
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 621203, 10 pages
http://dx.doi.org/10.1155/2013/621203

Research Article
A Novel Algorithm for Intrusion Detection Based on
RASL Model Checking

Weijun Zhu,1,2 Qinglei Zhou,1 Weidong Yang,2 and Haibin Zhang3

1 School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
2MOEKey Laboratory of Grain Information Technology&Control, HenanUniversity of Technology, Zhengzhou,Henan 450001, China
3 School of Computer Science, Xidian University, Xi’an, Shaanxi 710071, China

Correspondence should be addressed to Weijun Zhu; zhuweijun76@163.com

Received 29 November 2012; Revised 6 February 2013; Accepted 15 February 2013

Academic Editor: Jitao Sun

Copyright © 2013 Weijun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The interval temporal logic (ITL) model checking (MC) technique enhances the power of intrusion detection systems (IDSs)
to detect concurrent attacks due to the strong expressive power of ITL. However, an ITL formula suffers from difficulty in the
description of the time constraints between different actions in the same attack. To address this problem, we formalize a novel
real-time interval temporal logic—real-time attack signature logic (RASL). Based on such a new logic, we put forward a RASL
model checking algorithm. Furthermore, we use RASL formulas to describe attack signatures and employ discrete timed automata
to create an audit log. As a result, RASLmodel checking algorithm can be used to automatically verify whether the automata satisfy
the formulas, that is, whether the audit log coincides with the attack signatures. The simulation experiments show that the new
approach effectively enhances the detection power of the MC-based intrusion detection methods for a number of telnet attacks,
p-trace attacks, and the other sixteen types of attacks. And these experiments indicate that the new algorithm can find several types
of real-time attacks, whereas the existing MC-based intrusion detection approaches cannot do that.

1. Introduction

Intrusion detection (ID) is an important network security
technique. ID can be divided into anomaly intrusion detec-
tion and misuse intrusion detection in terms of the different
principles of ID. The former can find unknown types of
attacks. However, false positives rate of anomaly intrusion
detection is often very high. In contrast, a misuse intrusion
detection system has a comparatively low false positives
rate with regard to known types of attacks. This is due to
the principle of misuse intrusion detection: IDS developers
predefine their known types of attacks, use appropriate
language to describe these types, and establish libraries of
attack patterns (called misuse signatures). The system will
monitor the audit log. Once a data stream in the log is found
to match with certain attack type, it means that an attack is
found.

However, such a class of detection methods based on
pattern matching (PM) suffers from their inherent problems.

First, affected by intruders’ subjective wishes or other random
factors, the logical relationship among its atomic actions
associated with attacks of the same pattern launched by
different intruders may present different features [1, 2], where
an atomic action means a minimum operation step in an
attack. It is hard to depict precisely so vastly different attacks
with a relatively small-scale attack pattern library. Second, a
large-scale coordinated attack requires an intrusion detection
algorithm to handle a large volume of network data in a
short period of time. To address these issues, a series of
intrusion detection methods based on model checking have
been developed.

A relatively comprehensive algorithmhas been presented,
and it is based on linear temporal logic (LTL)model checking
[1]. Its basic principle can be formulated as follows: (1) use
an LTL formula to describe an attack pattern as well as an
automaton to record what happened in the audit log, and
(2) use a model checking algorithm to check whether the
automaton satisfies the formula (i.e., whether the records in

2 Mathematical Problems in Engineering

Real
time

logics

DC

TITL

LTL

ITL

Real
time

interval
logics

Interval
temporal

Temporal
logics

logics

· · ·

· · ·

· · ·

(a)

LTL ITL RASL

(b)

Figure 1: (a) Some temporal logics and their classification. (b) Some
logics and their expressive power.

log match the attack pattern). Since current model checking
algorithms have been able to check up to 10120 states, they
are particularly suitable for the large-scale attack detection
[3], and the operators in LTL formulas can flexibly describe
various logical relationships between atomic attack actions.

Compared with the PM-based approaches, the MC-
based ones can effectively portray the ever-changing attack
patterns [1, 3]. Furthermore, the MC-based approaches have
an important advantage for intrusion detection over the PM-
based ones. Pattern matching is usually applicable to detect
inconsistencies between data while automata, temporal logic
formulas, and model checking techniques are applicable to
detect inconsistencies of behaviors. Thus, the MC-based
methods can do something more than the PM-based ones
since intrusion attacks involve complex behaviors besides the
comparatively simple data.

However, the algorithm in [1] can realize the auto-
matic detection for neither concurrent attacks nor real-time
(i.e., time constraint relation) attacks because LTL formulas
cannot be used to describe multiprocess activities or time
constraint relationships between attack actions or attack
action sequences. As the first attempt to address these issues,
a method based on ITL model checking was presented in [2],
and it can describe and detect concurrent attacks, since ITL
has more power than LTL. However, ITL-model-checking-
based methods still cannot describe and detect real-time
attacks. For example, there are a large number of attacks
with the following characteristic in a real network intrusion:
No more than n seconds after action (sequence/process)
A occurs, action (sequence/process) B occurs. Here, the
condition “no more than” can be replaced by more than,
less than, no less than, or equal to. The existing MC-based
algorithms cannot find these attacks.

Therefore, motivated by addressing both concurrent
attacks and real-time attacks simultaneously, we, in this

paper, present a new interval temporal logic to describe
conveniently the real-time attack signatures and also put
forward a new MC-based approach to automatically detect
the various changing modes of real-time attacks.

We conducted some simulation experiments and a
benchmark test (see Section 7). The detection of several
groups of attacks, such as telnet attacks and p-trace attacks,
is simulated on MATLAB. The experiment results verify that
(1) the new algorithm finds more attacks than the existing
MC-based algorithms; (2) the new algorithm finds real-time
attacks. This is the main contribution of this paper.

The remainder of this paper is organized as follows.
Section 2 illustrates some related works and compares them
with the new approach. Section 3 defines a new logic, RASL,
and gives its formal syntax and semantics. Section 4 uses
RASL formulas to establish some models for attack patterns.
Several examples of models are given in Section 5. Section 6
formalizes a RASLmodel checking algorithm based on a new
data structure called timed normal form graph (TNFG), and
amisuse intrusion detection algorithm is presented. Section 7
presents several groups of experiments and compares the
new algorithm with the existing ones with regard to the
description capabilities and detection capabilities for intru-
sion attacks. Section 8 draws the conclusions of this paper.

2. Related Works

2.1. Detect Various Attack Types Using Model Checking Linear
Temporal Logics. A tool called ORCHIDS was developed
[3], which fulfilled the LTL-model-checking-based method
for intrusion detection in reality [1]. In one experiment,
ORCHIDS found some p-trace attacks [4] which usually
exploit the flaws in process calls to inject malicious code.
It is difficult for traditional intrusion detection systems to
find this type of attacks because they only match individual
events [4]. The ORCHIDS was improved in [5]. In a real
environment, it successfully detected a series of wireless
network attacks [5], including deauthentication flooding,
rogue access points, and Chop-Chop. This is the first IDS to
successfully detect Chop-Chop attacks [5]. Furthermore, to
avoid repeated verifications needed by the algorithm in [1],
an improved algorithm was put forward in [6], which is able
to compute the number of guesses in password attacks.

Compared with the methods mentioned above, the new
algorithm can be used to detect complex concurrent attacks
and real-time attacks (See Section 7).

2.2. Detect Various Attack Types Using Model Checking Inter-
val Temporal Logics. ITL was put forward in [7]. With its
successful and broader adoption and adaptation [8–11], ITL
is becoming a class of logics, including some non-real-time
interval logics [7] and some real-time interval logics [12–
14]. Figure 1(a) illustrates the relationships between some
temporal logics.

There are some studies that use interval temporal logics
to describe attack patterns so that more intrusion behaviors
can be expressed [15–17]. However, these papers do not
mention how to detect these attacks automatically. The
method presented in [2] can do it automatically, but it can

Mathematical Problems in Engineering 3

𝑎1 𝑎2

𝑎
𝐴1 𝐴2

(a) Sequential relation 𝑎 = 𝐴1, 𝐴2

𝐴1

𝐴2

(b) Concurrent rela-
tion 𝑎 = 𝐴1 | 𝐴2

𝑎

𝐴1 𝐴2

𝑡0 𝑡1 < 5

(c) Time relation

Figure 2: Different relationship between behaviors in an attack 𝑎.

𝜑0

𝜑1 𝜑2 𝜑3

(a)

𝜑0

𝜑1 𝜑2 𝜑3

(b)

𝜑0

𝜑1 𝜑2 𝜑3

(c)

Figure 3: Three cases on different length of projection.

𝜑𝑓 𝜑𝑓 𝜑𝑓 𝜑𝑠

True Fail Fail Fail ∧𝑐 Success

𝑏

Figure 4: Success after connection failed three times.

only find concurrent attacks rather than real-time attacks.
In contrast, as a real-time interval logic, RASL has more
expressive power (see Figure 1(b)), which can be used to
describe the time relationships among attack activities, and
our model checking algorithm can find real-time intrusion
attacks in a fully automatic manner (See Section 7).

3. RASL

Definitions 1 and 2 give the formal description of the syntax
of RASL, whereas the other definitions present its semantics.
Compared with ITL [11, 18, 19], the additional operator
denoted as “;

𝐼
” in RASL is appended for the description of

time constraints between intervals.

Definition 1. RASL formulas have the following syntax given
in the Backus-Naur form:

(1) terms 𝑡 ::= 𝑇 | 𝑇
𝑓
,

(2) constraint formulas 𝛿 ::= 𝑇
𝑓
≤ 𝑐 | 𝑇

𝑓
< 𝑐 | 𝑇

𝑓
> 𝑐 |

𝑇
𝑓
≥ 𝑐 | 𝛿

1
∧ 𝛿
2
,

(3) interval formulas 𝜑 ::= 𝑝 | 𝑠𝑘𝑖𝑝 | (𝜑
1
, . . . , 𝜑

𝑚
) 𝑝𝑟𝑗

𝜑
0
| (𝜑
1
, . . . , (𝜑

𝑖
, . . . , 𝜑

𝑗
)
Θ
, . . . , 𝜑

𝑚
)𝑝𝑟𝑗 𝜑

0
| 𝜑
1
; 𝜑
2
|

𝜑∗ | 𝜑
1
∨ 𝜑
2
| 𝜑
1
∧ 𝜑
2
| 𝜑
1
||𝜑
2
,

(4) timed formulas 𝜓 ::= 𝜑 | 𝛿 | 𝜓
1
∧𝜓
2
| 𝜓
1
∨𝜓
2
| 𝜓
1
; 𝜓
2

Definition 2. The derived formulas are defined as follows:
(1) ⃝ 𝑝 ::= 𝑠𝑘𝑖𝑝; 𝑝, (2) 𝑚𝑜𝑟𝑒 ::= ⃝𝑡𝑟𝑢𝑒, (3) 𝑒𝑚𝑝𝑡𝑦 ::=

⃝𝑓𝑎𝑙𝑠𝑒, (4) 𝑝;
𝐼
𝑞 ::= (𝑝 ∧ 𝑇

𝑓
∈ 𝐼); 𝑞

Definition 3. A state 𝑠 is a tuple (𝑎, 𝑡), where 𝑎 = {𝑥 | 𝑥 ∈

𝐴𝑃 ∧ 𝑥 = 𝑡𝑟𝑢𝑒} and 𝑡 : 𝑇 → 𝑁 denotes the absolute time of
the current state.

Definition 4. A timed sequence of states is defined and also
denoted as 𝜎 = ⟨𝑠

0
, 𝑠
1
, . . . , 𝑠

𝑖
, . . .⟩, where 𝑠

𝑖
is a state.

Definition 5. An interpretation is a quadruple 𝐼 = (𝜎, 𝑖, 𝑘, 𝑗),
where 𝜎 is a timed sequence of states over ⟨𝑠

𝑖
, . . . , 𝑠

𝑘
, . . . , 𝑠

𝑗
⟩,

𝑖, 𝑘, 𝑗 ∈ 𝑁, and 𝑠
𝑘
is the current state. We use the notation

𝑙𝑒𝑛(𝜎) = |𝜎| = 𝑗 − 𝑖 for the number of states in interval
and 𝑙𝑒𝑛

𝑡
(𝜎) = 𝑠

𝑡
(𝑗) − 𝑠

𝑡
(𝑖) for the time distance between the

endpoints in interval, where 𝑠
𝑡
(𝑖) is the absolute time of state

𝑠
𝑖
.

Definition 6. Let 𝜎 = ⟨𝑠
0
, 𝑠
1
, . . . , 𝑠

|𝜎|
⟩ an interval, 𝑟

1
, . . . , 𝑟

ℎ
be

integers, and 0 ≤ 𝑟
1
≤ 𝑟
2
≤ ⋅ ⋅ ⋅ ≤ 𝑟

ℎ
≤ |𝜎|.We use notation𝜎 ↓

(𝑟
1
, . . . , 𝑟

ℎ
) = ⟨𝑠

𝑡1
, 𝑠
𝑡2
, . . . , 𝑠

𝑡𝑙
⟩ to denote a projection from 𝜎 to

4 Mathematical Problems in Engineering

Table 1: The way of constructing models for attacks: behaviors and their RASL formulas.

Attack behaviors RASL formulas defined for description of behaviors
𝑎
𝑗
means an atomic action A state formula 𝑤

𝑗

𝐴
𝑖
= 𝑎
1
, . . . , 𝑎

𝑚
means a phase in an attack 𝜑

𝑖
= ((𝑤

1
∧ 𝑠𝑘𝑖𝑝); 𝑡𝑟𝑢𝑒); . . . ; ((𝑤

𝑚
∧ 𝑠𝑘𝑖𝑝); 𝑡𝑟𝑢𝑒)

𝑎 = 𝐴
1
, . . . , 𝐴

𝑛
means an attack 𝜑 = (𝜑

1
∧ 𝑠𝑘𝑖𝑝); 𝑡𝑟𝑢𝑒; . . . ; (𝜑

𝑛
∧ 𝑠𝑘𝑖𝑝); 𝑡𝑟𝑢𝑒

𝑎
𝑗
is repeated 𝑘 times 𝜑 = 𝑙𝑒𝑛(𝑘) ∧ (𝑤

𝑗
∧ 𝑠𝑘𝑖𝑝)

∗

𝐴
𝑖
is repeated 𝑘 times 𝜑 = ((𝜑

𝑖
∧ 𝑠𝑘𝑖𝑝)

Θ
, 𝑏) 𝑝𝑟𝑗 (((𝑡𝑟𝑢𝑒 ∧ 𝑠𝑘𝑖𝑝)

∗

∧ 𝑙𝑒𝑛(𝑘 + 1); 𝑐)) ∧ ◻(𝑏 ↔ 𝑐)

Result of 𝑎
𝑗
is 𝑡𝑓
𝑗
, 𝑡𝑓
𝑗
∈ {𝑓𝑎𝑖𝑙, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠} 𝜑 = (𝑤

𝑗
∧ 𝑒𝑚𝑝𝑡𝑦) 𝑝𝑟𝑗 𝑡𝑓

𝑗

𝑎 = 𝐴
1
, . . . , 𝐴

𝑛
, where result of 𝐴

𝑖
is 𝑡𝑓
𝑖

𝜑 = ((𝜑
1
∧ 𝑠𝑘𝑖𝑝) ; 𝑡𝑟𝑢𝑒, . . . , (𝜑

𝑛
∧ 𝑠𝑘𝑖𝑝) ; 𝑡𝑟𝑢𝑒) 𝑝𝑟𝑗 (𝑡𝑓

1
∧ ⃝𝑡𝑓

2
∧ . . . ∧ ⃝

𝑛−1
𝑡𝑓
𝑛
)

𝑎 = 𝐴
1
|. . .| 𝐴

𝑛
𝜑 = 𝜑

1
‖. . .‖ 𝜑

𝑛

𝐴
1
and 𝐴

2
are two ways of the attack 𝜑 = 𝜑

1
∨ 𝜑
2

Time constraint between 𝐴
𝑖
and 𝐴

𝑖+1
is 𝐼
𝑖

𝜑 = 𝜑
1
;
𝐼1
. . . ;
𝐼𝑛−1

𝜑
𝑛

Table 2: Some notations presented in Algorithm 1.

Notations Semantics

𝑈𝑛𝑒𝑥𝑡(𝑃)
The set of all subformulas which do not occur in the domain of any operator next of normal form of
𝑃 ∈ 𝐿RASL

𝑝𝑟𝑒(𝑁) All the nodes which are parents of𝑁 in 𝐺, where 𝐺 is a TNFG and𝑁 is a node of 𝐺
𝑆𝑢𝑏(𝑃) The set of all subformulas of 𝑃 ∈ 𝐿RASL

𝑈𝑛𝑐ℎ𝑜𝑝(𝑃) A Boolean variable and 𝑈𝑛𝑐ℎ𝑜𝑝(𝑃) = 𝑡𝑟𝑢𝑒 if and only if there exists no subinterval in 𝑃 ∈ 𝐿RASL

𝑟
1
, . . . , 𝑟

ℎ
, where 𝑡

1
, . . . , 𝑡

𝑙
is obtained by deleting the duplicate

numbers from 𝑟
1
, . . . , 𝑟

ℎ
.

Definition 7. Let 𝑐 ∈ 𝑁 and 𝑠
𝑝
(𝑘) be the true value of 𝑝 ∈ 𝐴𝑃

in state 𝑠
𝑘
. The satisfaction relation is inductively defined as

follows:

(1) 𝑇 = 𝑠
𝑡
(𝑘),

(2) 𝑇
𝑓
= 𝑠
𝑡
(𝑗) − 𝑠

𝑡
(𝑘),

(3) 𝐼 ⊨ 𝑇
𝑓
≤ 𝐶 if and only if 𝑠

𝑡
(𝑗) − 𝑠

𝑡
(𝑘) ≤ 𝐶,

(4) 𝐼 ⊨ 𝑇
𝑓
≥ 𝐶 if and only if 𝑠

𝑡
(𝑗) − 𝑠

𝑡
(𝑘) ≥ 𝐶,

(5) 𝐼 ⊨ 𝑇
𝑓
< 𝐶 if and only if 𝑠

𝑡
(𝑗) − 𝑠

𝑡
(𝑘) < 𝐶,

(6) 𝐼 ⊨ 𝑇
𝑓
> 𝐶 if and only if 𝑠

𝑡
(𝑗) − 𝑠

𝑡
(𝑘) > 𝐶,

(7) 𝐼 ⊨ 𝛿
1
∧ 𝛿
2
if and only if 𝐼 ⊨ 𝛿

1
and 𝐼 ⊨ 𝛿

2
,

(8) 𝐼 ⊨ 𝑝 if and only if 𝑠
𝑝
(𝑘)= true,

(9) 𝐼 ⊨ 𝜑
1
∧ 𝜑
2
if and only if 𝐼 ⊨ 𝜑

1
and 𝐼 ⊨ 𝜑

2
,

(10) 𝐼 ⊨ 𝜑
1
∨ 𝜑
2
if and only if 𝐼 ⊨ 𝜑

1
or 𝐼 ⊨ 𝜑

2
,

(11) 𝐼 ⊨ 𝜑
1
; 𝜑
2
if and only if ∃𝑟, 𝑘 ≤ 𝑟 ≤ 𝑗, such that

(𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜑
1
and (𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜑

2
,

(12) 𝐼 ⊨ 𝑠𝑘𝑖𝑝 if and only if 𝑙𝑒𝑛(𝜎) = 1,
(13) 𝐼 ⊨ 𝜑

1
|| 𝜑
2
if and only if𝜑

1
∧(𝜑
2
; 𝑡𝑟𝑢𝑒)∨𝜑

2
∧(𝜑
1
; 𝑡𝑟𝑢𝑒),

(14) 𝐼 ⊨ 𝜑∗ if and only if (i) there exist finite many
𝑟
0
, . . . , 𝑟

𝑛
∈ 𝑁
𝜔
, such that 𝑘 = 𝑟

0
≤ 𝑟
1
≤ ⋅ ⋅ ⋅ ≤

𝑟
𝑛−1

≤ 𝑟
𝑛
= 𝑗, (𝜎, 𝑖, 𝑘, 𝑟

0
) ⊨ 𝜑, and for every 1 ≤ 𝑙 ≤

𝑛, (𝜎, 𝑟
𝑙−1
, 𝑟
𝑙−1
, 𝑟
𝑙
) ⊨ 𝜑
0
(ii) or 𝑘 = 𝑗,

(15) 𝐼 − 𝑝𝑟𝑗 : 𝐼 ⊨ (𝜑
1
, . . . , 𝜑

𝑚
) 𝑝𝑟𝑗 𝜓, if and only if

there exist integers 𝑘 = 𝑟
0
≤ 𝑟
1
≤ ⋅ ⋅ ⋅ ≤ 𝑟

𝑚
≤ 𝑗

and (𝜎, 𝑖, 𝑘, 𝑟
1
) ⊨ 𝜑
1
, . . . , (𝜎, 𝑟

𝑛−1
, 𝑟
𝑛−1
, 𝑟
𝑛
) ⊨ 𝜑
𝑛
, where

1 < 𝑛 ≤ 𝑚, such that for𝜎󸀠 in the two casesmentioned

below, we have (𝜎󸀠, 0, 0, |𝜎󸀠|) ⊨ 𝜓 — (i) 𝑟
𝑚
< 𝑗 and

𝜎󸀠 = 𝜎 ↓ (𝑟
0
, . . . , 𝑟

𝑚
) ⋅ 𝜎(𝑟

𝑚
+ 1, . . . , 𝑗), (ii) 𝑟

𝑚
= 𝑗 and

𝜎󸀠 = 𝜎 ↓ (𝑟
0
, . . . , 𝑟

ℎ
), 0 ≤ ℎ ≤ 𝑚,

(16) 𝐼 ⊨ (𝜑
1
, . . . , (𝜑

𝑖
, . . . , 𝜑

𝑗
)
Θ
, . . . , 𝜑

𝑚
) 𝑝𝑟𝑗 𝜑

0
if and only

if there exists 𝑛 ∈ 𝑁
0
, such that 𝐼 ⊨ (𝜑

1
, . . . ,

(𝜑
𝑖
, . . . , 𝜑

𝑗
)
𝑛
, . . . , 𝜑

𝑚
)𝑝𝑟𝑗 𝜑

0
,

(17) 𝐼 ⊨ 𝜓
1
∧ 𝜓
2
if and only if 𝐼 ⊨ 𝜓

1
and 𝐼 ⊨ 𝜓

2
,

(18) 𝐼 ⊨ 𝜓
1
∨ 𝜓
2
if and only if 𝐼 ⊨ 𝜓

1
or 𝐼 ⊨ 𝜓

2
,

(19) 𝐼 ⊨ 𝜓
1
; 𝜓
2
if and only if ∃𝑟, 𝑘 ≤ 𝑟 ≤ 𝑗, such that

(𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜓
1
and (𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜓

2
,

4. Construct Signatures with RASL Formulas

We can use RASL formulas to construct signatures, that
is, specifications of attack patterns. Compared with linear
temporal logic, RASL has been additionally equipped with
interval semantics. So, a phase, that is, a sequence of atomic
actions, in an attack can be described with an interval in
a RASL formula, while various steps in the phase can be
described with various points in the interval [2]. Temporal
relationship between steps in an attack can be described
with temporal operators. Logical relationship between var-
ious phases can be described with operator “;” [2]. And a
concurrent attack can be described with a formula with the
operator “‖”. Compared with ITL, RASL can express more.
Particularly, repeated attacks can be described with operator
“∗” or “𝑝𝑟𝑗Θ”, and a time constraint between phases or steps
in an attack can be described with operator “;

𝐼
”.

Mathematical Problems in Engineering 5

Table 3: A comparison of different MC-based approaches for detecting telnet attacks.

Attack actions\detection results (if attacks are found) ITL [2] RASL LTL [1]
Make a backdoor after/before/while close firewall Yes Yes No
There exists an/no overlap timed interval between two actions Yes Yes No
The time distance between two actions is less than 𝑛 seconds No Yes No

Table 4: Another comparison of different MC-based approaches for detecting telnet attacks.

Attack actions\detection results (if attacks are found) ITL [2] RASL LTL [1]
Two attacks are launched at the same time point Yes Yes No
The same attack is launched repeatedly 𝑛 times (𝑛 is a variable) Yes Yes No
The same attack is launched repeatedly 𝑘 times (𝑘 is a given large constant) Yes Yes No
The time distance between two actions is less than𝑚 seconds No Yes No

No attack detected

Alert!
attack detected

Warning unit

Model checking
algorithm

If satisfy

Running and
conclusion

Yes

No

RASL formulae

Input 1 Input 2

Timed
automata

Constructing
models

Constructing
models

Real-time
signatures

An
audit log

Figure 5: Algorithm for intrusion detection based on RASL model
checking (the main idea of this paper).

Table 1 presents how to construct formal models for
intrusion attacks with RASL formulas. And Figure 2 illus-
trates sequential relationships, concurrent relationships, and
time relationships between behaviors in an attack.

Definition 8 (See [1]). A record in a log library is modeled by
a finite state automaton 𝐴.

Theorem 9. A record of a log can be modeled by a timed au-
tomaton A󸀠.

Proof. According to Definition 8, we know that a record of a
log can be modeled by a finite state automaton 𝐴. For every
transition 𝑒 of𝐴, we add time constraint “true”. For every state
𝑠 of𝐴, we extend 𝑠 to (𝑠, 𝑡), where 𝑡 denotes absolute time. So,
finite state automaton𝐴 is turned to timed automaton𝐴󸀠.The
theorem holds.

5. A Case Study

As a case study, we discuss several examples to show the
expressive capability of the above proposed models.

Example 10. Password cracking inconsecutive attack: failure.
The RASL formula is

((𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑒𝑚𝑝𝑡𝑦 𝑝𝑟𝑗 𝑓𝑎𝑖𝑙) ; 𝑡𝑟𝑢𝑒)
∗

, (1)

where connectmeans that an intruder is trying to connect.The
intruder could launch another concurrent process before the
end of current connection process. Thus, the subinterval that
describes current execution of the concurrent connection
process is over, and it can be described with operators before
𝑝𝑟𝑗. The sub-interval that describes the result is over while
this connection process fails, and it can be described with
the operator 𝑓𝑎𝑖𝑙 after 𝑝𝑟𝑗. The intruder repeatedly tries
connection, and it can be described with “∗”. Inconsecutive
phenomenon between connections can be described with
“; 𝑡𝑟𝑢𝑒”.

Example 11. Password cracking inconsecutive attack: success
after connection failed 𝑘 − 1 times.

At first, one time failure in connection can be described
as 𝜑
𝑓

:= (𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑒𝑚𝑝𝑡𝑦 𝑝𝑟𝑗 𝑓𝑎𝑖𝑙); 𝑡𝑟𝑢𝑒. And, then, a
successful trial can be described as 𝜑

𝑠
:= 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑒𝑚𝑝𝑡𝑦

𝑝𝑟𝑗 𝑠𝑢𝑐𝑐𝑒𝑠s.
The formula that describes 𝑘 − 1 times failures in

connections can be defined as𝜑
𝑓
󸀠 := (𝜑

𝑓

Θ, 𝑏)𝑝𝑟𝑗((𝑡𝑟𝑢𝑒; 𝑠𝑘𝑖𝑝);

((𝑓𝑎𝑖𝑙 ∧ 𝑠𝑘𝑖𝑝)
∗
∧ (𝑙𝑒𝑛(𝑘 − 1)); 𝑐)) ∧ ◻(𝑏 ↔ 𝑐).

The formula that describes the attack can be defined as

𝜑 := (𝜑
𝑓
󸀠 ∧ 𝑠𝑘𝑖𝑝) ; 𝜑

𝑠
. (2)

6 Mathematical Problems in Engineering

(a) (b)

Figure 6: Comparisons of average number of attacks found by different MC-based approaches (𝑥: the number of kinds of simulation attacks
and 𝑦: the different number of kinds of attacks found by the different simulators). (a) For telnet attacks. (b) For p-trace attacks.

Table 5: Comparison of different MC-based approaches for detecting password attacks.

Attack actions\detection results (if attacksare found) ITL [2] RASL LTL [1]
Consecutive/inconsecutive attack: success after connection failed 𝑘 − 1 times (𝑘 is a given large constant) Yes Yes No
Every time distance between𝑚 attacks is less than 𝑛 seconds (𝑘 is a given small constant) No Yes No

Figure 7: A comparison of detection ability for p-trace attacks
using different MC-based approaches (𝑥: the average time distance
between atomic attack actions and 𝑦: the average number of attacks
found by ITL simulator/average number of attacks found by RASL
simulator).

As shown in Figure 3, the definition of 𝜑
𝑓
󸀠 is illustrated,

where 𝑘 = 4, that is, 𝜑
𝑓
󸀠 denotes three times failures in

connections. As shown in (a), (b), and (c) of Figure 3, there
are three cases on the length of interval (𝜑

1
, 𝜑
2
, 𝜑
3
) 𝑝𝑟𝑗 𝜑

0
in

RASL formula. In each of the 𝑘 − 1 failures in connections,
there exists a one-to-one map between attack actions and
their results. That is to say, the number of 𝜑

𝑓
s which describe

attack actions is equal to the number of (fail)s that describe
their results. This number is three, so only (c) of Figure 3

Figure 8: Comparison for DOS attacks.

is correct. To this end, we can append atomic proposition 𝑏
to the formula, and let 𝑏 follow 𝜑

𝑓

Θ. Furthermore, we can
append atomic proposition 𝑐 to the formula when subinterval
𝑓𝑎𝑖𝑙
∗ is over. The number of 𝜑

𝑓
s is equal to the number of

(fail)s if ◻(𝑏 ↔ 𝑐) holds, as shown in (c) of Figure 3.
Subinterval 𝑓𝑎𝑖𝑙∗ is executed repeatedly 𝑘 − 1 times to

guarantee 𝑘 − 1 times cycles of 𝜑
𝑓
, as shown in Figure 4. We

need two states in current subinterval 𝑓𝑎𝑖𝑙 to make sure that
the first state of the next subinterval 𝑓𝑎𝑖𝑙 is the next state of
the final state of the current subinterval. So, we replace 𝑓𝑎𝑖𝑙∗
with (𝑓𝑎𝑖𝑙 ∧ 𝑠𝑘𝑖𝑝)∗.

Example 12. Phases of a telnet attack are observed as follows.

Mathematical Problems in Engineering 7

Figure 9: Comparison for U2R attacks.

Figure 10: Comparison for R2L attacks.

Figure 11: Comparison for Probe attacks.

Phase 1: the telnet service is started, and it is described
as atomic formula 𝑞.
Phase 2: the intruder closes firewall. There are three
steps in this phase. At first, the intruder accesses C:
\windows in order to find program 𝑎𝑝𝑟𝑜𝑚𝑎𝑛. It is
described as RASL atomic formula 𝑠

1
. And, then,

the intruder executes command 𝑎𝑝𝑟𝑜𝑚𝑎𝑛-𝑎[PID]
and monitors all processes in order to find PID
of firewall process. It is described as RASL atomic
formula 𝑠

2
. At last, the intruder executes command

𝑎𝑝𝑟𝑜𝑚𝑎𝑛-𝑡[PID] to close firewall. It is described as
RASL atomic formula 𝑠

3
. The intruder performs the

three steps of this phase in sequence with a gap
between each step. Each of the two delays is less than
𝑛 seconds, and it is described as ;

𝐼
1
∈[0,𝑛)

.
Phase 3: in order to login the system again in the
future, the intruder makes a backdoor. There are
two steps in this phase. The first step is to access
directory in which file instsrv.exe exists, and step 2 is
to execute command 𝑖𝑛𝑠𝑡𝑠𝑟V.𝑒𝑥𝑒 𝑆𝑌𝑆𝐻𝐸-𝐴𝐿𝑇𝐻𝐶 :

\𝑤𝑖𝑛𝑑𝑜𝑤𝑠 \ 𝑆𝑌𝑆𝑇𝐸𝑀32 \ 𝑡 ln 𝑡𝑠V𝑟.𝑒𝑥𝑒 in order to
setup 𝑆𝑌𝑆𝐻𝐸𝐴𝐻𝑇𝐻 service which is a backdoor.The
former can be denoted as a RASL atomic formula
𝑡
1
, and the later can be denoted as a RASL atomic

formula 𝑡
2
. The intruder performs the two steps of

this phase in sequence with a gap between each step.
The delay is less thanm seconds, and it is described as
;
𝐼
2
∈[0,𝑚)

.

In summary, the timed formula for the telnet attack is
formulized as follows:

(((𝑞 ∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒) ; ((((𝑠
1
∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒) ;

𝐼
1
∈[0,𝑛)

,

((𝑠
2
∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒) ;

𝐼
1
∈[0,𝑛)

((𝑠
3
∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒))

󵄩󵄩󵄩󵄩󵄩
,

(((𝑡
1
∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒) ;

𝐼
2
∈[0,𝑚)

((𝑡
2
∧ 𝑒𝑚𝑝𝑡𝑦) ; 𝑡𝑟𝑢𝑒)))) .

(3)

In Formula (3), “;” is used to express a piecewise action,
“‖” is used to express a concurrent action, and “;

𝐼
” is used to

express a time constraint relationship.

6. RASL Model Checking Algorithm and
Intrusion Detection Algorithm

We can give a subset of RASL called ASL, which is obtained
by deleting all of the time constraints in RASL. Reference
[18] gives a data structure called normal form graph (NFG)
as well as a procedure called PRO(P) to construct the NFG
model denoted as 𝐺

𝑃
for an ASL formula 𝑃. Thus, an ASL

model checking algorithmwas obtained in [18]. Based on this
work, we can obtain a RASL model checking algorithm and
its intrusion detection algorithm.

First, Definition 13 presents a data structure called TNFG,
which is a timed version of NFG.

Definition 13. For a formula 𝑃 ∈ 𝐿RASL, the TNFG of 𝑃 is
defined as a tuple 𝐺 = (CL(𝑃),EL(𝑃), 𝐶), where 𝐶 is a finite

8 Mathematical Problems in Engineering

TNFG(𝑃)
Begin

PRO(Untime(P)); CL(P):= CL(Untime(P)); EL(P):= EL(Untime(P));
/∗ produce the NFG in which no clock constraint exists, where CL(Untime(P)) is the set of nodes
of the NFG of ASL formula Untime(P), and EL(Untime(P)) is the set of edges of the NFG of ASL
formula Untime(P)

𝑇 := 𝜙 /∗ 𝑇 is defined as a set, and it consists of all the nodes which have been converted from NFG to TNFG.
for all Qs of CL(P) in the order of building NFG’s nodes, do the following:
𝑇 := 𝑇 ∪ {𝑄}

for all𝑀;𝑁 ∈ 𝑈𝑛𝑒𝑥𝑡(𝑄) and 𝑈𝑛𝑐ℎ𝑜𝑝(𝑀) and𝑀;𝑁 ∉ 𝑆𝑢𝑏(𝑡 ∈ 𝑇)

and𝑀;
𝐼
𝑁 ∈ 𝑆𝑢𝑏(𝑃), do /∗ for all the clock constraints holding the conditions

new(x); /∗ allocate a new clock
for all EL(𝑄) = (𝑄,𝑄

𝑒
, 𝜀), do EL(𝑄) :=(𝑄,𝑄

𝑒
, 𝜀, 𝐼
𝑥=0
, {𝑥})

/∗𝐼
𝑥=0

means that constraint I is satisfied when 𝑥 = 0, where 𝐼 = 𝛿
for all EL(𝑄) = (𝑄,𝑄

𝑖
, 𝑄
󸀠

𝑖
), do EL(𝑄) :=(𝑄,𝑄

𝑖
, 𝑄
󸀠

𝑖
, 𝑡𝑟𝑢𝑒, {𝑥})

/∗ the edges of NFG is converted to the ones of TNFG
for all EL(𝑝𝑟𝑒(𝑤 ∧ 𝑁)) do /∗ the current interval is over, where 𝑤 is a state formula which may be
empty or not.
if EL(𝑝𝑟𝑒(𝑤 ∧ 𝑁)) = (𝑅, 𝑅

𝑖
, 𝑅󸀠
𝑖
) then EL (𝑝𝑟𝑒 (𝑤 ∧ 𝑁)) :=(𝑅, 𝑅

𝑖
, 𝑅󸀠
𝑖
, 𝐼
𝑥
, {𝑥})

/∗ in the TNFG, the clock constraint is appended if it is satisfied.
end for

end for
end for
for all of e in EL(𝑃) do /∗ for all the converts which deal with no clock constraint
if 𝑒 = (𝑄,𝑄

𝑖
, 𝑄󸀠
𝑖
), 𝑒 := (𝑄,𝑄

𝑖
, 𝑄󸀠
𝑖
, 𝑡𝑟𝑢𝑒, 𝜙) /∗ the edges of NFG is converted to the ones of TNFG

end for
end TNFG

Algorithm 1: Translation from a RASL formula to a TNFG.

clock set, and the set CL(𝑃) of nodes and the set EL(𝑃) of
edges are inductively defined as follows:

(1) 𝑈𝑛𝑡𝑖𝑚𝑒(𝑃) ∈ CL(𝑃), where 𝑈𝑛𝑡𝑖𝑚𝑒(𝑃) is an ASL
formula in which all 𝐶𝐻𝑂𝑃𝐼𝑠 in 𝑃 are replaced by
𝐶𝐻𝑂𝑃,

(2) for every 𝑄 ∈ CL(𝑃) \ {𝜀, 𝑓𝑎𝑙𝑠𝑒}, if 𝑄 ≡ 𝑄
𝑒
∧ 𝑒𝑚𝑝𝑡𝑦 ∨

𝑉𝑟
𝑖=1
(𝑄
𝑖
∧ ⃝𝑄󸀠

𝑖
), 𝜀 ∈ CL(𝑃), (𝑄, 𝑄

𝑒
, 𝜀, 𝛿, 𝜆) ∈ EL(𝑃),

and for every 𝑖, 1 ≤ 𝑖 ≤ 𝑟, we have 𝑄󸀠
𝑖
∈ CL(𝑃),

(𝑄, 𝑄
𝑖
, 𝑄󸀠
𝑖
, 𝛿, 𝜆) ∈ EL(𝑃), where set 𝜆 gives the clocks

to be reset and 𝛿 is a clock constraint,
(3) CL(𝑃) andEL(𝑃) are produced by (1) and(or) (2)only.

Second, Algorithm 1 constructs TNFG models for RASL
formulas. Some notations presented in the algorithm are
explained in Table 2.

Third, if we append accepted conditions to TNFGs,
we will obtain discrete timed automata models of RASL
formulas. It is illustrated by Algorithm 2.

Algorithm 2 gives a procedure to compute discrete timed
automaton 𝐴, that is, the model of RASL formula 𝑃. The
model of𝑃 is the formal language accepted by the automaton.

Last, we can use 𝐴 to describe an attack signature and
another discrete timed automaton 𝐵 to a record of the audit
log. If ¬𝐴 ∩ 𝐵 = 𝜙, the result of model checking algorithm
is that 𝐵 satisfies 𝑃, else the result is that 𝐵 does not satisfy
𝑃. We can surely say that IDS finds an attack if 𝐵 satisfies 𝑃.
Thus, the intrusion detection algorithm is obtained, as shown
in Figure 5.

The inherent complexity of interval temporal logic model
checking problem is nonelementary. The number of expo-
nential order is proportional to the number of embedded
not operators. The approach based on an NFG or TNFG
reaches the lower bound of this problem [14, 19]. There is
only one occurrence of the operator not in the new model
checking algorithm. So, both the inherent complexity of the
intrusion detection problem based on RASL model checking
and the complexity of our algorithm, in the worst case, are
exponential.

7. Simulation Experiments

In order to compare the existing approaches with our new
algorithm, we conducted experiments by simulating and
detecting telnet attacks and password attacks mentioned
above as well as other types of attacks. The platform used is
a PC with Dual core 3.2 GHz, 8GB, and Windows XP SP3,
along withMATLAB 2010.The results on detection ability are
shown in Tables 3, 4, and 5.The different results are due to the
different expressive powers of the different logics.

In order to compare the LTL-model-checking-based
approaches in [1, 3, 5] with our RASL-model-checking-based
algorithm, we simulate and detect some telnet attacks by
using MATLAB. We randomly produce 25 kinds of telnet
attacks and repeat 80 times for every of these attacks. On
average, less than 5 kinds of attacks are reported by the
LTL-based simulator, whereas almost 100 percent of these
attacks are found by the RASL-based simulator, as shown in

Mathematical Problems in Engineering 9

function CONSTRUCT (𝐺)
/∗ pre-condition: 𝐺 = (CL(P), EL(P), X) is an TNFG of RASL formula P ∗/
/∗ post-condition: CONSTRUCT constructs a timed automaton from TNFG of formula P ∗/

begin function
𝑆 :={𝑃}; 𝑆

0
:={𝑃}; Σ :=𝜙; 𝐸 :=𝜙;

CL :=CL(𝑃) /∗ CL denotes acceptance state set ∗/
For all 𝑄 ∈ CL(𝑃) do If 𝑄 is labeled F then CL :=CL/{𝑄} /∗Acceptance state set doesn’t contain the circulate
nodes passed by finite times ∗/
CL :=CL/{𝜀} /∗Acceptance state set doesn’t contain the final states ∗/
while ∃𝑒𝑙 = (𝑄,𝑄

𝑐𝑖
, 𝑄
𝑛𝑖
, 𝛿, 𝜆) ∈ EL(𝑃) /∗for every non-terminal edge of TNFG∗/

do 𝑠 := 𝑄; 𝑠󸀠 := 𝑄
𝑛𝑖
; 𝑎 := 𝑄

𝑐𝑖
; 𝑒 := (𝑠, 𝑠󸀠, 𝑎, 𝛿, 𝜆); 𝐸 := 𝐸 ∪ {𝑒}; /∗add transition rules to timed automaton∗/

𝑆 := 𝑆 ∪ {𝑠, 𝑠󸀠}; Σ := Σ ∪ {𝑎}; /∗add state and input alphabet to timed automaton
end while
while ∃𝑒𝑙 = (𝑄,𝑄

𝑒
, 𝜀, 𝛿, 𝜆) ∈ EL(𝑃) /∗for every terminal edge of TNFG∗/

do 𝑠 := 𝑄; 𝑠󸀠 := 𝜀; 𝑎 := 𝑄
𝑒
; 𝑒 := (𝑠, 𝑠󸀠, 𝑎, 𝛿, 𝜆); 𝐸 := 𝐸 ∪ {𝑒}; /∗add transition rule to timed automaton∗/

𝑆 := 𝑆 ∪ {𝑠, 𝑠
󸀠
}; Σ := Σ ∪ {𝑎}; /∗add state and input alphabet to timed automaton∗/

end while
𝐹 := {𝜀}; 𝐴𝐶 := CL; /∗set of final states and set of acceptance states∗/
return 𝐴 = (Σ, 𝑆, 𝑆

0
, 𝐸, 𝑋, 𝐹, 𝐴𝐶);

end function
Construction Procedure (P)
(1) Build the TNFG of P, 𝐺 = (CL(P); EL(P), X), by algorithm TNFG(P);
(2) Obtain the timed automaton, 𝐴 = (Σ, 𝑆, 𝑆

0
, 𝐸, 𝑋, 𝐹, 𝐴𝐶), by algorithm CONSTRUCT(𝐺󸀠).

Algorithm 2: Constructing discrete timed automata for RASL formula.

Figure 6(a). The simulation results indicate that the model
checking technique itself cannot make an IDS stronger, but
this technique, when employing a stronger temporal logic,
such as RASL, to describe attacks, can.

We simulate and detect some p-trace attacks by using
MATLAB. We randomly produce 30 kinds of p-trace attacks,
and repeat 100 times for each of these attacks. On average,
less than 10 kinds of attacks are reported by the LTL-based
simulator, whereas almost 100 percent of kinds of attacks are
found by the RASL-based simulator, as shown in Figure 6(b).
The results indicate that the RASL-based algorithm enhances
the detection power for p-trace attacks, compared with the
LTL-based algorithm. Clearly, this is due to the stronger
expressive power of RASL.

Suppose that the standard time unit is a second; Figure 7
illustrates a comparison between the ITL-model-checking-
based approach in [2] and our RASL-model-checking-based
algorithm. We randomly produce some attacks including
real-time attacks and non-real-time attacks. Compared with
the ITL-based simulator, the RASL-based simulator raises the
average number of detected attacks by as high as 400%, where
the average time distance (or time constraints) between two
atomic actions in the same real-time attack is only five
seconds. The average number will still be raised by 15% even
in the worst case, that is, the time distance is more than three
thousand seconds.These results indicate that the RASL-based
algorithm further raises the power of detection for p-trace
attacks, compared with the ITL-based algorithm, again, due
to the stronger expressive power of RASL.

In order to give a comparison of the detection ability
for more types of attacks between the ITL-model-checking-
based approach [2] and the RASL-model-checking-based
one, we tried to conduct a Benchmark test on KDD CUP

99 [20]. We used a behavior version of a sample subset of
this standard benchmark set [20] to evaluate our research
in intrusion detection. Attacks fall into four main categories
[20], that is, DOS, R2L, U2R, and Probe, including totally
twenty-two types of attacks, as shown in Figures 8, 9, 10, and
11. In each of these four figures, the 𝑦-axis means the ratio
between the number of attacks found by ITL-based simulator
and the number of attacks found by RASL-based simulator,
whereas the 𝑥-axis means different types of attacks.

As shown in the figures, all of the ratios range between
0 and 1. For some types of attacks, such as perl and ftp
write, et al. the ITL-based simulator finds equal number of
attacks when the new simulator does. And for other types of
attacks, such as back, Neptune, and smurf, et al., the ITL-
based simulator almost does nothing, whereas the RASL-
based one does more. This is due to the strong expressive
power of RASL again.

8. Conclusions

This paper defined a new real-time interval temporal logic—
RASL. Based on it, we presented a RASL model checking
algorithm and its intrusion detection algorithm.This enables
us to employee MC-based approaches for detecting real-time
attacks. P-trace attacks especially are hard to be detected by
the existing IDS [4] except the LTL-based algorithm [1, 3], the
ITL-based algorithm [2], and the new RASL algorithm. The
new algorithm has detected some real-time p-trace attacks in
our simulation experiments. To the best of our knowledge,
this is the only method to report this type of attacks. It is the
benefit of using the new approach.

10 Mathematical Problems in Engineering

Conflict of Interests

The authors certify that they have no conflict of interests with
any trademark included in this paper.

Acknowledgments

The first author of this paper would like to thank Dr. Kevin
Lu at Brunel University, UK, for his constructive suggestions
on this paper. This work has been partially supported by
the National Natural Science Foundation of China (No.
61250007, no.U1204608, no. 61003079, and no. 61202099), the
China Postdoctoral Science Foundation (no. 2012M511588),
the SRFDP (no. 20100203120012), and the Fundamental
Research Funds for the Central Universities in China (no.
K5051203019).

References

[1] M. Roger and J. Goubault-Larrecq, “Log auditing through
model-checking,” in Proceedings of the 14th IEEE workshop on
Computer Security Foundations (CSFW ’01), pp. 220–234, IEEE
Computer Society, Washington, DC, USA, June 2001.

[2] W. Zhu, Z. Wang, and H. Zhang, “A novel algorithm for
intrusion detection based on model checking interval temporal
logic,” China Communications, vol. 8, no. 3, pp. 66–72, 2011.

[3] J. Olivain and J. Goubault-Larrecq, “The ORCHIDS intrusion
detection tool,” in Proceedings of the 17th International Confer-
ence on Computer Aided Verification (CAV ’05), Lecture Notes
in Computer Science, pp. 286–290, Springer, Edinburgh, UK,
July 2005.

[4] J. Goubault-Larrecq and J. Olivain, “A smell of orchids,” Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
5289, pp. 1–20, 2008.

[5] R. Ben, G. Tremblay, and G. Bégin, “Extending orchids for
intrusion detection in 802.11 wireless networks,” in Proceedings
of the 8th international conference on New technologies in
distributed systems (NOTERE ’08), pp. 1–12,NewYork,NY,USA,
June 2008.

[6] Y. Zhang, Y. Fu, and X. Sun, “A method of intrusion detection
based onmodel-checking,”WuhanUniversity Journal of Natural
Sciences, vol. 51, no. 3, pp. 319–322, 2005 (Chinese).

[7] B. Moszkowski, Reasoning about digital circuits [Ph.D. thesis],
Department of Computer Science, Stanford University, Stan-
ford, Calif, USA, 1983.

[8] M. Hira, “Verification of tempura specification of sequential
circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 16, no. 4, pp. 362–375, 1997.

[9] M. Solanki, A. Cau, and H. Zedan, “Semantically annotating
reactive web services with temporal specifications,” in Proceed-
ings of the IEEE 2nd International Workshop on Semantic and
Dynamic Web Processes (ICWS ’05), 2005.

[10] H. Bowman, H. Cameron, P. King, and S. Thompson, “Mexitl:
multimedia in executable interval temporal logic,” Formal
Methods in System Design, vol. 22, no. 1, pp. 5–38, 2003.

[11] B.Moszkowski, “Using temporal logic to analyse temporal logic:
a hierarchical approach based on intervals,” Journal of Logic and
Computation, vol. 17, no. 2, pp. 333–409, 2007.

[12] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A calculus of
durations,” Information Processing Letters, vol. 40, no. 5, pp.
269–276, 1991.

[13] Z. Duan, Modeling of Hybrid Systems, Science Press, Beijing,
China, 2004.

[14] W. J. Zhu, H. B. Zhang, and Q. L. Zhou, “On the decidability
of satisfiability of discrete TITL formulae,” Tien Tzu Hsueh
Pao/Acta Electronica Sinica, vol. 38, no. 5, pp. 1039–1045, 2010.

[15] M. G. Ouyang, F. Pan, and Y. T. Zhang, “ISITL: intrusion
signatures in augmented interval temporal logic,” in Proceedings
of the International Conference onMachine Learning and Cyber-
netics, vol. 3, pp. 1630–1635, November 2003.

[16] E. Nowicka and M. Zawada, “An interval temporal logic-based
matching framework for finding occurrences of multi-event
attack signatures,” Computer Network Security, vol. 1, part 5–8,
pp. 272–285, 2007.

[17] M. G. Ouyang and Y. B. Zhou, “ISDTM: an intrusion signatures
description temporal model,” Wuhan University Journal of
Natural Sciences A, vol. 8, no. 2, pp. 373–378, 2003.

[18] Z. Duan, C. Tian, and L. Zhang, “A decision procedure for
propositional projection temporal logic with infinite models,”
Acta Informatica, vol. 45, no. 1, pp. 43–78, 2008.

[19] C. Tian and Z. Duan, “Complexity of propositional projection
temporal logic with star,”Mathematical Structures in Computer
Science, vol. 19, no. 1, pp. 73–100, 2009.

[20] “KDD Cup 1999 Data,” 2007, http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html .

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

