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Fluctuations of the nonlinear time series are driven by the traverses of multiscale conformations from one state to another. Aiming
to characterize the evolution of multiscale conformations with changes in time and frequency domains, we present an algorithm
that combines the wavelet transform and the complex network. Based on defining the multiscale conformation using a set of
fluctuation states from different frequency components at each time point rather than the single observable value, we construct
the conformational evolution complex network. To illustrate, using data of Shanghai’s composition index with daily frequency
from 1991 to 2014 as an example, we find that a fewmajor conformations are the main contributors of evolution progress, the whole
conformational evolution network has a clustering effect, and there is a turning point when the size of the chain of multiscale
conformations is 14. This work presents a refined perspective into underlying fluctuation features of financial markets.

1. Introduction

Detecting the dynamical features of a time-dependent com-
plex system mainly depends on time series analysis. This
problem is complicated by the nonlinear characteristic of
the original time series [1]. Since Lacasa et al. proposed
their famous visibility graph algorithm to transfer the time
series into networks [2], the last decade has witnessed the
success and effectiveness of the complex network in solving
nonlinear problems for time series analysis in multiple disci-
plines, including financial markets [3–5], engineering [6–8],
medicine [9–11], and geophysics [12]. Based on these existing
contributions, there is yet another trigger of nonlinearity
to be concerned with the hidden multiscale information in
the frequency domain. It is still a challenge to determine
how to transfer a complex network involving multiscale
information from the original time series and to explore
the underlying evolution features with time and frequency
changes simultaneously.

In this paper, we focus on financial time series. As we
know, financial markets consist of a number of stakeholders

with objects in various time horizons, which results in
financial time series comprising a combination of different
frequency components [13–15]. Such frequency components
form a multiscale conformation behind the original time
series and changes within multiscale conformations drive
fluctuations of the observed time series values [16, 17]. In
other words, at one time point, a multiscale conformation
decides the corresponding observed value. Hence, exploring
the dynamic features of the multiscale conformational evolu-
tion progress will offer new insight into understanding fluctu-
ations in financial time series from a meticulous perspective.

In regard to the multiscale conformation problem,
wavelets offer an effective solution: representing the original
time series as a function with two variables, namely, time
and frequency [18]. Hence, the implementation of wavelet
transform enables us to detect the evolution of different fre-
quency components for different time [19]. In other words, a
wavelet working as a “microscope” could observe an original
time series using a different “resolution.” A finer resolution is
better at detecting the details of an original signal, and a low
resolution is well-suited for trend analysis [20, 21].
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Aiming to encode the underlying multiscale conforma-
tion evolution features of financial time series, we pro-
pose a new algorithm incorporating wavelet transform and
the complex network. First, we use the wavelet transform
to decompose an original time series into time-frequency
domain. We then define the multiscale conformation for one
time point with a set of frequency components; a process
which offers us a detailed description for current time points
rather than for a singular number. Multiscale conformations
varying as time changes together form an evolutionary
process. We identify the multiscale conformations as nodes,
the transmissions over time as edges, and the edges’ weight
as the frequency of transmission. Hence, we construct the
multiscale conformation evolution process as a multiscale
evolution complex network. A structural features analysis
could help us to explore the underlying dynamical features
of financial time series.

2. Algorithm and Data Description

2.1. Decomposition in Time-Frequency Domains. First, we use
the continuouswavelet transform to obtain thewavelet power
spectrum of an original financial time series [22] which
could depict the fluctuation of the time series for different
frequencies and time [23]. At the heart of continuous wavelet
transform is the idea that an original time series should be
represented as a function of frequency and time through
a wavelet, while the original time series is considered as a
function of time alone [18]. A wavelet is a square integral
functionwith real value and zeromean inwhich there are two
parameters: namely, location (𝑢) and scale (𝑠). The location
parameter 𝑠 could determine the wavelet’s position in time by
shifting the wavelet, while the scale parameter 𝑢 could stretch
or dilate the wavelet to localize different frequencies:

𝜓
𝑢,𝑠
=

1
√𝑠

𝜓(

𝑡 − 𝑢

𝑠

) . (1)

According to the Heisenberg uncertainty principle, there
is always a trade-off between the localization of time and
scale. For the purpose of extracting features, the Morlet
wavelet with 𝜔0 = 6 is a good choice because it provides a
good balance between time and frequency localization [24]:

𝜓0 (𝜂) = 𝜋
−1/4
𝑒
𝑖𝜔0𝜂
𝑒
−(1/2)𝜂2

. (2)

The continuous wavelet transform could be obtained by
projecting the original time series onto the specific wavelet
𝜓(⋅) as characterized by location and scale parameters. It
could thus be represented as the following equation:

𝑊
𝑋
(𝑢, 𝑠) = ∫

∞

−∞

1
√𝑠

𝜓(

𝑡 − 𝑢
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) 𝑑𝑡. (3)

From the continuous wavelet transform, we can obtain
further information about the time series: namely, amplitude.
The square of the amplitude |𝑊

𝑋
|
2 is defined as the wavelet

power spectrum, which indicates the power distribution of
different frequency components of the original time series

evolving over time, a large power corresponding to high
fluctuation and vice versa. In actuality, the wavelet power
result is an 𝑖 ∗ 𝑗 matrix {𝑊

𝑖𝑗
}, where 𝑖 represents a different

time point and 𝑗 represents a different frequency band. We
can thus represent the wavelet power matrix as a visible
wavelet power spectrum.

2.2. Constructing the Multiscale Evolution Complex Network

Step 1 (discretization of the frequency band). Based on
wavelet power results, we define the multiscale fluctuation
conformation at each time point. The frequency band of the
wavelet power matrix ranges from 2 to 512 days, and we
discretize the successive frequency bands as sets of 9 separate
frequency bands including 2 days, 4 days, 8 days, 16 days, 32
days, 64 days, 128 days, 256 days, and 512 days to represent the
multiscale components.Thediscretizedwavelet powermatrix
is defined as {𝑊𝐷

𝑖𝑗
}.

Step 2 (symbolization of the fluctuation level). According
to the actual value of {𝑊𝐷

𝑖𝑗
}, defining the fluctuation level

as four types by discretizing a subsequence of continuous
observations from one frequency band into four equal zones,
the symbolization of the four fluctuation levels is defined as
𝐿
1
(very high), 𝐿

2
(high), 𝐿

3
(weak), and 𝐿

4
(very weak).

Step 3 (definition of a multiscale conformation). Each time
point has one corresponding multiscale conformation that
consists of nine fluctuation states from nine frequency com-
ponents. For example, the multiscale conformation for the
first time point is 𝐿

2
𝐿
2
𝐿
2
𝐿
2
𝐿
3
𝐿
2
𝐿
3
𝐿
2
𝐿
3
.

Step 4 (construction of the multiscale evolution complex
network). We consider the multiscale conformation for each
time point to be a node, transmissions denoted with the
corresponding time of multiscale conformations to be edges,
and the frequency of the same transmission between confor-
mations to be weight.

2.3. Data Description. We choose the Shanghai (security)
composite index (SHCI) from January of 1991 to December
of 2014 in daily frequency to serve as a data source. The
SHCI represents the fluctuation in the Shanghai stockmarket
comprehensively (Figure 1). There are 5870 data points, and
the data are extracted from the wind database. We transform
the original SHCI time series into a logarithmic return rate as
𝑋
𝑡
= log(𝑥

𝑡
/𝑥
𝑡−1).

3. Empirical Results

3.1. Decomposition of the SHCI into Time-Frequency Domain.
The wavelet power spectrum of the SHCI can help us to
understand the fluctuation of the SHCI as it varies with
time and frequency (Figure 2). The horizontal axis depicts
time information and the vertical axis displays frequency
information. We circle the significant frequency and time
intervals with a black line and use warm colors to denote
instances in which the SHCI fluctuates highly. It is obvious
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Figure 1: Original time series of Shanghai (security) composite
index from January 1999 to December 2014.
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Figure 2: The wavelet power spectrum of the SHCI.

that SHCI fluctuatesmuchmore highly in the frequency band
of 2–256 days from 1992 to 1997 than in other regions.

3.2. Construction of theMultiscale Evolution Networks. Based
on the wavelet power spectrum, we obtain 9 frequency bands
through discretion (Figure 3). We then normalize discrete
wavelet power through a logarithmic transform. A statistical
summary demonstrates the value of chosen frequency bands
having the maximum of −2.9403 and the minimum of
−18.9858. Hence, we define that there are four fluctuations
levels and symbolize them as follows:

fl
𝑖
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝐿1, 𝑤
𝐷

𝑖𝑗
∈ [−2.9403, −6.9517) ;

𝐿2, 𝑤
𝐷

𝑖𝑗
∈ [−6.9517, −10.9631) ;

𝐿3, 𝑤
𝐷

𝑖𝑗
∈ [−10.9631, −14.9744) ;

𝐿4, 𝑤
𝐷

𝑖𝑗
∈ [−14.9744, −18.9558) .

(4)

According to the above, there are 5870 multiscale con-
formations for 5870 data points. These multiscale fluctuation
conformations transform into each other with changes over
time, forming themultiscale fluctuation evolution process. In
fact, there are fewer than 5870 types of multiscale conforma-
tions due to the repetitive attendance of some conformations.
We can thus obtain a directed and weighted multiscale
fluctuation evolution network (Figure 4).
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Figure 3: The discretion results of the wavelet power spectrum of
SHCI.

Figure 4: The multiscale fluctuation evolution network.

3.3. Evolution Features Analysis. Based on themultiscale fluc-
tuation evolution network, we first use an index of the
weighted out-degree to identify the major multiscale con-
formations. Then, the index of betweenness centralities is
used to describe the transmission capability of multiscale
conformations. The index of the modularity class could be
implemented to explore the clustering effect of multiscale
conformations. Finally, we divide the multiscale evolution
network into multiscale conformation chains with different
lengths and characterize the fluctuation features of SHCI by
analyzing the evolution process of these chains.

3.3.1. Major Multiscale Conformations. For the time series
containing 5870 time points, there are supposed to be 5870
multiscale conformations and 5869 edges. In fact, due to
the repetitiveness of some multiscale conformations, there
are 417 nodes and 1165 edges in reality. To identify major
multiscale conformations, we introduce the index of the
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Figure 5: Distributions of the weighted out-degree of node. (a) Cumulative distribution of the weighted out-degree of the node (sorted by
the value of the weighted out-degree of the nodes in descending order,𝑁 = 1, 2, . . . , 417). (b) Double-logarithmic plot between the weighted
out-degree of node and the probability of the weighted out-degree.

weighted out-degree, which not only can depict the number
of neighbor conformations of one multiscale conformation
but can also demonstrate the weight between multiscale
conformations and their neighbors.Wedefine theweight out-
degree of one multiscale conformation as follows:

𝑤
out
𝑖
= ∑

𝑗∈𝑁𝑖

𝑤
𝑖𝑗
, (5)

where 𝑁
𝑖
represents the number of neighbors shared by

the conformation 𝑤
𝑖
and 𝑤

𝑗
represents the weight between

conformations 𝑤
𝑖
and 𝑤

𝑗
. The weighted out-degree of all

multiscale conformations is described in Figure 5(a). We
found that 81.09% of transmissions happen among 26.62%
of multiscale conformations and the distribution of the
weighted out-degree of multiscale conformations follows the
power law distribution 𝑝(𝑤out

) ∼ 𝑤
out−𝜆 (Figure 5(b)).

The result shows that 111 types of multiscale conforma-
tions occur during the evolution process with high frequency
and are the main constructors of the SHCI fluctuation status.
(Here we list the top 10 conformations in Table 1.)

3.3.2. Transmission Capability of Multiscale Conformations.
The transmission capability is another crucial characteristic
ofmultiscale conformations during the evolution process and
can be described by the index of betweenness centralities.
In the complex network of multiscale conformations, the
average length of characteristic paths is 11.805, which means
that the average shortest transmission path between any
two random multiscale conformations must pass another
11 or 12 conformations. In a small-world network, the
shortest transmission path is less than 6 on average and

Table 1: The top ten multiscale conformations ranked by the
weighted out-degree.

Number Conformations Weighted
out-degree

Percentage (%)
accounts for total

weighted out-degree
1 𝐿

3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 649 10.87

2 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2 291 4.87

3 𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 228 3.82

4 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
4 152 2.55

5 𝐿
3
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 151 2.53

6 𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 149 2.50

7 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2
𝐿
3 115 1.93

8 𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2 101 1.69

9 𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 99 1.66

10 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3 99 1.66

the transmission between any two nodes is easy. Hence, in
the evolution complex network of multiscale conformations,
transmissions between any two multiscale conformations are
not convenient and have to be connected by other multiscale
conformations that are playing a medium role in the evolu-
tion process. Multiscale conformations with high attendance
on the shortest transmission path have good transmission
capabilities, meaning that these conformations could control
more information in the multiscale evolution process. The
transmission capability of multiscale conformations can be
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Table 2: The weighted out-degree of the top ten conformations
ranked by betweenness centrality.

Number Conformations Betweenness
centrality

Weighted
out-degree

1 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3 0.6445 649

2 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2 0.2808 291

3 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
4
𝐿
4
𝐿
3
𝐿
3 0.2386 62

4 𝐿
2
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3 0.2382 13

5 𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3 0.2035 39

6 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3 0.1813 93

7 𝐿
2
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
4 0.1787 30

8 𝐿
3
𝐿
3
𝐿
3
𝐿
4
𝐿
3
𝐿
4
𝐿
4
𝐿
3
𝐿
3 0.1762 19

9 𝐿
3
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
2 0.1734 5

10 𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
3
𝐿
4
𝐿
3
𝐿
3 0.1649 14
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Figure 6: The evolution of the betweenness centrality of multiscale
conformations over time.

described by betweenness centralities. The normalized defi-
nition of betweenness centralities BC

𝑖
of conformation 𝑖 can

be written as follows:

BC
𝑖
=

∑
𝑘

𝑗
∑
𝑛

𝑘
𝑞
𝑗𝑘
(𝑖) /𝑞
𝑗𝑘

𝑛
2
− 3𝑛 + 2

, 𝑗 ̸= 𝑘 ̸= 𝑖, 𝑗 < 𝑘,
(6)

where 𝑞
𝑗𝑘
is the total number of shortest paths between nodes

𝑗 and 𝑘. 𝑞
𝑗𝑘
(𝑖) is the number of shortest paths between nodes

𝑗 and 𝑘 that pass node 𝑖.
The evolution of the betweenness centrality of multiscale

conformations over time is depicted in Figure 6. Conforma-
tions with high betweenness centrality have a clustering effect
caused by either the repetitiveness of a single conformation
with high betweenness centrality or frequent transmissions
among conformations with high betweenness centrality.
We identify top 10 multiscale conformations with high
betweenness centrality (Table 2). Conformations with high
betweenness centrality work like a bridge to link the other
conformations in the multiscale complex network. Their
appearances are the necessary condition for transmission
among conformations that do not connect directly. In some
cases, without these conformations with high betweenness
centrality, the transmission among some specific conforma-
tions will be impossible. Among all multiscale fluctuation
conformations with high betweenness centrality, those that
also have high weighted out-degree play a dominant role
in the evolution complex network, while other conforma-
tions with low weighted out-degree may be in a temporary
transition status. For example, the multiscale conformation

L3L2L2L3L3L2L3L3L2

L2L2L2L3L3L2L3L3L3

Figure 7: An example of multiscale conformations with high
betweenness centrality and low weighted out-degree.Themultiscale
conformations 𝐿

3
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
2
and 𝐿

2
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3

have betweenness centrality of 0.1734 and 0.2382 and weighted out-
degree of 5 and 13, respectively.They link two communities and their
appearance may indicate that the transform moves between these
two communities.

named 𝐿
3
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
2
and 𝐿

2
𝐿
2
𝐿
2
𝐿
3
𝐿
3
𝐿
2
𝐿
3
𝐿
3
𝐿
3

with high betweenness centrality and low weighted out-
degree links two communities, the appearance of which
may indicate the transform moves from one community to
another (Figure 7).

3.3.3. The Clustering Effect. Based on weighted out-degree
and betweenness centrality, we find that transmissions among
some multiscale conformations are difficult. Without some
conformations as medium, all multiscale conformations will
be separated into several distinct groups. We ask whether
there are a number of multiscale conformations clustered
closely that could easily transmit to each other. Therefore, we
use a modularity index to measure the partition of commu-
nities in the evolution network of multiscale conformations,
with higher values of the modularity demonstrating a better
partition of a complex network. The definition of modularity
can be written as follows [25]:

𝑄 =

1
2𝑚
∑

𝑖,𝑗

[𝑤
𝑖,𝑗
−

𝐴
𝑖
𝐴
𝑗

2𝑚
]𝛿 (𝑐
𝑖
, 𝑐
𝑗
) , (7)

where 𝑤
𝑖,𝑗

is the weight of the edge between nodes 𝑖 and 𝑗.
𝐴
𝑖
= ∑
𝑗
𝑤
𝑖,𝑗

is the sum of the weights of the edges that
connected with node 𝑖. 𝑐

𝑖
is the community that node 𝑖 is
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assigned to. 𝛿(𝑐
𝑖
, 𝑐
𝑗
) is 1 when 𝑐

𝑖
= 𝑐
𝑗
and is 0 otherwise

𝑚 = (1/2) ∑
𝑖,𝑗
𝑤
𝑖,𝑗
.

The modularity partitions algorithm is divided into two
phases repeated iteratively. First, each node is considered to
be a community. The number of communities is therefore
equal to that of the nodes. We then evaluate the gain of the
modularity (Δ𝑄). Node 𝑖 will be moved to a neighboring
community only when the gain of the modularity is positive;
otherwise node 𝑖 will remain in the contemporary commu-
nity.This phase will be repeated until no individual move can
improve modularity. The gain of the modularity (Δ𝑄) can be
calculated by

Δ𝑄 = [

∑𝐶in + 𝐴 𝑖,in

2𝑚
−(

∑ tot + 𝐴
𝑖

2𝑚
)]

−[

∑ in
2𝑚
−(

∑ tot
2𝑚
)

2
−(

𝐴
𝑖

2𝑚
)

2
] ,

(8)

where ∑𝐶in is the sum of the weights of all edges inside
community 𝐶, ∑ tot is the sum of the weights of edges
incident to all nodes inside community 𝐶. 𝐴

𝑖
is the sum of

the weights of the edges incident to 𝑖. 𝐴
𝑖,𝑚

is the sum of the
weights of the edges from node 𝑖 to all nodes in community
𝐶, and𝑚 is the sum of the weights of all edges in the network.

In the second phase, taking the communities found in
the first phase to be nodes, we can build up a new network.
The weight of the edges of the new network can be obtained
from the sum of the weights of edges between nodes in
two corresponding communities. Edges between nodes of
the same community lead to self-loops in the new network.
When the second phase is finished, the first phase is repeated,
thus resulting in a new network. These two phases are
repeated until there are no more changes (details in [25]).

We apply the algorithm to the evolution complex network
of multiscale conformations.Themodularity of the evolution
complex network is 0.809 and the whole complex network
is separated into 20 communities. The number of each
community ranges from 8 to 32. Inside each community,
multiscale conformations transmit to each other continently.
Among these communities, some cannot transmit to another
directly. In this case, conformations with high betweenness
centrality work as pivots to connect isolated communities.

3.3.4. The Transmission Capability of Multiscale Conforma-
tion Chains. The evolution complex network of multiscale
conformations is characterized by a clustering effect. Fur-
thermore, we divided the evolution process of multiscale
conformations into various chains that consist of different
numbers of multiscale conformations. The number of mul-
tiscale conformations inside the chain is defined as the size
of the chain. We then explore the transmission features of
these chains with size changes. We define the chain size
as 𝑛 and observe the whole multiscale fluctuation process
from a sliding perspective. Hence, the number of multiscale
conformations sets will be 5870 − 𝑛 + 1.

First, the number of multiscale conformation chains
increases with increasing size, meaning that the diversity of
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Figure 8: The number of chains of multiscale conformations and
percentage of the chains with the highest attendance accounts in the
total number of chains of multiscale conformations.

chains is growing when their components increase. Simulta-
neously, the percentage of chains with the highest attendance
accounts in the total number of chains decreases as the size of
the chain grows. As mentioned above, it is obvious that there
is a turning point at which the repetition of chains is scarce.
For a multiscale complex network, the turning point appears
when the size of the chain becomes 14.

Another point deserving notice is the status of chains
with the highest attendance. Generally, the self-transmission
of multiscale conformations with high weighted out-degree
constitutes the chain of the multiscale fluctuation with high
attendance. Hence, when the multiscale conformation with
high weighted out-degree appears for several days, this con-
formation may last for a period in the near future (Figure 8).

4. Discussion and Conclusions

Thenonlinearity of financial time series caused by the hidden
multiscale information complicates the exploration of under-
lying mechanisms. We present a multiscale algorithm com-
bining wavelet transform and the complex network, offering
meticulous insight into characterizing the evolution process
of the multiscale conformation that drives the fluctuation
of observed values within the original time series. We first
implement a continuous wavelet to obtain the wavelet power
spectrumof the original time series that depicts its fluctuation
as changes with time and fluctuation. We then define the
multiscale conformations of each time point based on the
construction of an evolution complex network. Finally, we
characterize the evolution complex network through analyses
of the major conformations, the transmission capacity of the
conformations, the clustering effect, and the transmission of
the chains of multiscale conformations.

We use the SHCI daily data from January 1990 to Decem-
ber 2014 as an example and construct the evolution com-
plex network of multiscale conformations. More specifically,
the weighted out-degree and betweenness centrality of the
multiscale conformations follow the power law distribution.
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Figure 9: Continued.
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Figure 9: Distributions of the weighted out-degree of node. Cumulative distribution of the weighted out-degree of the node of (a) DAX, (c)
FTSE100, (e) DJIA, and (g)NIKKEI225 (sorted by the value of the weighted out-degree of the nodes in descending order). Double-logarithmic
plot between the weighted out-degree of node and the probability of the weighted out-degree of (b) DAX, (d) FTSE100, (f) DJIA, and (h)
NIKKEI225.

We could therefore identify major conformations that are the
main contributors in the whole network and major transmit
conformations which serve as pivots connecting separated
conformations. Such information could be considered to be
a reference to changes within the SHCI. We then find that
the whole evolution complex network can be partitioned
into 20 communities inside of which transmissions among
conformations are easily made. Among some communities
the major transmit conformations only transmit to each
other. In this case, the appearance of transmit conformations
could be a signal that depicts structural changes characteristic
of SHCI. Finally, through the analysis of transmissions of
multiscale fluctuation chains, the turning point of SHCI
appears when chain size is 14.

In addition, to prove the validation and effectiveness of
the algorithm, we apply it to other stock indices from four
major countries, namely, UK (FTSE100), Germany (Dax 30),
US (DJIA), and Japan (NIKKEI225), from January of 1991
to December of 2014 in daily frequency. They contain 6084,
6254, 6079, and 5912 data points, respectively. We found that
the weighted out-degrees of these four stock indices also
follow the power law distribution and their exponents of the
distributions of the weighted out-degree are approximately 1.
Moreover, it is obvious that nearly 80% transmissions happen
among roughly 30% of the multiscale conformations. These
results prove that the multiscale evolution features of the
four major stock indices are very similar to that of the SHIC
(Figure 9).

In this study, we try to put forward an approach to uncov-
ering the underlying mechanism of nonlinearity expressed
by a financial time series, which can help us to understand
financial markets in greater detail. However, the nonlinearity

of financial prices may be affected by other factors that we try
to involve in a future study.
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