part is the cost of waste transport capacity for making the
oversupply transport plan, where [qII − min{D, qI}]+ are wastage. That implies if firm II
distributes greater amount of transport capacity than the qI or demand D, the waste cost
would rise. It is the substantial opportunity cost. The third part is the penalty for the
undersupply decision. If the decision qII is less than the qI or demand D, then qII will be
a bottleneck to the intermodal operation. Firm II, therefore, have to improve their decisions
under the pressure of the penalty for undersupply.

Using backward induction algorithm to analyze the Stackelberg game. First, from
problem (2.2), the following expect profit functions of RII are derived. When qII ≤ qI is
satisfied, we have

E
(
RII

(
qII
))

=
(
pII − cII

)
[

qII

∫∞

qII

f(x)dx +
∫qII

0
xf(x)dx

]

− cwII

∫qII

0

(
qII − x

)
f(x)dx

− Pu
II

[∫∞

qI

(
qI − qII

)
F(x)dx +

∫qI

qII

(
x − qII

)
F(x)dx

]

=
(
pII − cII

)
[
qII −

∫qII

0
F(x)dx

]
− cwII

∫qII

0
F(x)dx − Pu

II

[

qI − qII −
∫qI

qII

F(x)dx

]

.

(2.3)

When qII ≥ qI is satisfied, the expect profit function is

E
(
RII

(
qII
))

=
(
pII − cII

)
[∫∞

qI

qIf(x)dx +
∫qI

0
xf(x)dx

]

− cwII

[∫∞

qI

(
qII − qI

)
f(x)dx +

∫qI

0

(
qII − x

)
f(x)dx

]

=
(
pII − cII

)
[
qI −

∫qI

0
F(x)dx

]
− cwII

[
qII − qI +

∫qI

0
F(x)dx

]
.

(2.4)

Based on the f(x) > 0, pi > ci, and ∂2E(RII)/∂q2II ≤ 0, it is easy to know RII(qII) is
concave in qII and the global optimal solution is existed.
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When qII ≥ qI , we have ∂E(RII(qII))/∂qII = −cwb < 0. Therefore, qII that maximizes
RII should satisfy qII ≤ qI . For qII ≤ qI , from the first-order condition,

∂E
(
RII

(
qII
))

∂qII
=
(
pII − cII

)[
1 − F

(
qII
)] − cwIIF

(
qII
)
+ Pu

II

[
1 − F

(
qII
)]

= 0

=⇒ F
(
q∗II
)
= 1 − cwII

pII − cII + Pu
II + cwII

=⇒ q∗
II
= F−1

(

1 − cwII
pII − cII + Pu

II + cwII

)

.

(2.5)

If q∗II ≤ qI , then qII = q∗II to maximize RII , otherwise, qII = qI to maximize RII .
Therefore, the reaction function of qII is given by

qII
(
qI
)
= min

{

F−1
(

1 − cwII
pII − cII + Pu

II + cwII

)

, qI

}

. (2.6)

From (2.6), we have qII ≤ qI that implies it is never optimal to firm II to assign more
transport capacity than firm I’s decision. The qI is always considered as upper boundary
while the firm II makes decision to qII , and with the increase of punishment Pu

II , qII will
increase subsequently.

Firm I’s decision is affected by the service level α. Here, we define that the service level
α is the given probability to meet the intermodal demand. Based on the reaction function
(2.6), the Firm I’s decision, that is, problem (2.1) can be described as the solution of the
following programming problem:

maxRI

(
qI
)
= RI

(
qI
)
=
(
pI − cI

)
min
{
qI, qII , D

} − Po
I

[
qI −D

]+
I
(
D ≤ qII

)

s.t.

⎧
⎪⎨

⎪⎩

qII = min

{

qI , F
−1
(

1 − cwII
pII − cII + Pu

II + cwII

)}

,

qI ≥ F−1(α),

(2.7)

where the constraint condition qI ≥ F−1(α) is from this transformation: pr{qI ≥ D} ≥ α ⇒
qI ≥ F−1(α).

From the reaction function (2.6), when qI ≥ F−1(1−cwII/(pII −cII +Pu
II +c

w
II)) is satisfied,

we have qII = F−1(1 − cwII/(pII − cII + Pu
II + cwII)), and the expect profit function is

E
(
RI

(
qI
))

=
(
pI − cI

)
[

qII

∫∞

qII

f(x)dx −
∫qII

0
xf(x)dx

]

− Po
I

∫qII

0

(
qI − x

)
f(x)dx

=
(
pI − cI

)
[
qII −

∫qII

0
F(x)

]
− Po

I

[
(
q1 − qII

)
F
(
qII
)
+
∫qII

0
F(x)dx

]
.

(2.8)
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When qI ≤ F−1(1−cwII/(pII −cII +Pu
II +c

w
II)) is satisfied, we have qI = qII , and the expect

profit function is

E
(
RI

(
qI
))

=
(
pI − cI

)
[

qI

∫∞

qI

f(x)dx −
∫qI

0
xf(x)dx

]

− Po
I

∫qI

0

(
qI − x

)
f(x)dx

=
(
pI − cI

)
[
qI −

∫qI

0
F(x)dx

]
− Po

I

∫qI

0
F(x)dx.

(2.9)

It is easy to prove thatRI(qI) is concave in qI , and the global optimal solution is existed
by the function (2.8) and (2.9). The constraint in problem (2.7) implies that if α ≥ 1−cwII/(pII −
cII +Pu

II +c
w
II) is satisfied, then the constraint conditions are converted into only one item, that

is, qI ≥ F−1(α). If α ≤ 1 − cwII/(pII − cII + Pu
II + cwII) is satisfied, then the constraint in problem

(2.7) is converted into two items, that is, qI ≥ F−1(1 − cwII/(pII − cII + Pu
II + cwII)) (and then

qII = F−1(1− cwII/(pII − cII + Pu
II + cwII))) or F

−1(α) ≤ qI ≤ F−1(1− cwII/(pII − cII + Pu
II + cwII)), and

then qI = qII . After solving the problem (2.7), we summarize the following Proposition.

Proposition 2.1. In a Stackelberg game on making intermodal transport capacity plan, firm I is
penalized for overestimate by poI and firm II for undersupply by puII , and the subgame perfect Nash
equilibrium is follows:

(i) if the objective service level satisfies the condition α > 1 − cwII/(pII − cII + Pu
II + cwII), then

qI = F−1(α) and qII = F−1(1 − (cwII/(pII − cII + Pu
II + cwII)));

(ii) if the objective service level satisfies the condition α ≤ 1 − cwII/(pII − cII + Pu
II + cwII)), then

qI = qII and

qI =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1
(

pI − cI
pI − cI + Po

I

)

, if F−1(α) ≤ F−1
(

pI − cI
pI − cI + Po

I

)

≤ F−1A

F−1A, if F−1(α) ≤ F−1A < F−1
(

pI − cI
pI − cI + Po

I

)

F−1(α), if F−1
(

pI − cI
pI − cI + Po

I

)

< F−1(α) ≤ F−1A

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.10)

whereA denotes (1 − (cwII/(pII − cII + Pu
II + cwII))).

Note that, from the equilibrium transport capacity expression in Proposition 2.1, we
know when a higher service level is given (α > 1 − cwII/(pII − cII + Pu

II + cwII)), we always
have qI > qII . Meanwhile, the firm I’s decision is determined by the given service level,
and the penalties mainly restrict undersupply to firm II. When a lower service level is given
(α ≤ 1 − cwII/(pII − cII + Pu

II + cwII)), we always have qI = qII . The penalties do not only restrict
overestimate to firm I but restrict undersupply to firm II.

3. Penalty Scheme

In this section, we first analyze the centralized system—the first best case as a benchmark,
wherein two firms maximize their joint profit. In a centralized system, firm I is still the first
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segment carrier and firm II is the second segment carrier, and they join together to determine
the amount qc of intermodal transport plan with the objective of maximizing their combined
profits. The objective for maximizing joint profit is given as

maxRc =
(
pI + pII − cI − cII

)
min
{
qc,D

} − cwII
[
qc −min

{
qc,D

}]+

s.t. pr
{
D ≤ qc

} ≥ α,
(3.1)

where min{qc,D} is the final realized intermodal shipping volume, [qc −min{qc,D}]+ is the
waste capacity for overestimate. In order to draw comparison with the decentralized system
easily, the transport revenue, variable cost, and opportunity cost on overestimate are included
in the joint profit objective.

From (3.1), we know the expect profit function of Rc is

E(Rc) =
(
pI + pII − cI − cII

)
[
qc −

∫qc

0
F(x)dx

]
− cwII

∫qc

0
F(x)dx. (3.2)

The constraint condition is converted to qc ≥ F−1(α), so the optimal solution of function
(3.1) is

qc = max

{

F−1
(

1 − cwII
pI + pII − cI − cII + cwII

)

, F−1(α)

}

. (3.3)

Proposition 3.1. In a centralized system, with the constraint of service level α, the joint transport
capacity optimal decision is qc = max{F−1(1 − (cwII/(pI + pII − cI − cII + cwII))), F

−1(α)}.

Proposition 3.1 shows that given α∗ = 1− cwII/(pI + pII − cI − cII + cwII) is a critical point.
When α < α∗ is satisfied, that is, setting a lesser objective service level, the programming (3.1)
is a no constraint problem actually, and the final transport capacity is qc = F−1(1 − cwII/(pI +
pII − cI − cII + cwII)) which is the optimal solution to maximize the joint profit, but it is not
optimal to shipper. Meanwhile, the carrier has greater welfare. When α > α∗ is held, the final
transport capacity is qc = F−1(α). Though the whole transport capacity qc increases, however,
it is not optimal to maximize the joint profit. Meanwhile, the shipper has greater welfare for
more consumer surplus.

Next, we develop penalty schemes so that the decentralized system performs as well
as the centralized system. Based on the Proposition 3.1, we consider two cases with different
constraint of service level. For the convenience to the analysis subsequently, the following
notations are introduced:

F1 = F−1
(

1 − cwII
pII − cII + Pu

II + cwII

)

, F2 = F−1
(

pI − cI
pI − cI + Po

I

)

,

F3 = F−1
(

1 − cwII
pI + pII − cI − cII + cwII

)

.

(3.4)
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Case 1. If α ≤ α∗, then the mathematical programming (3.1) is an unconstraint problem, and
the optimal solution qc = F3. Let

F1 = F3, F2 = F3

=⇒ Pu
II = pI − cI = Δ1, Po

I =

(
pI − cI

)
cwII

pI + pII − cI − cII
= Δ2.

(3.5)

From Proposition 3.1, we have qI = qII = qc = F3, the transport capacity decisions
in both decentralized system and centralized system are identical and the penalty scheme
coordinates the two firms’ behaviors. After further discussion, Proposition 3.2 is summarized
subsequently.

Proposition 3.2. When the condition α ≤ α∗ is satisfied, if (i) Pu
II ≥ Δ1, Po

I = Δ2, or (ii) Pu
II =

Δ1, P
o
I < Δ2, then the capacity decisions in both decentralized system and centralized system are

identical. Specially, qI = qII = qc = F3.

Proposition 3.2 implies when a smaller service level is given, the suitable penalty
scheme is a strong deterrent to two firms. It can improve the final equilibrium in a
decentralized system effectively.

Case 2. If α > α∗ then qc = F−1(α) from Proposition 3.1, let

F1 = F−1(α); F2 = F−1(α)

=⇒ Pu
II =

cwII − (1 − α)
(
pII − cII + cwII

)

1 − α
= Δ3, Po

I =
(1 − α)cwII

α
= Δ4.

(3.6)

When Pu
II = Δ3, then the constraint in programming (2.7) is qI ≥ F1 = F−1(α) = qc one

item, after the similar analysis that is used in Proposition 2.1(i), we know if α > α∗, then in
a decentralized system the actions of two firms would be coordinated by setting a penalty
scheme Pu

II = Δ3, and then we will have qI = qII = qc = F1 = F−1(α). Because the given
service level α is an only constraint to the decision by firm I, and the given service level α is
always consistent with the firm II’s optimal decision. Hence, the penalty Po

I is insignificant.
The fact lies behind the penalty is to urge firm II to assign more transport capacity. After
further similar discussion, the main result is summarized in Proposition 3.3.

Proposition 3.3. If α > α∗, then the actions of two firms would be coordinated by designing penalty
schemes. Specially (i) Pu

II > Δ3 and Po
I ≥ Δ4 or (ii) Pu

II = Δ3.

Proposition 3.3 implies that, when the service level α is relatively higher (α ≥ α∗), the
two firms would be coordinated only by giving Pu

II = Δ3 to firm II. Meanwhile, firm I has to
prepare greater amount transport capacity to satisfy the constraint for a higher service level,
and the Po

I lost its significance. When setting lower penalties to firm II (Pu
II < Δ3) the two

firms actions would not be coordinated. Meanwhile, firm II’s decisions are not improved by
setting smaller Pu

II which lacks a strong deterrent to undersupply. Therefore, firm I’s decision
is always larger than firm II’s, and it is impossible to coordinate the two firms’ action by
setting penalties.
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Figure 2: Coordination effects with PU
II > Δ1 and α < α∗.
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Figure 3: Coordination result under penalties (specially PU
I = Δ1 and α < α∗).

4. Numerical Study

In this section, we introduce a numerical example to simulate the incentive of coordination
mechanisms to separate carriers. As depicted in Figure 1, we adopt the same scenario as in
Section 2.1, there are two transport firms with complementary transport model to develop
AC intermodal service. A penalty scheme is designed to coordinate the actions between two
firms. All parameters which used in example are given, where intermodal freight demand
follows normal distribution which the mean value is 500 and the variance is 25, and PI = 10,
PII = 8, cI = 3, cII = 2, cwII = 4. Without loss of generality, we assume α∗ is the critical value
of service level and then α∗ = 0.765 which is based on the equation α∗ = 1 − cwII/(pI + pII −
cI − cII + cwII). In this section, two cases which are represented α � α∗ and α < α∗ are studied
separately to testify the conclusions in the paper.

In the case of α < α∗, let α = 0.665, after calculation, we have Δ1 = 7, Δ2 = 2.15,
qc = 503.6, αcwII/(1 − α) + cII − pII = 2, F−1(α) = 502.1. When Pu

II ≥ Δ1, let Pu
II = 8 and

Pu
II = 7 simulate the variation of the game equilibrium, which are depicted in Figures 2 and

3. Let Pu
II = 5, and Pu

II = 1 denote the constraint αcwII/(1 − α) + cII − pII < Pu
II < Δ1 and

Pu
II < αcwII/(1−α)+ cII −pII < Δ1 to simulate the variation of the equilibrium. The final results

are shown in Figures 4 and 5.
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From Figure 2, we find the three curves qI , qII , qc meet at a point if Po
I = 2.215, and the

three curves are superposed if Po
I ≤ 2.15 in Figure 3. From Figures 5 and 6, the three curves

are never superposed. That implies if Pu
II ≥ Δ1, Po

I = Δ2, or Pu
II = Δ1, Po

I < Δ2 are satisfied,
then qI = qII = qc, the actions of two firms are coordinated.

In the case of α � α∗, we have Δ3 = 15.8, Δ4 = 0.734, qc = 505.5. We also analyze
the equilibrium with the variance of penalties. The final results are shown in Figures 6, 7,
and 8, where Figure 6 depicts the equilibrium when Pu

II = 16 (Pu
II > Δ3), Figure 7 depicts the

equilibrium when Pu
II = 15.8 (Pu

II = Δ3), and Figure 8 depicts the equilibrium when Pu
II = 14

(Pu
II < Δ3), respectively.

From Figure 6, we find the three curves are superposed when Po
I ≥0.734, the three

curves are superposed in Figure 7. In Figure 8, nevertheless, there are only two curves (qI, qc)
coincident each other, and the curve qII lies below other two curves. That means when α � α∗,
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if Pu
II > Δ3, Po

I ≥ Δ4, or Pu
II = Δ3 are satisfied, then qI = qII = qc, the actions of two firms are

coordinated.
The above two case studies show the discordant behaviors would be coordinated

by setting suitable coordination mechanisms in a decentralized decision system, and all
individual profits would be improved correspondingly. Therefore, all results are consistence
with the Propositions in the paper, the validity of Propositions is consequent testified.

5. Conclusions

In this paper, a coordinate problem on making freight plan between two separate
transport carriers which provide complementary transport service jointly to develop a
long haul intermodal service is studied. Two possible decision systems—centralized and
decentralized—are taken into consideration, our primary objective is to develop the
coordination mechanisms through penalty schemes to coordinate the interactions for two
firms in decentralized decision system. In the centralized case, two firms jointly decide on the
transport capacity assignment. In the decentralized case, we model a single period problem
as a Stackelberg game. Firm I, the leader, decides transport capacity to the intermodal
service. Firm II, the follower, makes transport capacity assignment based on firm I’s action
subsequently. Due to the different cost structure and opportunistic behavior by two firms,
some discordant decisions would be made subsequently. After detailed models analysis
by comparing the final equilibrium made in the two decision systems, some managerial
insights are induced. Among other results, we show that one can generate the same result
in a decentralized system as what obtained from a centralized system by setting suitable
penalties, and that the service level restriction is a significant factor to setting the correct
penalty scheme. We also discuss in details the feasible range of penalties to coordinate two
firms’ decision. All the study in this paper is under the framework of complete information.
For the future research, the authors plan to extend the model to the incomplete information,
and to make it closer to the real world.
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