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In the stock market, some popular technical analysis indicators (e.g., Bollinger bands, RSI, ROC, etc.) are widely used to forecast
the direction of prices. The validity is shown by observed relative frequency of certain statistics, using the daily (hourly, weekly,
etc.) stock prices as samples. However, those samples are not independent. In earlier research, the stationary property and the law
of large numbers related to those observations under Black-Scholes stock price model and stochastic volatility model have been
discussed. Since the fitness of both Black-Scholes model and short-range dependent process has been questioned, we extend the
above results to fractional Black-Scholes model with Hurst parameter 𝐻 > 1/2, under which the stock returns follow a kind of
long-range dependent process. We also obtain the rate of convergence.

1. Introduction

Liu et al. discussed in [1] the Bollinger bands for the Black-
Scholes model. They introduced the corresponding statistics
𝑈

(𝑛)
𝑡 calculated according to the formulation of the Bollinger

bands, which is a stationary process, and then they gave
the law of large numbers since {𝑈(𝑛)

𝑡+𝑘𝑛
}𝑘=1,2,... are mutually

independent for each fixed 𝑡 ≥ 0. Thus the Bollinger bands
property which seems unthinkable at first glance was proved.
The related results have been extended to stochastic volatility
model in [2] and AR-ARCHmodel in [3].

It has been noted in [4] that “technical analysis is a
security analysis discipline for forecasting the direction of
prices through the study of past market data, primarily
price and volume.” Technical analysis has been widely used
among traders and financial professionals in stock markets
and foreign exchange markets in recent decades. However,
technical analysis has not received the same level of academic
scrutiny and acceptance as more traditional approaches such
as fundamental analysis, since “a simulated sample is only one
realization of geometric Brownian motion” and “it is difficult
to draw general conclusions about the relative frequencies”

(see [5]). However, given the stock price models, we show
here that we can do statistics based on relative frequency of
occurrence for some technical analysis indicators.

The fitness of both Black-Scholes model and short-range
dependent process has been questioned. Since Willinger et
al. [6] gave the empirical evidence of long-range dependence
in stock price returns, there have been several empirical
studies that lent further support to such property of long-
range dependence (see, e.g., [7–10]). We consider the process
of alternatives to short-range dependence, a model driven by
the fractional Brownian motion (fBm) which is long-range
dependent. In the following discussion, we assume that the
stock price satisfies the fractional Black-Scholes model (see,
e.g., [11]):

𝑆𝑡 = 𝑆0 exp {(𝜇 + ]) 𝑡 + 𝜎𝐵
𝐻

𝑡 } , 𝑡 ∈ [0, 𝑇] , (1)

where𝜇, ] ∈ R are constants,𝜎 is a positive real number,𝐵𝐻𝑡 is
a fBmwith Hurst parameter𝐻, and𝐻 ∈ (0, 1).The fractional
Brownian motion is a continuous-time Gaussian process 𝐵𝐻𝑡
on [0, 𝑇], which starts at zero with expectation zero for all
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𝑡 ∈ [0, 𝑇], and has the following covariance function (see,
e.g., [12, 13]):

𝐸 [𝐵
𝐻
(𝑡) 𝐵

𝐻
(𝑠)] =

1

2
(|𝑡|

2𝐻
+ |𝑠|

2𝐻
− |𝑡 − 𝑠|

2𝐻
) , 𝑠, 𝑡 ≥ 0,

(2)

where 𝐻 is a real number in (0,1), called the Hurst index
or Hurst parameter associated with the fractional Brownian
motion. In contrast to Brownian motion, the increments of
the fBm are not independent if 𝐻 ̸= 1/2. The fBm is self-
similar, that is, 𝐵𝐻(𝑎𝑡) (=) |𝑎|𝐻𝐵𝐻(𝑡), and the increments
are stationary, that is, 𝐵𝐻(𝑡) − 𝐵𝐻(𝑠) (=) 𝐵𝐻(𝑡 − 𝑠), and the
increments exhibit long-range dependence if 𝐻 > 1/2, that
is, ∑∞

𝑛=1 𝐸[𝐵
𝐻
(1)(𝐵

𝐻
(𝑛 + 1) − 𝐵

𝐻
(𝑛))] = ∞,𝐻 > 1/2, where

𝑋(=)𝑌 denotes that𝑋 and𝑌 have the same distribution. Note
that the fBm is in fact a regular Brownian motion if𝐻 = 1/2.

In this paper, we discuss the statistical properties of
some popular technical indicators such as Bollinger bands,
Relative Strength Index (RSI), and Rate of Change (ROC).
Under fractional Black-Scholes model (1), we show that the
corresponding statistics are stationary and the law of large
numbers holds for frequencies of stock prices falling out of
normal scope of the technical indicators.

This paper is organized as follows. Section 2 introduces
some technical indicators. Section 3 gives the ratios of
Bollinger bands, RSI, and ROC falling in the corresponding
sets. In Section 4, by constructing a statistic 𝑈(𝑛)

𝑡 , we investi-
gate the stationary properties of corresponding statistics. In
Section 5, we obtain the law of large numbers for frequencies
of the statistics. And we give some comments of the results in
Section 6.

2. Definitions of Technical Indicators

Let 𝑆𝑡 be current stock price and 𝑆𝑡−𝑖𝛿 the stock price 𝑖
periods ago, where 𝛿 is the length of the period between two
observation spots (the period can be day, minute, etc.). We
recall the definitions of technical indicators in the following:

(1) Bollinger Bands.Developed by John Bollinger in the 1980s,
Bollinger Bands are volatility bands placed above and below
a moving average denoted by

𝑆
(𝑛)

𝑡 =
1

𝑛

𝑛−1

∑

𝑖=0

𝑆𝑡−𝑖𝛿, 𝐵
𝑛,med
𝑡 =

1

∑
𝑛

𝑖=1 𝑖

𝑛−1

∑

𝑖=0

(𝑛 − 𝑖) 𝑆𝑡−𝑖𝛿,

𝑠
(𝑛)

𝑡 = √
1

𝑛 − 1

𝑛−1

∑

𝑖=0

(𝑆𝑡−𝑖𝛿 − 𝑆
(𝑛)

𝑡 )

2

, 𝑡 ≥ (𝑛 − 1) 𝛿.

(3)

The curve 𝐵𝑛,med
𝑡 is called the middle Bollinger band, the

curve𝐵𝑛,upp𝑡 = 𝐵
𝑛,med
𝑡 +2𝑠

(𝑛)
𝑡 is called the upper Bollinger band,

and 𝐵𝑛,low𝑡 = 𝐵
𝑛,med
𝑡 − 2𝑠

(𝑛)
𝑡 is called the lower Bollinger band,

where 𝑛 is the number of selected periods. The Bollinger
bands of S&P500 are shown in Figure 1. Usually we take
𝑛 = 12 or 20, 𝛿 = one day. According to Bollinger [14]
and Liu et al. [1], the bands contain more than 88-89%
of price action, which makes a move outside the bands
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Figure 1: S&P500 annual Bollinger bands until March 27, 2012.

significant. Technically, prices are relatively high when above
the upper band and relatively low when below the lower
band. However, relatively high should not be regarded as
bearish or as a sell signal. Likewise, relatively low should
not be considered bullish or as a buy signal. As with other
indicators, Bollinger bands are seldom used alone. Traders
should combine Bollinger bandswith basic trend analysis and
other indicators for confirmation.

(2) Relative Strength Index (RSI). The RSI was developed by
Wilder [15], and it is classified as a momentum oscillator,
measuring the velocity and magnitude of directional price
movements. If we denote

Δ𝑆
+

𝑡 = (𝑆𝑡+𝛿 − 𝑆𝑡) ∨ 0, Δ𝑆
−

𝑡 = (𝑆𝑡 − 𝑆𝑡+𝛿) ∨ 0, (4)

the 𝑛-period RSI is defined as

RSI(𝑛)𝑡 = 100 ×
∑

𝑛

𝑖=1 Δ𝑆
+
𝑡−𝑖𝛿

∑
𝑛

𝑖=1 Δ𝑆
+
𝑡−𝑖𝛿
+ ∑

𝑛

𝑖=1 Δ𝑆
−
𝑡−𝑖𝛿

, 𝑡 ≥ 𝑛𝛿. (5)

The RSI of S&P500 is shown in Figure 2. Usually we take
𝑛 = 14, 𝛿 = one day. RSI oscillates between zero and 100,
with high and low levels marked at 70 and 30. More extreme
high and low levels (80 and 20 or 90 and 10) occur less
frequently but indicate stronger momentum. Traditionally,
RSI readings greater than the 70 level are considered to be
in overbought territory, and RSI readings lower than the 30
level are considered to be in oversold territory. If the RSI is
below 50, it generally means that the market is in a week
trend. When the RSI is above 50, it generally means that the
market is in a strong trend. Zhu [16] discussed the statistical
property and the forecasting ability of RSI.

(3) Rate of Change (ROC). The ROC is a pure momentum
oscillator that measures the percent of change in price from
one period to the next. The 𝑛-period ROC is defined as

ROC(𝑛)

𝑡 = 100 ×
𝑆𝑡 − 𝑆𝑡−𝑛𝛿

𝑆𝑡−𝑛𝛿

, 𝑡 ≥ 𝑛𝛿. (6)
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Table 1: Ratio of SPY in 2008–2011.

Year 𝑆𝑡 ∈ B-B RSI ∈ [20, 80] ROC ∈ [−5, 5] ROC ∈ [−10, 10] ROC ∈ [−20, 20]
2008 95.71% 97.91% 73.44% 90.04% 98.76%
2009 98.28% 91.60% 68.75% 90.00% 100%
2010 97.60% 91.59% 82.41% 100% 100%
2011 95.69% 97.06% 80.83% 97.50% 100%

Table 2: Ratio of QQQ in 2008–2011.

Year 𝑆𝑡 ∈ B-B RSI ∈ [20, 80] ROC ∈ [−5, 5] ROC ∈ [−10, 10] ROC ∈ [−20, 20]
2008 97.00% 95.82% 58.92% 87.97% 98.76%
2009 96.12% 91.60% 66.25% 91.25% 100%
2010 96.63% 81.78% 74.07% 99.54% 100%
2011 94.40% 96.64% 80.00% 96.67% 100%

0 50 100 150 200 250
1000

1100

1200

1300

1400

S&
P5

00

(a)

0 50 100 150 200 250
0
20
40
60
80
100

RS
I

(b)

Figure 2: S&P500 annual RSI until March 27, 2012.

TheROCof S&P500 is shown in Figure 3. Usually we take 𝑛 =
12, 𝛿 = one day. Prices are constantly increasing as long as
the ROC remains positive. Conversely, prices are fallingwhen
the ROC is negative. The ROC has its antennas and grounds
which are indefinite and can give identifiable extremes that
signal overbought and oversold conditions. In general, it is
time to sell out when the ROC rises to the first ultra-buy line
(5), and then the rising trend mostly ends when it reaches
the second ultra-buy line (10). It is time to buy in when ROC
drops to the first ultra-sell line (−5), and then the dropping
trend mostly ends when it reaches the second ultra-sell line
(−10). Li [17] discussed the empirical evidence of ROC. Like
all technical indicators, the ROC oscillator should be used in
conjunction with other aspects of technical analysis.

3. Some Facts from the Stock Market

Liu et al. [1] traced 15 years of the DOW, S&P500, and
NASDAQdaily closing prices and drew the conclusion that in
every year more than 94% of daily closing prices are between
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Figure 3: S&P500 annual ROC until March 27, 2012.

the Bollinger bands. We give the ratios of Bollinger bands,
RSI, and ROC falling in the corresponding sets from January,
2008, to December, 2011, in Tables 1, 2, and 3, where B-B
denote the Bollinger bands. We can see that more than 95%
of daily closing prices are between the Bollinger bands, more
than 81% of RSI are in the interval [20,80], and more than
87% of ROC are in the interval [−10, 10]. So we show that
the stationary of the indexes is still maintained even since
the world economic crisis in 2008. In the following, we give
a mathematical proof to this fact under the fractional Black-
Scholes model.

4. Stationary Property

Let 𝑆𝑡 denote the observed stock price under the model (1).
And let

ℎ (𝑡, 𝑖, 𝑛) = exp {𝐵𝐻𝑡−𝑖𝛿 − 𝐵
𝐻

𝑡−𝑛𝛿} , 𝑖 = 0, 1, 2, . . . , 𝑛 − 1,

𝑈
(𝑛)

𝑡 = 𝑓 (ℎ (𝑡, 0, 𝑛) , . . . , ℎ (𝑡, 𝑛 − 1, 𝑛)) , 𝑡 ≥ 𝑛𝛿,

(7)
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Table 3: Ratio of DIA in 2008–2011.

Year 𝑆𝑡 ∈ B-B RSI ∈ [20, 80] ROC ∈ [−5, 5] ROC ∈ [−10, 10] ROC ∈ [−20, 20]
2008 96.57% 96.23% 76.35% 92.12% 98.76%
2009 97.42% 91.63% 69.71% 90.87% 100%
2010 98.56% 92.56% 87.10% 100% 100%
2011 94.83% 94.96% 84.17% 98.33% 100%

where 𝑓 is a measurable function: R𝑛
→ R. Then we have

the following results:
The process {𝑈(𝑛)

𝑡 }𝑡≥𝑛𝛿 is stationary.

Remark 1. Let 𝑆𝑡 be the stock price generated by themodel (1),
𝐿
(𝑛)
𝑡 = (𝑆𝑡 −𝐵

𝑛,med
𝑡 )/𝑠

(𝑛)
𝑡 (𝑡 ≥ 𝑛𝛿). Then the process {𝐿(𝑛)𝑡 }𝑡≥𝑛𝛿 is

stationary.

Remark 2. Let 𝑆𝑡 be the stock price generated by the model
(1). Then the process

RSI(𝑛)𝑡 = 100 ×
∑

𝑛

𝑖=1 Δ𝑆
+
𝑡−𝑖𝛿

∑
𝑛

𝑖=1 Δ𝑆
+
𝑡−𝑖𝛿
+ ∑

𝑛

𝑖=1 Δ𝑆
−
𝑡−𝑖𝛿

(𝑡 ≥ 𝑛𝛿) (8)

is stationary.

Remark 3. Let 𝑆𝑡 be the stock price generated by the model
(1).Then the process ROC(𝑛)

𝑡 = 100×(𝑆𝑡−𝑆𝑡−𝑛𝛿)/𝑆𝑡−𝑛𝛿(𝑡 ≥ 𝑛𝛿)

is stationary.

5. Law of Large Numbers

Let 𝐾(𝑛)

Γ,𝑖
= 𝐼

{𝑈
(𝑛)

𝑖𝛿
∈Γ}

, 𝑖 ≥ 𝑛, where Γ is a subset of R. And let

𝑉
(𝑛)

𝑁,Γ =
1

𝑁 + 1

𝑁

∑

𝑖=0

𝐾
(𝑛)

Γ,𝑛+𝑖, (9)

which is the observed frequency of the events [𝑈(𝑛)

(𝑛+𝑖)𝛿
∈

Γ] (𝑖 = 0, 1, . . . , 𝑁).
It is natural to assume 𝛿 < 1; that is, the length between

two observation spots is less than one year. From the above
discussion, we can let𝑝 = 𝑃(𝑈(𝑛)

𝑡 ∈ Γ), 𝑡 ≥ 𝑛𝛿.We denote𝑈(𝑛)

𝑖𝛿

by 𝑈(𝑛)

𝑖
, 𝑖 ≥ 𝑛, in the following discussion for convenience.

Denote by R𝑚×𝑛 the set of𝑚 × 𝑛 real matrices, and set

𝑍𝑘,𝑗 = 𝐾
(𝑛)

Γ,(𝑘+1)𝑛+𝑗
− 𝑃 (𝑈

(𝑛)

𝑛 ∈ Γ) (10)

for each fixed 𝑗 and 𝑘; we give the following lemma.

Lemma 4. For all Γ ⊂ R, there exist 𝛼 ∈ (0, 1) and a constant
𝐶 > 0; when𝑁 is large enough and |𝑘1 −𝑘2| − 𝑛 > 𝑁𝛼, one has

𝐸 (𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

) ≤ 𝐶 |2𝐻 − 1|𝑁
𝛼(𝐻−1)/2

. (11)

Proof. Let 𝑊𝑘,𝑖 = 𝐵
𝐻
[(𝑘+1)𝑛+𝑗−𝑖]𝛿 − 𝐵

𝐻
[(𝑘+1)𝑛+𝑗−(𝑖+1)]𝛿, 𝑘 ∈ Z+,

𝑖 = 0, 1, 2, . . . , 𝑛 − 1. And set 𝑋 = (𝑊𝑘1 ,0
, . . . ,𝑊𝑘1 ,𝑛−1

)
𝑇
≜

(𝑋1, . . . , 𝑋𝑛)
𝑇, 𝑌 = (𝑊𝑘2 ,0

, . . . ,𝑊𝑘2 ,𝑛−1
)
𝑇
≜ (𝑌1, . . . , 𝑌𝑛)

𝑇,

𝑍 = (𝑋
𝑇
, 𝑌

𝑇
)
𝑇, where 𝑋𝑇 is the transpose of 𝑋; then 𝐸𝑋 =

𝐸𝑌 = 0, 𝐸𝑍 = 0. We denote by 𝐴 = (𝑎𝑖𝑗) the covariance
matrix of 𝑋, denote by 𝐷 = (𝑑𝑖𝑗) the covariance matrix of
𝑌, and denote by 𝐵 = (𝑏𝑖𝑗) the covariance matrix of 𝑋 and
𝑌. Let Σ be the covariance matrix of 𝑍; then Σ = ( 𝐴 𝐵

𝐵
𝑇
𝐷
),

|𝐴| > 0, |𝐷| > 0. Since the fBm has stationary increments,
we can get 𝐴 = 𝐷, and

𝑎𝑖𝑗 = 𝑑𝑖𝑗 =
1

2

(
𝑖 − 𝑗

 − 1) 𝛿


2𝐻

+
1

2

(
𝑖 − 𝑗

 + 1) 𝛿


2𝐻
−
(𝑖 − 𝑗)𝛿



2𝐻
, 𝐻 ∈ (0, 1) .

(12)

Similar to the conclusion given by Deng and Barkai [18], we
can get from simple calculation

𝑏𝑖𝑗 = 𝐸𝑋𝑖𝑌𝑗 ∼ 𝛿
2
𝐻(2𝐻 − 1)

𝑘1 − 𝑘2 + 𝑗 − 𝑖


2𝐻−2
,

𝑘2 − 𝑘1 → +∞,

(13)

where 𝑝𝑘 ∼ 𝑞𝑘 means lim𝑘→∞(𝑝𝑘/𝑞𝑘) = 1. So we have 𝐵 =
(𝑏𝑖𝑗) → 0.

When 𝐻 = 1/2, we can easily derive that the conclusion
of Lemma 4 holds.We assume𝐻 ̸= 1/2 in the following proof.
Let 𝑝(𝑧) be the probability density function of𝑍 and 𝐹(𝑧) the
distribution function of 𝑍, and let the marginal distributions
for 𝑍 be 𝐹𝑖(𝑧𝑖), 𝑖 = 1, 2, . . . , 2𝑛, where 𝑧 ∈ R2𝑛×1, 𝑧 =

(𝑧1, 𝑧2, . . . , 𝑧2𝑛)
𝑇. Take the notation Θ = [−𝑀,𝑀],𝑀 > 0,

and Γ = Θ × Θ × ⋅ ⋅ ⋅ × Θ ≜ Θ𝑛. Furthermore, we put

𝑔 (𝑍) = 𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

. (14)

First we will consider the integral of 𝑔(𝑍) on Γ × Γ.
Referring to Bernstein [19], we have Σ−1 = Σ1 + Σ2, where
Σ̃ = 𝐷 − 𝐵

𝑇
𝐴

−1
𝐵,

Σ1 = (
𝐴

−1 0
0 𝐷

−1) ,

Σ2 = (
𝐴

−1
𝐵Σ̃

−1
𝐵
𝑇
𝐴

−1
−𝐴

−1
𝐵Σ̃

−1

−Σ̃
−1
𝐵
𝑇
𝐴

−1
𝐷

−1
𝐵
𝑇
(𝐴 − 𝐵𝐷

−1
𝐵
𝑇
)
−1
𝐵𝐷

−1) .

(15)
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We take the notation 𝑑�̃� = 𝑑𝑧1, 𝑑𝑧2, . . . , 𝑑𝑧2𝑛.Then we obtain

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Γ×Γ

𝑔 (𝑧) 𝑝 (𝑧) 𝑑�̃�

=

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Γ×Γ

𝑔 (𝑧) (2𝜋)
−𝑛
(|𝐴| |𝐷|)

−1/2

× exp {−1
2
𝑧
𝑇
Σ1𝑧}

× (


𝐷 − 𝐵

𝑇
𝐴

−1
𝐵


−1/2

|𝐷|
−1/2

exp {−1
2
𝑧
𝑇
Σ2𝑧} − 1)𝑑�̃�,

(16)

where lim|𝑘1−𝑘2|→∞(|𝐷 − 𝐵
𝑇
𝐴

−1
𝐵|/|𝐷|) = (1/|𝐷|)(|𝐷 −

lim|𝑘1−𝑘2|→∞(𝐵
𝑇
𝐴

−1
𝐵)|) = 1. Assume lim𝑘2−𝑘1→∞(𝑀/|𝑘1 −

𝑘2|
1−𝐻
) = 0; then 𝑧𝑇Σ2𝑧 → 0, so we get ∀𝜖 > 0, ∃𝑁1,

∀|𝑘1 − 𝑘2| > 𝑁1,


exp {−1

2
𝑧
𝑇
Σ2𝑧} − 1


=


1 −

1

2
𝑧
𝑇
Σ2𝑧 + 𝑜 (𝑧

𝑇
Σ2𝑧) − 1



=



1

2
𝑧
𝑇
Σ2𝑧 + 𝑜 (𝑧

𝑇
Σ2𝑧)


.

(17)

Choose 𝛼 ∈ (0, 1) satisfying𝑁𝛼
> 𝑁1, where𝑁 < (𝑁 + 1)/𝑛;

then if |𝑘1 − 𝑘2| − 𝑛 > 𝑁
𝛼 and𝑁 is large enough, there exist

𝐶0 > 0, and 𝐶0 has relation with 𝑛, such that



1

2
𝑧
𝑇
Σ2𝑧 + 𝑜 (𝑧

𝑇
Σ2𝑧)


≤ 𝐶0𝑀

2
|𝐻 (2𝐻 − 1)|𝑁

2𝛼(𝐻−1)
.

(18)

Therefore, by (16), (17), and (18), we can derive that there exist
𝐶0 > 0 satisfying

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Γ×Γ

𝑔 (𝑧) 𝑝 (𝑧) 𝑑�̃�

≤ 𝑝
2
(𝜖 + 𝐶0𝑀

2
|𝐻 (2𝐻 − 1)|𝑁

2𝛼(𝐻−1)
)

≤ 𝐶0 |2𝐻 − 1|𝑁
𝛼(𝐻−1)

.

(19)

Then we will consider the integral of 𝑔(𝑍) on the
complementary set of Γ × Γ in the following. Let Ξ be a
random variable satisfying 𝑃(Ξ = (−∞, −𝑀)) = 1/2, 𝑃(Ξ =
(𝑀,∞)) = 1/2. Let Γ𝑖 be the set that contains all elements of
the following form:

Ξ × ⋅ ⋅ ⋅ × Θ × ⋅ ⋅ ⋅ × Ξ × ⋅ ⋅ ⋅ × Θ ≜ Ξ
(𝑖)
, (20)

where Θ occurs 𝑖 times and Ξ occurs 2𝑛 − 𝑖 times in Ξ(𝑖), 𝑖 =
0, 1, . . . , 2𝑛−1. So we can see that Γ𝑖 is composed of ( 2𝑛𝑖 )⋅2

2𝑛−𝑖

mutually disjoint elements.Therefore, the complementary set

of Γ × Γ should be (Γ × Γ)𝑐 = ⋃2𝑛−1

𝑖=0 Γ𝑖 and Γ𝑖⋂Γ𝑗 = Φ,
𝑖 ̸= 𝑗; that is, the complementary set of Γ × Γ is the union of
(∑

2𝑛−1

𝑖=0 (
2𝑛
𝑖 ) ⋅ 2

2𝑛−𝑖
= 3

2𝑛
− 1)mutually disjoint sets.

Since


2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Ξ(𝑖)

𝑔 (𝑧) 𝑝 (𝑧) 𝑑�̃�



≤

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Ξ(𝑖)

𝑝 (𝑧) 𝑑�̃� ≤ 𝐹 (𝑧1, 𝑧2, . . . , 𝑧2𝑛)

≤ min
1≤𝑖≤2𝑛

{𝐹𝑖 (𝑧𝑖)} ≤ 𝐹1 (−𝑀) ≤
𝛿
𝐻
𝑒
−𝑀
2
/2𝛿
2𝐻

𝑀
,

(21)

where𝑀 occurs 𝑖 times and −𝑀 occurs 2𝑛 − 𝑖 times within
𝑧1, 𝑧2, . . . , 𝑧2𝑛, the second inequality holds because |𝑔(𝑧)| ≤
1, and the last inequality holds because ∫+∞

𝑀
𝑒
−𝑥
2
/2
𝑑𝑥 =

∫
−𝑀

−∞
𝑒
−𝑥
2
/2
𝑑𝑥 ≤ 𝑒

−𝑀
2
/2
/𝑀.

Take𝑀 = 𝑁
𝛼(1−𝐻)/2. We conclude from (19) and (21) that

𝐸 (𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

) =

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

Γ×Γ

𝑔 (𝑧) 𝑝 (𝑧) 𝑑�̃�

+

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫ ⋅ ⋅ ⋅ ∫

(Γ
×Γ)

𝑐

𝑔 (𝑧) 𝑝 (𝑧) 𝑑�̃�

≤ 𝐶0 |2𝐻 − 1|𝑁
𝛼(𝐻−1)

+

2𝑛−1

∑

𝑖=0

(
2𝑛

𝑖
) ⋅ 2

2𝑛−𝑖 𝛿
𝐻
𝑒
−(𝑀)

2
/2𝛿
2𝐻

𝑀

≤ 𝐶0 |2𝐻 − 1|𝑁
𝛼(𝐻−1)

+ (3
2𝑛
− 1) 𝛿

𝐻
𝑁

𝛼(𝐻−1)/2
.

(22)

Take 𝐶 = 𝐶0 + (3
2𝑛
− 1)𝛿

𝐻
/|2𝐻 − 1|; then we have

𝐶0 |2𝐻 − 1|𝑁
𝛼(𝐻−1)

+ (3
2𝑛
− 1) 𝛿

𝐻
𝑁

𝛼(𝐻−1)/2

≤ 𝐶 |2𝐻 − 1|𝑁
𝛼(𝐻−1)/2

(23)

from which the proof immediately follows.

Then we obtain the law of large numbers.

Theorem 5. There exist 𝛽 ∈ (0, 1) and a constant 𝐶 > 0 such
that

𝐸

𝑉

(𝑛)

𝑁,Γ − 𝑃 (𝑈
(𝑛)

𝑛 ∈ Γ)


2
≤
𝐶

𝑁𝛽
. (24)

Proof. To simplify notation, we put Λ = {𝑘 : 0 ≤ 𝑘𝑛 + 𝑗 ≤ 𝑁}
and set for each fixed 𝑗 and 𝑘,

𝑌𝑗 = ∑

𝑘∈Λ

[𝐾
(𝑛)

Γ,(𝑘+1)𝑛+𝑗
− 𝑃 (𝑈

(𝑛)

𝑛 ∈ Γ)] . (25)
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Since the process {𝑈(𝑛)
𝑡 }𝑡≥𝑛𝛿 is stationary, we have 𝑃(𝑈(𝑛)

𝑡 ∈

Γ) = 𝐸[𝐼
{𝑈
(𝑛)

(𝑘+1)𝑛+𝑗
∈Γ}
] holds for all 𝑘 > 0. In addition, by C-r

inequality and Lemma 4, it follows that

𝐸

𝑉

(𝑛)

𝑁,Γ − 𝑃 (𝑈
(𝑛)

𝑛 ∈ Γ)


2

= 𝐸



1

𝑁 + 1

𝑛−1

∑

𝑗=0

𝑌𝑗



2

≤
𝑛

(𝑁 + 1)
2

𝑛−1

∑

𝑗=0

𝐸𝑌
2

𝑗

=
𝑛

(𝑁 + 1)
2

[
[
[

[

𝑛−1

∑

𝑗=0

∑

𝑘∈Λ

𝐸𝑍
2

𝑘,𝑗 +

𝑛−1

∑

𝑗=0

∑

𝑘1 ̸= 𝑘2

𝑘1 ,𝑘2∈Λ

𝐸𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

]
]
]

]

≤
𝑛

(𝑁 + 1)
2

[
[
[

[

𝑁 + 1 +

𝑛−1

∑

𝑗=0

∑

0<|𝑘1−𝑘2|≤𝑁
𝛼

𝑘1 ,𝑘2∈Λ

𝐸𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

+

𝑛−1

∑

𝑗=0

∑

|𝑘1−𝑘2| >𝑁
𝛼

𝑘1 ,𝑘2∈Λ

𝐸𝑍𝑘1 ,𝑗
𝑍𝑘2 ,𝑗

]
]
]

]

≤
𝑛

(𝑁 + 1)
2
[𝑁 + 1 + 2𝑛

𝑁 + 1

𝑛
𝑁

𝛼

+ 2𝑛
𝑁 + 1

𝑛
(𝑁 − 𝑁

𝛼
) 𝐶 |2𝐻 − 1|𝑁

𝛼(𝐻−1)/2
] .

(26)

Let 𝛽 = min{1 − 𝛼, 𝛼(1 − 𝐻)/2} and 𝐶 = 3𝑛 + 2𝑛𝐶|2𝐻 − 1|;
then 𝐸|𝑉(𝑛)

𝑁,Γ
− 𝑃(𝑈

(𝑛)
𝑛 ∈ Γ)|

2
≤ 𝐶/𝑁

𝛽.

Remark 6. From Theorem 5, it is reasonable to use the
stationary distribution of 𝑈(𝑛)

𝑛 to calculate 𝑉(𝑛)

𝑁,Γ
, which is the

relative frequency of the technical indicators falling in the
corresponding set.

Corollary 7. Let𝐻(𝑛)

𝑖
= 𝐼

{𝐿
(𝑛)

𝑖𝛿
≥2}

, 𝑖 ≥ 𝑛; then 𝐸𝐻(𝑛)

𝑖
= 𝑃(𝐿

(𝑛)

𝑖𝛿
≥

2). Let

𝐽
(𝑛)

𝑁 =
1

𝑁 + 1

𝑁

∑

𝑖=0

𝐻
(𝑛)

𝑛+𝑖, (27)

which is the observed frequency of the events [𝐿(𝑛)
(𝑛+𝑖)𝛿

≥ 2] (𝑖 =
0, 1, . . . , 𝑁), that is, the frequency of stock falling out of the
Bollinger bands. Then there exist 𝛽 ∈ (0, 1) and a constant
𝐶 > 0 such that

𝐸

𝐽
(𝑛)

𝑁 − 𝑃 (𝐿
(𝑛)

𝑛𝛿
≥ 2)



2
≤
𝐶

𝑁𝛽
, (28)

Corollary 8. Let𝐻(𝑛)

𝑖
= 𝐼

{𝑅𝑆𝐼
(𝑛)

𝑖𝛿
∈Γ}

, 𝑖 ≥ 𝑛, where Γ = [0, 20] ∪
[80, 100]. Then 𝐸𝐻(𝑛)

𝑖
= 𝑃(𝑅𝑆𝐼

(𝑛)

𝑖𝛿
∈ Γ). Let

𝐽
(𝑛)

𝑁 =
1

𝑁 + 1

𝑁

∑

𝑖=0

𝐻
(𝑛)

𝑛+𝑖, (29)

which is the observed frequency of the events [𝑅𝑆𝐼(𝑛)
(𝑛+𝑖)𝛿

∈

Γ] (𝑖 = 0, 1, . . . , 𝑁). Then there exist 𝛽 ∈ (0, 1) and a constant
𝐶 > 0 such that

𝐸

𝐽
(𝑛)

𝑁 − 𝑃(𝑅𝑆𝐼
(𝑛)

𝑛𝛿
∈ Γ)



2
≤
𝐶

𝑁𝛽
. (30)

Corollary 9. Let𝐻(𝑛)

𝑖
= 𝐼

{𝑅𝑂𝐶
(𝑛)

𝑖𝛿
∈Γ}

, 𝑖 ≥ 𝑛, where Γ = [−∞, 𝜉]∪
[𝜂,∞], and 𝜉 and 𝜂 are the indefinite ground and antenna of
ROC. Then 𝐸𝐻(𝑛)

𝑖
= 𝑃(𝑅𝑂𝐶

(𝑛)

𝑖𝛿
∈ Γ). Let

𝐽
(𝑛)

𝑁 =
1

𝑁 + 1

𝑁

∑

𝑖=0

𝐻
(𝑛)

𝑛+𝑖, (31)

which is the observed frequency of the events [𝑅𝑂𝐶(𝑛)

(𝑛+𝑖)𝛿
∈ Γ]

(𝑖 = 0, 1, . . . , 𝑁). Then there exist 𝛽 ∈ (0, 1) and a constant
𝐶 > 0 such that

𝐸

𝐽
(𝑛)

𝑁 − 𝑃(𝑅𝑂𝐶
(𝑛)

𝑛𝛿
∈ Γ)



2
≤
𝐶

𝑁𝛽
. (32)

6. Conclusion

In the above discussion, we considered a class of long-range
dependent processes, of which the rate of decay is slower than
the exponential one, typically a power-like decay. We derived
the rate of convergence of the ergodic theorem for several
stationary processes associated with the technical analysis in
the securitymarket and extended the previous results (see [1–
3, 16, 17]). Thus, we established the theoretical foundation of
technical analysis for fractional Black-Scholes model.
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