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1. INTRODUCTION AND MOTIVATIONS

The issue of Fault Detection and Isolation (FDI) in dy-
namic systems has been an active research area in the last
two decades. Model-based FDI techniques use mathematical
models of the monitored process and extract features from
measured signals, to generate fault indicating signals, that
is, the residuals. LTI models have been widely used to solve
the problem of FDI. Tools are now available to enhance ro-
bustness against small parameter variations and other dis-
turbances (see, [1–3] for surveys). The resulting robust FDI
problem is generally formulated as a min-max optimization
setting to maximize fault sensitivity performance and at the
same time, to minimize the influence of unknowns inputs.

More recently, some research works have appeared that
consider Linear Parameter Varying (LPV) modeling of the
monitored system to take into account wider and more rapid
parameters variations. Such models can be used efficiently to
represent some nonlinear systems (see, e.g., [4, 5]). This mo-
tivates some researchers from the FDI community to develop
model-based methods using LPV models (see [6–8] among
others). The two commonly used approaches are fault esti-
mation methods where the fault indicating signal is an es-

timate of the fault signal, and residual generation methods
where the residuals are synthesized to be robust against mod-
eling errors and unknown inputs, while being sensitive to the
faults. In this context, a geometric approach is proposed in
[6] to design a LPV observer in a Luenberger form. A pro-
cedure is derived to obtain the observer parameters via the
construction of a suitable family of invariant subspaces (pa-
rameter varying (C,A)-invariant and un-observability sub-
spaces). In [7], a multi-model approach is used to solve the
FDI problem for nonlinear systems. The nonlinear system is
modeled using polytopic models and a robust polytopic un-
known input observer is then synthesized by means of pole
assignment. The method uses LMI optimization techniques
to synthesize the observer gain. The major limitation of this
approach is that sensitivity of the residual signal against faults
can only be checked a posteriori. More precisely, if the distri-
bution matrices of the fault model and the effects that faults
could have on the decoupled state is not of full column rank,
then faults could go undetectable. To overcome this problem,
a solution is provided in [8] where the main idea is to build a
fault estimate using a LPV filter such that the worst-case gain
(i.e., the H∞ performances measure for LPV systems) from
disturbances and faults to the estimation error, is minimized.
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In this paper a different approach based on residual gen-
eration is considered for LPV systems that can be modeled
within a LPV polytopic setting. Robustness against exoge-
nous disturbances and sensitivity against faults are consid-
ered in a framework similar to the well-known H∞/H− set-
ting for LTI systems. The robustness objectives are expressed
in terms of a minimization problem using the H∞ norm for
LPV systems, and the sensitivity requirement is formulated
in terms of a maximization constraint using also the H-index
for LPV systems. The main difference between this problem
and the standard H∞ problem for LPV systems is that it in-
volves the residual structuring matrices that are unknown.

The paper is organized as follows: In Section 2, the gen-
eral FDI filter design problem and the corresponding solu-
tion are presented. In Section 3, the proposed method is ap-
plied to real data set coming from the secondary circuit of a
nuclear power plant in France. Finally, some concluding re-
marks are made in a final section.

Preliminaries

The Euclidean norm is always used for vectors and is writ-
ten without a subscript; for example ‖x‖. Similarly in the
matrix case, the induced vector norm is used: ‖A‖ = σ(A)
where σ(A) denotes the maximum singular value of A. Sig-
nals, for example w(t) or w, are assumed to be of bounded
energy, and their norm is denoted by ‖w‖2, that is, ‖w‖2 =
(
∫ +∞
−∞‖w(t)‖2dt)1/2 < ∞. LTI models, for example, P(s) or

simply P, are assumed to be in RH∞, real rational func-
tions with ‖P‖∞ = supωσ(P( jω)) < ∞. ‖P‖∞, that is, the
largest gain of P, is accompanied by the smallest gain of
P, infωσ(P( jω)), which may be equal to zero for some P
(e.g., strictly proper systems), if the frequency range of in-
terest is infinite. This motivated [1, 9–12] to define the non-
zero smallest gain of P, that is, the H-index, as the restric-
tion of infωσ(P( jω)) to a finite frequency domain Ω, that is,
‖P‖− = infω∈Ωσ(P( jω)).

In [1, 9], an evaluation function ‖•‖e which is a restric-
tion of the H2 signal norm to Ω, is defined by the authors
as ‖w‖e = ‖w‖2,Ω = (

∫ ω2

ω1
‖w( jω)‖2

2dω)1/2 . Then, given P so
that y = Pu, it follows that

‖y‖2
e =

1
2π

∫ ω2

ω1

∥
∥P( jω)u( jω)

∥
∥2

2dω

= 1
2π

∫ ω2

ω1

∥
∥∥
∥P( jω)

u( jω)
‖u‖2

∥
∥∥
∥

2

2
‖u‖2

2dω ≥ ‖P‖2
−‖u‖2

e

(1)

and thus that ‖P‖− ≤ ‖y‖e/‖u‖e. This motivates the intro-
duction of an evaluation function, denoted ‖•‖sens, which is
defined according to:

‖P‖sens = inf
‖u‖e /=0

‖y‖e
‖u‖e ≥ ‖P‖−. (2)

From (2), it follows that ‖P‖sens takes the sense of the smallest
value of a singular value of P( jω) evaluated on Ω. Then it
follows that ‖P‖− ≤ ‖P‖sens ≤ ‖P‖∞.

The underlying LPV system is modeled by the following
state space representation

ẋ = A
(
θ(t)

)
x + B

(
θ(t)

)
u

y = C
(
θ(t)

)
x +D

(
θ(t)

)
u

(3)

which is denoted in a compact form as

M(θ) =
(
A(θ) B(θ)

C(θ) D(θ)

)

. (4)

x is the state vector, u is the input vector, y is the output vec-
tor and θ(t) is a varying parameter vector. It is assumed that
all parameters θi(t), i = 1, . . . , r are bounded, measurable (or
estimated) in real time and take their values in the domain
Θ, so that Θ is a convex polytope.

The LPV system (3) admits a (non-conservatism) poly-
topic model if it is possible to determine a set of matrices Mi,
i = 1, . . . ,N , constituting the vertices of a polytope defined
by

Co
{
β1, . . . ,βN

} =
{ N∑

i=1

βiM
(
Πi
)
, βi ≥ 0,

N∑

i=1

βi = 1

}

(5)

and such that it corresponds to the image byM of the domain
Θ:

{
M(θ), θ ∈ Θ

} ≡ Co
{
M
(
Π1
)
, . . . ,M

(
ΠN
)}
. (6)

Then, βi, i = 1, . . . ,N define barycentric coordinates of Θ
and the following convex decomposition yields:

θ(t) = β1Π1 + · · · + βNΠN , βi ≥ 0,
N∑

i=1

βi = 1. (7)

Referring to the LPV system (3), the worst-case RMS gain
from u to y which is known as theH∞-norm for LPV systems
is defined by:

∥
∥M(θ)

∥
∥∞ = sup

∀θ∈Θ
‖u‖2 /=0

= ‖y‖2

‖u‖2
. (8)

Following the definition of the index ‖•‖sens of a LTI transfer
given by (2), we will introduce the following evaluation func-
tion, that will be useful in the following to formulate fault
sensitivity requirements for LPV fault detection schemes:

∥
∥M(θ)

∥
∥

sens = inf
∀θ∈Θ‖u‖e /=0

= ‖y‖e
‖u‖e (9)

‖M(θ)‖sens is also a generalization of (2) to LPV case.

2. FDI FILTERS FOR LPV SYSTEMS

2.1. Problem setting

Consider the general FDI design problem for LPV systems
represented on Figure 1. G(θ) is a polytopic LPV model.
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ẑ
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Figure 1: The general FDI filter design problem.

K is a known controller. d ∈ Rqd represents exogenous dis-
turbances and f ∈ Rqf represents the faults to be detected.
F(θ) is the FDI LPV filter to be designed. ẑ ∈ Rqr is an es-
timation of z = Myy + Muu, a subset of the measurements
y ∈ Rm and the controlled inputs u ∈ Rp. My ∈ Rqr×m and
Mu ∈ Rqr×p are the two residual structuring matrices to be
designed.

It is assumed that the problem depicted on Figure 1
is well posed and thus the lower fractional transformation
F1(G(θ),K) always exists.

The FDI design problem we are interested in can then be
formulated as follows.

Problem 1. Assume that the faults f are detectable (the inter-
ested reader can refer to [13] for a discussion on fault de-
tectability).

The goal is to find the state space matrices AF (θ) ∈
RnF×nF , BF(θ) ∈ RnF×(m+p), CF(θ) ∈ Rqr×nF and DF(θ) ∈
Rqr×(m+p) of the (stable) polytopic LPV filter F(θ) and the
residual structuring matrices My ∈ Rqr×m and Mu ∈ Rqr×p

defining the residual vector

r = z − ẑ =Myy +Muu− F(θ)

(
y
u

)

, r ∈ Rqr (10)

such that the residual vector meets the following require-
ments:

∥
∥Trd(θ)

∥
∥∞ < γ1 (11)

∥∥Tr f (θ)
∥∥

sens > γ2 (12)

where Trd and Tr f denote the looped transfers between d and
r and f and r, respectively. This problem can be represented
by the block diagram illustrated on Figure 2, where P(θ) is
derived from F1(G(θ),K) so that

( y
u

) = P(θ)
( d
f

)
. In this

formulation, γ1 and γ2 are two positive constants referring
respectively to the robustness and sensitivity performances
levels.

Equation (11) represents the worst-case robustness of the
residual to disturbances d for all θ ∈ Θ, in the H∞-norm
sense. Under plant perturbation, the effect that the exoge-
nous disturbances have on the residuals, can greatly increase
and the fault detection performance may then be consider-
ably degraded. A robust fault sensitivity specification is then
needed to maintain a detection performance level of the FDI
unit. Here the sensitivity measure (9) for LPV fault detection
scheme is used to guarantee the worst-case sensitivity of the
residual to faults.

P(θ)
y

F(θ)

ẑ

u

f
d

My

Mu

+

+

−
+

r

Figure 2: General setup for FDI/LPV filter design problem.

Of course, the smaller γ1 and the bigger γ2 are the better
the fault detection performance will be.

Remark 1. In Problem 1 formulation, it is assumed that the
structuring matrices My and Mu do not depend on θ. If this
assumption vanishes, it can be verified that the following the-
oretical developments still yields. The only difference in such
a case is that, if we considerMy(θ) andMu(θ) in Problem 1, a
set of structuring matrices My(Πi) and Mu(Πi) for each ver-
tex of the polytopeΘwould be obtained rather than constant
matrices.

2.2. Design of the FDI filter

In this section, a solution is provided to compute simulta-
neously My , Mu and F(θ) so that the requirements (11) and
(12) are satisfied. It is straightforward to verify that the major
difficulty in this problem is related to the fault sensitivity re-
quirement (12) since (11) can be solved using the techniques
developed in the robust control community (see, e.g., [14]
or [15]). To overcome this problem, a sufficient condition
is established in terms of a fictitious H∞ problem. It is then
shown in the following that a solution to this fictitious prob-
lem is a solution of the original one.

2.2.1. Standard setup for the filter design problem

To proceed, let

P(θ) =
(
A(θ) Bd(θ) Bf (θ)

C(θ) Dd(θ) Df (θ)

)

. (13)

Using some algebra manipulations, the filter design prob-
lem illustrated on Figure 2, can be re-casted into the setup
depicted in Figure 3, where P(θ,My ,Mu) is deduced from
P(θ),My and Mu, according to:

P
(
θ,My ,Mu

) =
⎛

⎜
⎜
⎜
⎝

A(θ) Bd(θ) Bf (θ) 0n×qr
(
My Mu

)
C(θ)

(
My Mu

)
Dd(θ)

(
My Mu

)
Df (θ) −Iqr

C(θ) Dd(θ) Df (θ) 0(m+p)×qr

⎞

⎟
⎟
⎟
⎠

(14)

where Iqr and 0i× j denote respectively the identity matrix of
dimension qr and the null matrix of dimension i× j. n is also
the order of P(θ,My ,Mu), that is, A(θ) ∈ Rn×n.

Following the method proposed in [10, 11], the require-
ments (11) and (12) are now expressed in terms of loop
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P(θ,My ,Mu)

r

F(θ)

ẑ

f
d

(
y
u

)

Figure 3: FDI/LPV filter design problem.

shapes, that is, of desired gain responses for the appropri-
ate closed-loop transfers. These shaping objectives are then
turned into uniform bounds by means of the shaping filters.
Let Wd and Wf denote the (dynamical) shaping filters asso-
ciated with (11) and (12) respectively, so that:

∥∥Wd

∥∥∞ ≤ γ1 (15)
∥
∥Wf

∥
∥− ≥ γ2 (16)

‖Wd‖∞ and ‖Wf ‖− denote respectively the H∞ and H−
norm of the LTI transfer Wd and Wf (see preliminaries).

Assume that Wd is invertible (this can be done without
loss of generality because it is always possible to add zeros
in Wd to make it invertible). Wd and Wf are also defined in
order to tune the gain responses for, respectively, Trd(θ) and
Tr f (θ). Then it is straightforward to verify that the specifica-
tion (11) yields if the following constraint is satisfied:

∥
∥Trd̃ (θ)

∥
∥∞ < 1. (17)

In this formulation, d̃ ∈ Rqd̃ is a fictitious signal generating
d through Wd (see Figure 4(a) for easy reference) and Trd̃
denotes the looped transfer between r and d̃.

The following lemma allows the sensitivity constraint
(12) to be transformed into a fictitious H∞ one.

Lemma 1. Consider an invertible transfer matrixWF such that
‖Wf ‖− = (γ2/λ)‖WF‖− and ‖WF‖− > λ where λ = 1 + γ2.
Define the (fictitious) signal r̃ ∈ Rqr such that r̃ = r−WF f (see
Figure 4(a)). Then a sufficient condition for the specification
(12) to hold, is:

∥∥Tr̃ f (θ)
∥∥∞ < 1, (18)

where Tr̃ f denote the looped transfer between r̃ and f .

Proof of Lemma 1. Consider the signal r̃ introduced in Figure
4, that is,

r̃ = r −WF f , (19)

where WF is define as in Lemma 1. Then it can be verified
that the following relation yields:

∥
∥Tr f (θ)

∥
∥

sens ≥
∥
∥WF

∥
∥− −

∥
∥Tr f (θ)−WF

∥
∥∞ (20)

that can be re-written due to the definition of r̃ given by (19):

∥
∥Tr f (θ)

∥
∥

sens ≥
∥
∥WF

∥
∥− −

∥
∥Tr̃ f (θ)

∥
∥∞. (21)

Now consider the weighting function WF defined in Lemma
1. Since, WF is supposed to be invertible, we get

1
∥∥WF

∥∥−
= ∥∥W+

F

∥
∥∞,Ω, (22)

where ‖W+
F ‖∞,Ω = supω∈Ωσ(W+

F ( jω))·W+
F denotes the

inverse of WF which always exists by assumption (see
Lemma 1). Then, factorizing the right term of (21) by
‖WF‖− gives

∥
∥Tr f (θ)

∥
∥

sens ≥
(

1−
∥
∥Tr̃ f (θ)

∥
∥∞∥∥WF

∥∥−

)
∥
∥WF

∥
∥− (23)

that can be done since, by definition, ‖WF‖− /=0. With (22),
it then follows that:
∥
∥Tr f (θ)

∥
∥

sens ≥
(

1− ∥∥Tr̃ f (θ
)∥∥∞

∥
∥W+

F

∥
∥∞,Ω

)∥
∥WF

∥
∥−. (24)

Now, since by construction ‖WF‖− > λ, it is straightforward
to verify that the following relation yields:

∥
∥W+

F

∥
∥∞,Ω <

1
λ
. (25)

Suppose now that inequality (18) yields, that is, ‖Tr̃ f (θ)‖∞ <
1. From (25), it follows that

∥
∥Tr̃ f (θ)

∥
∥∞
∥
∥W+

F

∥
∥∞,Ω <

1
λ

(26)

and with (24), we get

∥
∥Tr f (θ)

∥
∥

sens >
λ− 1
λ

∥
∥WF

∥
∥−. (27)

Thus, if ‖Wf ‖− = (γ2/γ)‖WF‖− with λ = 1 + γ2, then (27)
implies that

∥
∥Tr f (θ)

∥
∥

sens >
∥
∥Wf

∥
∥− (28)

which terminates the proof.

Following (17) and (18), the design problem can be
re-casted in a fictitious LPV H∞-framework as depicted in

Figure 4(a), where d̃ and r̃ are two fictitious signals, so that

d̃ = Wdd and r̃ = r −WF f . Then, including γ1, λ, WF and
W−1

d into the model P(θ, My , Mu) leads to the equivalent

block diagram of Figure 4(b), where P̃(θ,My ,Mu) is defined
according to:

(
r
r̃

)

= F1
(
P̃
(
θ,My ,Mu

)
,F(θ)

)
(
d̃
f

)

. (29)

The residual generation problem can now be formulated in a
framework which looks like a standard H∞ problem for LPV
systems, by combining both requirements (17) and (18) into
a singleH∞ constraint. Using Lemma 1, it can be verified that
a sufficient condition for (17) and (18) to hold, is

∥
∥F1

(
P̃
(
θ,My ,Mu

)
,F(θ)

)∥∥∞ < 1. (30)

As mentioned above, this equation seems to be similar to a
standard H∞ LPV problem. In fact, this is not the case since
the transfer P̃(θ,My ,Mu) depends on My and Mu that are
unknown. In the following section, a procedure is given to
overcome this problem.
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P(θ,My ,Mu)

r

r̃

F(θ)

WF

ẑ

dW−1
d

f

d̃

(
y
u

)

+

−

(a)

P̃(θ,My ,Mu)
r
r̃

F(θ)

f
d̃

(b)

Figure 4: Fictitious quadratic H∞ formulation for the filter design
problem.

Remark 2. It is clear that a key feature in the proposed for-
mulation is the a priori choice of the shaping filters Wd and
Wf . From a practical point of view, it is required that the
residuals r are as “big” and as “fast” as possible, when a fault
occurs. Then, if the considered faults manifest themselves in
low frequencies, this leads to select Wf as a low pass filter
with the static gain and the cutting frequency, the highest
possible. With regards to the robustness objectives, it is re-
quired that the effects of the disturbances on the residuals
are as “small” as possible. This implies to choose the gain of
Wd as “small” as possible in the frequency range where the
energy content of the disturbances is located. In other words,
it is required a high attenuation level of the disturbances on
the residuals in the appropriate frequencies (see Section 3
where a practical case is presented). However, both sensitiv-
ity to faults and robustness against disturbances might be not
achieved in some cases. Faults having similar frequency char-
acteristics as those of disturbances might go undetected. In
such cases, the proposed formulation provides a framework
to find a good balance between fault sensitivity and robust-
ness via the construction of the shaping filters Wd and Wf .
Finally, note that the work reported in [16, 17] could be an
interesting method to select Wd and Wf .

2.2.2. Synthesis of the FDI filter

In the following, a solution is derived in terms of a SDP
(Semi Definite Programming) problem. To proceed, let
{Awd,Bwd,Cwd,Dwd} and {AwF ,BwF ,CwF ,DwF} be the state-
space representations of W−1

d and WF respectively, and de-
note nwd and nwF the associated order, that is,Awd ∈ Rnwd×nwd
and AwF ∈ RnwF×nwF . Using some linear algebra manipula-
tions, it can be verified from (14) that the matrices Ã(θ),

B̃(θ), C̃(θ) and D̃(θ) of the state-space representation of
P̃(θ,My ,Mu) are defined according to:

Ã(θ) =

⎛

⎜
⎜
⎝

A(θ) Bd(θ)Cwd 0

0 Awd 0

0 0 AwF

⎞

⎟
⎟
⎠ ,

Ã(θ) ∈ R(n+nwd+nwF )×(n+nwd+nwF ),

(31)

B̃(θ) = (B̃1(θ) | B̃2
) =

⎛

⎜
⎝
Bd(θ)Dwd B f (θ) 0

Bwd 0 0
0 BwF 0

⎞

⎟
⎠ ,

B̃(θ) ∈ R(n+nwd+nwF )×(qd̃+q f +qr ),

(32)

C̃(θ) =
(
C̃1(θ)

C̃2(θ)

)

=

⎛

⎜
⎜
⎝

(
My Mu

)
C(θ)

(
My Mu

)
Dd(θ)Cwd 0

(
My Mu

)
C(θ)

(
My Mu

)
Dd(θ)Cwd −CwF

C(θ) Dd(θ)Cwd 0

⎞

⎟
⎟
⎠ ,

C̃(θ) ∈ R(2qr+m+p)×(n+nwd+nwF ),
(33)

D̃(θ)

=
⎛

⎝
D̃11(θ) D̃12

D̃21(θ) D̃22

⎞

⎠

=

⎛

⎜
⎜
⎝

(
My Mu

)
Dd(θ)Dwd

(
My Mu

)
Df (θ) −Iqr(

My Mu
)
Dd(θ)Dwd

[(
My Mu

)
Df (θ)−DwF

] −Iqr
Dd(θ)Dwd Df (θ) 0

⎞

⎟
⎟
⎠,

D̃(θ) ∈ R(2qr+m+p)×(qd̃+q f +qr ).
(34)

Having in mind the definition of Ã(θ), B̃(θ), C̃(θ), and D̃(θ),
it can be noted that the H∞ optimization problem formu-
lated by (30) is non convex since it involves simultaneously
the residual structuring matrices My and Mu and the filter
state-space matrices AF(θ), BF(θ), CF(θ), and DF(θ). A solu-
tion to this problem may consist in chosen heuristically My

and Mu. However, as it has been outlined in [10], there is no
guarantee to the optimal solution.

The following lemma which is an adaptation of Proposi-
tion 1 in [8] for our purpose, gives the solution to this prob-
lem. The proof is omitted here as it can be found in [8].

Lemma 2. Let Ã(Πi), B̃(Πi), C̃(Πi), D̃(Πi)∀i = 1, . . . ,N be
the evaluation of Ã(θ), B̃(θ), C̃(θ), D̃(θ) at each vertex Πi of
the polytope Θ. Assume that C̃2(θ) and D̃21(θ) do not depend
of θ (see Remark 3 for a discussion about this assumption) and
let Ns = (C̃2 D̃21)⊥. Then, there exists a solution of (31) if
and only if there exists γ < 1 andMy ∈ Rqr×m andMu ∈ Rqr×p

and two symmetric matrices R ∈ R(n+nwd+nwF )×(n+nwd+nwF ) > 0
and S ∈ R(n+nwd+nwF )×(n+nwd+nwF ) > 0 solving the following SDP
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problem involving 2N + 1 LMI constraints:

min γ

s.t.

(
Ã
(
Πi
)
R + RÃT

(
Πi
)
B̃1
(
Πi
)

B̃T1
(
Πi
) −γI

)

< 0, i = 1, . . . ,N

(35)

(
NS 0

0 I

)T
⎛

⎜
⎜
⎜
⎝

ÃT
(
Πi
)
S + SA

(
Πi
)
SB̃1

(
Πi
)
C̃T1
(
Πi
)

B̃T1
(
Πi
)
S −γI D̃T

11

(
Πi
)

C̃1
(
Πi
)

D̃11
(
Πi
) −γI

⎞

⎟
⎟
⎟
⎠

(
NS 0

0 I

)

< 0, i = 1, . . . ,N
(36)

(
R I
I S

)

≥ 0. (37)

Moreover, F(θ) is a full order filter if nF = n + nwd + nwF . The
state space realization of the LPV filter F(θ) is then computed
using the barycentric coordinates of Θ given by (7), so that:

(
AF(θ) BF(θ)

CF(θ) DF(θ)

)

=
N∑

i=1

βi

(
AF
(
Πi
)
BF
(
Πi
)

CF
(
Πi
)
DF
(
Πi
)

)

(38)

AF(Πi), BF(Πi), CF(Πi), and DF(Πi)∀i = 1, . . . ,N are the
state space matrices of the N LTI filters F(Πi)∀i = 1, . . . ,N
that are deduced from the unique solution (R, S,My ,Mu, γ) fol-
lowing the procedure described in [14].

Remark 3. As it is outlined in Lemma 2, it is required that
C̃2 and D̃21 do not depend on θ. This assumption is also
done for NS to be computed. If, by construction, such an
assumption is not verified, the solution consists in post fil-
tering (yT uT)T by a LTI filter at a high cutting frequency.
This solution has already been proposed in [14].

3. APPLICATION: THE SECONDARY CIRCUIT OF A NPP

To illustrate the benefits of the proposed approach, experi-
mental results obtained from the secondary circuit of a Nu-
clear Power Plant (NPP) are provided in this section.

In a NPP, the secondary circuit erosion can occur in the
steam generators, releasing radio nuclides into the secondary
coolant. This problem is now well understood and has been
the subject of some studies initiated by EDF (Eléctricité De
France) for its pressurized water reactors (PWR) to overcome
and master the steam generator corrosion problems. The
main degradation process is to be controlled by careful opti-
mization of the secondary water chemistry. There is a need to
ensure that the optimum secondary chemistry regime is se-
lected and maintained. So, the process of erosion—corrosion
of steel piping and other components is of critical impor-
tance during operation of a NPP. Feed water pH is adjusted
by hydrazine, so that the pH is maintained within the limits
specified by the nuclear authority (norm ISO-14253-1).

The NPP under consideration is a 900 MW pressurized
water reactors (PWR), located in France. During the win-
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Figure 5: The time varying parameter Qext(t).
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+

−

−

Figure 6: Filter F(θ(t)) synthesized scheme.

ter 2002, and thanks to a mandatory period of maintenance
operations, it has been possible to measure and record a set
of experimental data on the secondary circuit. The aim was
to optimally control hydrazine and pH through an adaptive
LQG control scheme. The designed controller has been suc-
cessfully tested under real operational conditions [18].

The dynamics of hydrazine and ammoniac concentra-
tions behavior in the secondary circuit of the NPP can be
expressed as follows:

V
d

dt

[
N2H4

] = −Qext(t)·
[
N2H4

]
+ u(t − τ)

V
d

dt

[
NH3

] = 4
3
Qext(t)

([
N2H4

]− [O2
])− β·[NH3

]

(39)

V is the circuit’s water volume, Qext the water extraction
flow rate of the condenser and β is a parameter depending
of the NPP operating conditions. [N2H4], [NH3], and [O2]
represent hydrazine, ammoniac and oxygen concentrations
respectively. u is the flow rates of the pumps used to inject
hydrazine in the circuit. Moreover, the system present a time
delay (τ = 560 s) corresponding to the chemical reaction af-
ter the introduction of hydrazine in the circuit. It is assumed
that the pH is measured, that is,

pH = 14 +
1
2

log
(
Kb
[
NH3

]
+ KMo[Mo]

)
+ npH, (40)

where npH denotes the measurement noise, [Mo] also de-
notes the morpholine concentration, Kb and KMo are the ba-
sicity constants of the ammoniac and morpholine respec-
tively.

Taken into account the dynamical equations (39), it fol-
lows that
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ẋ(t) =

⎛

⎜
⎜
⎝
− β

V

4Qext(t)
3V

0 −Qext(t)
V

⎞

⎟
⎟
⎠ x(t) +

⎛

⎝
0
1
V

⎞

⎠u(t − τ)

+

⎛

⎝−
4Qext(t)

3V
0

⎞

⎠
[
O2
]
(t)

y(t) =
(

1 0
0 1

)

x(t) +

(
nNH3 (t)
nN2H4 (t)

)

,

(41)

where x = ([NH3] [N2H4])T represents the state vector.
nN2H4 represents the measurement noise of the hydrazine sen-
sor. nNH3 is the image of the measurement noise of the pH
sensor via the relation (40). Then, since (40) is static we will
consider that an ammoniac concentration measure is avail-
able through the pH sensor. Characteristics of nNH3 are then
deduced from the following equation, which is the inverse of
(40):

[
NH3

]
+ nNH3 =

102[pH−14−npH] − KMo[Mo]
Kb

. (42)

Figure 5 presents the behavior of the time varying param-
eter Qext(t) during a period of 3 days. We assume here that
Qext(t) is not affected by the considered faults. As it can be
seen on Figure 5, Qext(t) varies between Qmin and Qmax with:

Qmin = 878 l/s

Qmax = 1097 l/s.
(43)

The considered faults are hydrazine sensor faults and pH
sensor faults. Note that monitoring of pH sensors is a key
feature for well functioning the overall system.

The relation between the ammoniac measurement and
the pH measurement is only algebraic (see (41)), then the
pH sensor fault is directly transmitted to the ammoniac mea-
surement. Therefore, we can consider an ammoniac sensor
fault in place of a pH sensor fault. Consequently, the follow-
ing state space representation derived from (42) models the
failing behavior of the secondary circuit (the notations are
chosen to be consistent with those used in Section 2):

G(θ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− β

V

4θ(t)
3V

0

0 −θ(t)
V

2
τV

0 0 − 2
V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x +

⎛

⎜
⎜
⎜
⎜
⎝

0

− 1
V
2

⎞

⎟
⎟
⎟
⎟
⎠
u

+

⎛

⎜
⎜
⎜
⎝

−4θ(t)
3V
0

0

⎞

⎟
⎟
⎟
⎠

[
O2
]

y =
(

1 0 0

0 1 0

)

x +

(
0

0

)

u +

⎛

⎝
nNH3 (t)

nN2H4 (t)

⎞

⎠d1

+

(
1 0

0 1

)(
nNH3 (t)

nN2H4 (t)

)

(44)

fNH3 represent ammoniac sensor faults and fN2H4 hydrazine
sensor faults. In this model, the time delay due to actuators
is approximated using a first order Pade approximation. The
model (44) corresponds to the model described in Figure 1,
where 878 ≤ θ(t) = Qext(t) ≤ 1097. It follows that the con-
sidered polytope Θ = {θ : 878 ≤ θ ≤ 1097} becomes a
simple segment since dim (θ) = 1.

For the FDI purpose, two filters F1(θ) and F2(θ) are com-
puted such that the two residuals r1(t) and r2(t) satisfy the
following requirements:

(i) r1(t) is sensitive to pH sensor faults through the (ficti-
tious) ammoniac sensor and robust to hydrazine sen-
sor faults.

(ii) r2(t) is sensitive to hydrazine sensor faults and robust
to ammoniac sensor faults.

This method allows to isolate sensor faults uniquely.
Therefore, we consider a different model for each filter to be
synthesized. For the design of F1(θ), the following model is
used

G1(θ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− β

V

4θ(t)
3V

0

0 −θ(t)
V

2
τV

0 0 − 2
V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

x +

⎛

⎜
⎜
⎜
⎜
⎝

0

− 1
V
2

⎞

⎟
⎟
⎟
⎟
⎠
u

+

⎛

⎜
⎜
⎜
⎝

−4θ(t)
3V

0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠
d1 +

⎛

⎜
⎜
⎝

0

0

0

⎞

⎟
⎟
⎠ fNH3

y =
(

1 0 0

0 1 0

)

x +

(
0

0

)

u +

(
0 1 0 0

0 0 1 1

)

d1 +

⎛

⎝
1

0

⎞

⎠ fNH3 ,

(45)

where the disturbances vector d1 includes the oxygen con-
centration, the measurement noises and the hydrazine sensor
fault, that is, d1 = [[O2] nNH3 nN2H4 fN2H4 ]T . For the design
of F2(θ), the following model is retained

G2(θ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− β

V

4θ(t)
3V

0

0 −θ(t)
V

2
τV

0 0 − 2
V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x +

⎛

⎜
⎜
⎜
⎝

0

− 1
V
2

⎞

⎟
⎟
⎟
⎠
u

+

⎛

⎜
⎜
⎜
⎝

4θ(t)
3V

0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠
d2 +

⎛

⎜
⎜
⎜
⎝

0

0

0

⎞

⎟
⎟
⎟
⎠
fN2H4

y =
⎛

⎝
1 0 0

0 1 0

⎞

⎠ x +

⎛

⎜
⎝

0

0

⎞

⎟
⎠

u +

⎛

⎝
0 1 0 1

0 0 1 0

⎞

⎠d2 +

(
1

1

)

fN2H4 ,

(46)
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where the augmented disturbances vector takes into account

the ammoniac sensor faults; d2=
[[

O2
]
nNH3 nN2H4 fNH3

]T
.

According to the methodology developed in the Section
2, two polytopic models P1(θ) and P2(θ) are built as illus-
trated on Figure 2. To save place and for a better understand-
ing, the different steps are only detailed for F1(θ). Here, be-
cause the system is placed in an open-loop control law, it
follows from G1(θ) that (for clarity the index “1” is ignored
from now):

P(θ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− β

V

4θ(t)
3V

0

0 −θ(t)
V

2
τV

0 0 − 2
V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −4θ(t)
3V

0 0 0

− 1
V

0 0 0 0

2 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
d +

⎛

⎜
⎜
⎝

0

0

0

⎞

⎟
⎟
⎠ fNH3

(
y

u

)

=

⎛

⎜
⎜
⎝

1 0 0

0 1 0

0 0 0

⎞

⎟
⎟
⎠ x +

⎛

⎜
⎜
⎝

0 0 1 0 0

0 0 0 1 1

1 0 0 0 0

⎞

⎟
⎟
⎠d

+

⎛

⎜
⎜
⎝

1

0

0

⎞

⎟
⎟
⎠ fNH3 ,

(47)

where d = [u [O2] nNH3 nN2H4 fN2H4 ]T . Following
the developments in Section 2, the fault detector design
problem turns out to be the design of (F(θ),My ,Mu) satis-
fying the following objectives:

∥
∥Trd(θ)

∥
∥∞ < γ1∥

∥Tr f (θ)
∥
∥

sens > γ2

(48)

Figure 6 gives an illustration of this problem.
Finally, following the method describes in Section 2, the

problem is recasted into the setup depicted in Figure 3 where
the model P(θ,My ,Mu) is defined according to:

P
(
θ,My ,Mu

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− β

V

4θ(t)
3V

0 0 −4θ(t)
3V

0 0 0 0 0

0 −θ(t)
V

2
τV

1
V

0 0 0 0 0 0

0 0 −2
τ

2 0 0 0 0 0 0

My1 My2 0 Mu 0 My1 My2 My2 My1 −1

1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(49)

My1 and My2 are the two components of the structuring ma-
trix My .

As it is outlined in Remark 2 an important step in the
proposed method is the choice of the shaping filters Wd and
Wf . Similarly to the developments presented in Section 2,
Wd is refereed to the robustness objectives against d and Wf

to the sensitivity requirements against fNH3 . Here, due to the
definition of d, it is natural to choose Wd such as:

Wd = diag
(
Wu,W[O2],WnNH3

,WnN2H4
,W[N2H4]

)
. (50)

The weighting functions Wu, W[O2], WnNH3
, WnN2H4

, W[N2H4]

and Wf allow to manage separately the robustness objectives
against u, [O2], nNH3 , nN2H4 , fN2H4 and fNH3 respectively. The
interested reader can refer to [10] or [19] if necessary. These
weighting functions are deduced from an off line spectral
analysis procedure of available measurements according to:

Wu = γu

(
1 + 1, 7 · 103 s

)2

(
1 + 103 s

)2

W[O2] = γ[O2]
1 + 1, 5 · 104 s

1 + 102 s

WnNH3
= γnNH3

s + 2 · 10−2

s + 1 · 10−5

WnN2H4
= γnN2H4

s + 2 · 10−2

s + 1 · 10−5

W[N2H4] = γ[N2H4]
1 + 103 s

1 + 10−3 s

Wf = γ2
1

1 + 103 s
.

(51)

The parameters γu, γ[O2], γnNH3
, γnN2H4

, γ[N2H4] and γ2 allow
to manage the gain of the weighting functions separately.
They are optimized by performing an iterative refinement.
Remember that the goal is to minimize the effects of distur-
bances on the residual r(t) and maximize the effects of faults
on r(t). The numerical values of them have been fixed to

γu = 0.025, γ[O2] = 10−4, γnNH3
= γnN2H4

= 0.1,

γ[N2H4] = 2 · 10−5, γ2 = 2.
(52)

The method described in Section 2.2.2 is then used to synthe-
size the filter F(θ), and the structuring matrices My and Mu.
For the SDP optimization problem computation, the SDPT3
solver is used.

To analyze the computed solution, the principal gains
σ(Tk

dr( jω)) and σ(TfNH3
r( jω)) of the closed loop transfers

Tk
dr( jω) and TfNH3

r( jω) are plotted versus the objectives Wk
d

and Wf for some θ ∈ Θ (see Figure 7). The notation “k”
is introduced to outline that the analysis is performed with
respect to each component of d. As it can be seen on the fig-
ures, for each synthesis, σ(Tk

dr( jω)) < σ(Wk
d ( jω))∀ω and

σ(TfNH3
r( jω)) > σ(Wf ( jω))∀ω ∈ Ω ≈ [0; 10−4[rd/s for

all considered values of θ(t). This indicates that the require-
ments (48) are satisfied for the considered values of θ and by
virtue of Lemma 2, we know that it still yields for all values
of θ.
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Figure 7: Behavior of the principal gains of the closed loop transfers Tk
dr( jω) and TfNH3

r( jω) versus the shaping objective filters (in dB).

Simulation results

The FDI unit is implemented within the simulator of the
secondary circuit. For simulating faults, a variation of ten
percent of sensors measurements between t = 80 hours and
t = 85 hours for the pH sensor and between t = 120 hours

and t = 125 hours for the hydrazine sensor is made. Figures
8, 9 and 10 illustrate the behavior of the residual signals r1(t)
and r2(t) in both fault free and faulty situations for the afore-
mentioned period of 3 days. As expected, it can be seen from
figures that r1(t) is only sensitive to pH sensor faults and r2(t)
is only sensitive to hydrazine sensor faults.
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Figure 8: Behavior of ri(t), i = 1, 2 and the decision test-fault-free
situation.
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Figure 9: Behavior of ri(t), i = 1, 2 and the decision test-pH sensor
fault (80 h–85 h).

Finally, a sequential Wald decision test is also imple-
mented within the simulator to make a final decision about
the faults. The probabilities of non-detection and false alarms
have been fixed to 0.1%. The results are presented in Figures
8, 9 and 10. As it can be seen, all faults are successfully de-
tected and isolated.

4. CONCLUSION

The problem which is addressed in this paper is that of de-
signing FDI filters for dynamic systems that can be described
by LPV polytopic models. The method can be seen as a gen-
eralization of the well known H∞/H− setting for LTI systems.
The H∞ norm for LPV systems is used to formulate the ro-
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Hydrazine sensor fault
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Figure 10: Behavior of ri(t), i = 1, 2 and the decision test-hydrazine
sensor fault (120 h–125 h).

bustness specifications and a new index, that is, the Hsens

index, which is deduced from the H-norm for LTI systems,
is introduced for fault sensitivity specifications. As a result,
various design goals and trades-off can be formulated and
managed in a systematic way by means of some high level
design parameters formulated in terms of dynamic weight-
ing functions. A key feature of the proposed technique is
that the remaining control and measurement canals are op-
timally merged to build the fault indicating signals. The re-
sulting static matrices are also optimized via LMI together
with the dynamic FDI filter. The proposed technique is also
appropriate for fault diagnosis in nonlinear systems which
can be approximated efficiently by LPV models to cover a
wider range of operating, and to cope with rapid parameter
variations. The method has been successfully applied to ex-
perimental data set coming from the secondary circuit of a
nuclear power plant in France.
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