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One of the most important problems of reliable communications in shallow water channels is intersymbol interference (ISI) which
is due to scattering from surface and reflecting from bottom. Using adaptive equalizers in receiver is one of the best suggested ways
for overcoming this problem. In this paper, we apply the family of selective regressor affine projection algorithms (SR-APA) and the
family of selective partial update APA (SPU-APA) which have low computational complexity that is one of the important factors
that influences adaptive equalizer performance. We apply experimental data from Strait of Hormuz for examining the efficiency
of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of
SR-APA and SPU-APA decrease by 5.8 (dB) and 5.5 (dB), respectively, in comparison with least mean square (LMS) algorithm. Also
the families of SPU-APA and SR-APA have better convergence speed than LMS type algorithm.

1. Introduction

Underwater acoustic communications suffer from doppler
shifts, noise, scattering from surface, and reflecting from bot-
tom that cause multipath spread especially in shallow water
channels. Multipath spread causes intersymbol interference
(ISI), which influences reliable transmission in underwater
acoustic communications. One of the best ways suggested for
overcoming this effect is using adaptive equalizationmethods
in receivers. Some factors such as adaptive filter and adaptive
algorithms influence thismethod, so it is important to choose
adaptive algorithms with low computational complexity and
more ability for tracking changes in channel.

Least mean square (LMS) algorithm is the most popular
because of its simplicity in computations and implementation
that is used by Stojanovic et al. [1, 2] in underwater acoustic
communication. Recursive least square (RLS) due to the
fastest convergence speed is the best adaptive filter algorithm
used by Zheng et al. [3] and Freitag et al. [4] in this channel
in spite of its computational complexity. Computational
complexity in some algorithms such as RLS is one of the

main problems, so some other algorithms such as selective
regressor affine projection algorithm (SR-APA) and selective
partial update (SPU) that have good tradeoff between com-
putational complexity and convergence speed are suggested.
In SPU algorithm, the blocks of filter coefficients have been
updated in every iteration that is selected by special criteria.
Important examples of this algorithm are different types of
selective partial update normalized least mean square (SPU-
NLMS) [5–7] such as MAX-NLMS [8], N-MAX NLMS [9]
(the number of filter coefficients to be updated is N), and the
family of SPU affine projection algorithms (SPU-APA) [10].
In selective regressor algorithm approach, a subset of input
regressors should be selected by selection criteria in every
iteration. In comparison with LMS, the value of the steady-
state mean square error (MSE) of SR-APA by selecting 3 of
4 input regressors decreases by 5.8 (dB) and the value of the
steady-state MSE of SPU-APA by selecting 3 of 4 blocks of
filter coefficients decreases by 5.5 (dB).

In this paper, our objective is to apply SPU-APA and SR-
APA algorithms that have a good tradeoff between conver-
gence speed and computational complexity for underwater

Hindawi Publishing Corporation
Shock and Vibration
Volume 2014, Article ID 676497, 5 pages
http://dx.doi.org/10.1155/2014/676497

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194990989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Shock and Vibration

acoustic communications. Also, we show the result of using
the performance of these algorithms in comparison with RLS
and NLMS.

This paper is organized as follows: in the next section,
we present the basis of APA, SR-APA, and SPU-APA. In
Section 3, we introduce a model for shallow water channel.
Section 4 presents the computational complexity of different
algorithms that are introduced. We show the simulation
results in Section 5, and we conclude the paper in Section 6.

2. Basis of Affine Projection Algorithm,
Selective Regressor Affine Projection
Algorithm (SR-APA), and Selective
Partial Update Affine Projection
Algorithm (SPU-APA)

2.1. APA. In this paper, 𝑥, 𝑑, and 𝑒 denote input, desired, and
output error signals, respectively. h is the filter coefficients
vector with order 𝑀 × 1 and 𝜇 is the step size. The family
of affine projection algorithms (APA) is derived by solving

Min ‖h (𝑛 + 1) − h (𝑛)‖2 (1)

subject to d(𝑛) = X𝑇(𝑛)h(𝑛+1). Lagrangemultipliersmethod
leads to the following recursion:

h (𝑛 + 1) = h (𝑛) + 𝜇C (𝑛)X (𝑛)W (𝑛) e (𝑛) , (2)

where e(𝑛) = d(𝑛) − X𝑇(𝑛)h(𝑛).
h is the 𝑀 × 1 column vector of filter coefficients, X is

the 𝑀 × 𝑃 matrix of the input signal X(𝑛) = [x(𝑛), x(𝑛 −
𝐷), . . . , x(𝑛 − (𝑃 − 1)𝐷)], and d is a 𝑃 × 1 vector of desired
signal d(𝑛) = [𝑑(𝑛), 𝑑(𝑛 − 𝐷), . . . , 𝑑(𝑛 − (𝑃 − 1)𝐷)]𝑇. 𝑃must
be a positive integer, and usually 𝑃 ≤ 𝑀. C(𝑛) is equal to I,
andW(𝑛) = (X𝑇(𝑛)X(𝑛))−1.

By substituting the parameters 𝑃 and𝐷 and the matrices
C andW from Table 1 in (2), we can acquire various types of
conventional algorithms such as binormalized data reusing
least mean square (BNDR-LMS), regularized APA, and the
normalized LMS with orthogonal correction factor (NLMS-
OCF) [11] that are various types of the affine projection’s
family. In Table 1, the parameter 𝜀 is the regularization
parameter which is introduced for preventing division by
zero, and 𝜇 is the step size that controls the convergence speed
and steady-state mean square error.

If the filter coefficient equation is updated only once every
𝐾 iterations, it is named partial rank algorithm (PRA) [12].

2.2. SR-APA. The filter coefficients update equation for SR-
APA is given by [13]

h (𝑛 + 1) = h (𝑛) + 𝜇X
𝐺
(𝑛) (X𝑇

𝐺
(𝑛)X
𝐺
(𝑛))

−1

e
𝐺
(𝑛) , (3)

where e
𝐺
(𝑛) = d

𝐺
(𝑛) − X𝑇

𝐺
(𝑛)h(𝑛).

𝐺 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑞
} denotes a 𝑞-subset (subset with 𝑞

members) of the set {0, 1, . . . , 𝑃−1}, and alsoX
𝐺
(𝑛) and d

𝐺
(𝑛)

Table 1: Family of APA adaptive filter algorithms.

Algorithm 𝑃 𝐷 C(𝑛) D(𝑛)
APA 𝑃 ≤ 𝑀 𝐷 = 1 I (X𝑇(𝑛)X(𝑛))−1

BNDR-LMS 𝑃 = 2 𝐷 = 1 I (X𝑇(𝑛)X(𝑛))−1

R-APA 𝑃 ≤ 𝑀 𝐷 = 1 I (𝜀I + X𝑇(𝑛)X(𝑛))−1

NLMS-OCF 𝑃 ≤ 𝑀 𝐷 ≥ 1 I (X𝑇(𝑛)X(𝑛))−1

are the𝑀× 𝑞matrix of the input signal and the 𝑞 × 1 vector
of the desired signal, respectively. They are defined as

X
𝐺
(𝑛) = [x (𝑛 − 𝑖

1
𝐷) , x (𝑛 − 𝑖

2
𝐷) , . . . , x (𝑛 − 𝑖

𝑞
𝐷)] ,

d
𝐺
(𝑛) = [𝑑 (𝑛 − 𝑖

1
𝐷) , 𝑑 (𝑛 − 𝑖

2
𝐷) , . . . , 𝑑 (𝑛 − 𝑖

𝑞
𝐷)]

𝑇

.

(4)

The indices of 𝐺 are obtained by the following procedure.

(1) Compute the following values for 0 ≤ 𝑖 ≤ 𝑃 − 1:

𝑒
2
(𝑛 − 𝑖𝐷)

‖x (𝑛 − 𝑖𝐷)‖2
, (5)

where e(𝑛) = [𝑒(𝑛), 𝑒(𝑛 − 𝐷), . . . , 𝑒(𝑛 − (𝑃 − 1)𝐷)]𝑇.
(2) Compute 𝑞 largest values of (5) that corresponded to

indices of G.

Setting 𝐷 = 1 leads to SR-APA presented in [13]. By
substituting the parameters𝐷 and𝑃, various types of SR-APA
and SR-BNDR-LMS, SR-NLMS-OCF can be established.The
filter coefficient update for SR-APA can be represented as

h (𝑛 + 1) = h (𝑛) + 𝜇X (𝑛)B (𝑛)

× (B𝑇 (𝑛)X𝑇 (𝑛)X (𝑛)B (𝑛))
−1

B𝑇 (𝑛) e (𝑛) ,
(6)

where B(𝑛) = {1
𝑖1
, 1
𝑖2
, . . . , 1

𝑖𝑞
} is the 𝑃 × 𝑞 matrix and 1

𝑖𝑞
=

[0, . . . , 0, 1, 0, . . . , 0] is the 𝑃 × 1 vector with the element 1 in
the position 𝑖

𝑞
.

2.3. SPU-APA. We use the Lagrange multiplier method to
solve the following optimization problem [6]:

Min 󵄩󵄩󵄩
󵄩
h
𝐹
(𝑛 + 1) − h

𝐹
(𝑛)
󵄩
󵄩
󵄩
󵄩

2 (7)

subject to d(𝑛) = X𝑇(𝑛)h(𝑛 + 1). Recursive equation for
updating filter coefficients can be written as

h
𝐹
(𝑛 + 1) = h

𝐹
(𝑛) + 𝜇 X

𝐹
(𝑛) (X𝑇

𝐹
(𝑛)X
𝐹
(𝑛))

−1

e (𝑛) . (8)

𝐹 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑆
} denotes the indices of the 𝑆 blocks out of 𝐵

blocks that should be updated at every adaptation, X
𝐹
(𝑛) =

[X𝑇
𝑗
1

(𝑛),X𝑇
𝑗
2

(𝑛), . . . ,X𝑇
𝑗
𝑆

(𝑛)]
𝑇 is 𝑆𝐿 × 𝑃 matrix, and X

𝑖
(𝑛) =

[x
𝑖
(𝑛), x
𝑖
(𝑛 − 𝐷), . . . , x

𝑖
(𝑛 − (𝑃 − 1)𝐷)]

𝐿×𝑃
.

The indices of 𝐹 are obtained by the following procedure.

(1) Compute the following values for 1 ≤ 𝑖 ≤ 𝐵:

Tr (X𝑇
𝑖
(𝑛)X
𝑖
(𝑛)) . (9)

(2) Compute 𝑆 largest values of (9) that corresponded to
indices of 𝐹.
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Table 2: Explanation of computational complexity of the APA, SR-APA, and SPU-APA.

Algorithm Multiplications Divisions Additional multiplications Comparisons
APA (𝑃

2
+ 2𝑃)𝑀 + 𝑃

3
+ 𝑃
2

SR-APA (𝑞
2
+ 2𝑞)𝑀 + 𝑞

3
+ 𝑞
2

𝑃 (𝑃 − 𝑞)𝑀 + 𝑃 + 1 𝑃log
2
𝑞 + 𝑂(𝑃)

SPU-APA (𝑃
2
+ 2𝑃)𝑆𝐿 + 𝑃

3
+ 𝑃
2

1 𝐵log
2
𝑆 + 𝑂(𝐵)

3. Channel Modelling

Different types of attenuations such as scattering from sur-
face, reflecting from bottom, frequency absorption, and noise
influence the sound waves propagation and decrease the
energy of wave in shallow water channel. Scattering from
surface and reflecting from bottom are two important events
that influence reliable transmission in underwater acoustic
communication channels. For modelling of the scattering
from surface, we use Rayleigh surface loss model. We use
Strait of Hormuz conditions and Hamilton-Backman model
for counting losses due to reflect from bottom. Loss due to
frequency absorption is another type of loss that happened in
underwater acoustic propagation.This phenomenonhappens
in some material such as magnesium sulphate (MgSO

4
) and

boric acid (B(OH)
3
) [14, 15].

Noise in this channel is the combination of ambient
noises such as turbulences, shipping noise, thermal noise,
and sea-state noise that is dependent on frequency and can
be described by Gaussian statistics. For studying multipath
propagation in this channel, we consider ray theory model
[16] as a mathematical model. The channel impulse response
which is obtained from this channel is shown in Figure 1. We
can conclude that after sixth-path channel pattern we have
strong attenuation, so there is not a signal reception. We can
consider sixth-path channel pattern for this channel.

4. Computational Complexity

The computational complexity of the introduced algorithms
is shown in Table 2. This table shows the number of mul-
tiplications, divisions, and comparisons at each iteration.
The computational complexity of APA and that of SR-
APA are from [13]. By comparing computational complexity
between APA and SPU-APA, we can see the reduction in
multiplications equal to (𝑃2 + 2𝑃)(𝑀 − 𝑆𝐿). Also, SPU-APA
needs 1 additional multiplication and comparison 𝐵log

2
𝑆 +

𝑂(𝐵).

5. Simulation and Results

In the channel model, the channel depth is 40 meters. Trans-
mitter and receiver are placed in depth of 5 and 10 meters
from the surface, respectively, and the distance between them
is 1 Km.We use QPSKmodulation with bandwidth of 5 KHz,
carrier frequency of 23KHz, and SNR of 20 dB. Also, channel
characteristics are based on the data measured in the Strait of
Hormuz by NOAA submarine during August of 2009.

We use the structure of Figure 2 for equalizer. In this
structure, we have two modes, training and testing modes
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Figure 1: Impulse response of channel used in this paper.
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Z−Δ

−
e

Figure 2: Structure of an adaptive channel equalizer.

with 2500 and 5000 samples, respectively, and also the
number of filter taps is 240 and Δ = 120. For minimizing
bit error rate, the step sizes of LMS, NLMS, and APA were set
to 10−9, 0.5, and 0.1, and the order of APA was equal to 4. In
SR-APA, 𝑞 parameter is the number of input regressors that
have been selected. It can be changed from 1 to 4. In SPU-APA
algorithm, the number of total blocks is 4, and 𝑆 denotes the
number of blocks that must be selected by (9).

Figure 3 shows the learning curve of LMS, APA, and SR-
APA. We can observe that APA and SR-APA have faster con-
vergence rate than LMS. Figure 4 shows the learning curve
of LMS, APA, and SPU-APA. The SR-APA and SPU-APA
have close convergence rate toAPAwith lower computational
complexity than APA. In comparison with LMS, the steady-
state mean square error (MSE) of SR-APA by selecting 3
of 4 input regressors decreases by 5.8 (dB), and the steady-
state MSE of SPU-APA by selecting 3 of 4 blocks of filter
coefficients decreases by 5.5 (dB).

Symbol error rate (SER) curves versus signal-to-noise
ratio have been shown in Figures 5 and 6 for APA, SPU-APA,
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Figure 3: Learning curves for the LMS, APA, and SR-APA with 𝜇 =
10−9 for LMS and 𝜇 = 0.1 and 𝑃 = 4 for APA and SR-APA.
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Figure 4: Learning curves for the LMS, APA, and SPU-APA with 𝜇
= 10−9 for LMS, 𝜇 = 0.1 and 𝑃 = 4 for APA, and 𝜇 = 0.1, 𝑃 = 4, 𝐵 = 4,
and 𝑆 = 2, 3 for SPU-APA.

and SR-APA, respectively. The SER of SR-APA and SPU-APA
is 10𝑒 − 2, while the SER of LMS is 10𝑒 − 1 at SNR of 20 (dB).

6. Conclusion

In this paper, we have applied selective regressor affine
projection algorithm (SR-APA) and selective partial update
APA (SPU-APA) in shallow water channel. Also, we have
compared the performances of these algorithms with the
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Figure 5: Symbol error rate versus SNR for APA and SPU-APA.
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Figure 6: Symbol error rate versus SNR for APA and SR-APA.

LMS and classical affine projection algorithm. These algo-
rithms have good tradeoff between convergence rate and
steady-state mean square error in comparison with APA
algorithms.
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[6] K. Dogançay and O. Tanrikulu, “Adaptive filtering algorithms
with selective partial updates,” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, vol. 48, no.
8, pp. 762–769, 2001.

[7] S. Werner, M. L. R. de Campos, and P. S. R. Diniz, “Partial-
update NLMS algorithms with data-selective updating,” IEEE
Transactions on Signal Processing, vol. 52, no. 4, pp. 938–949,
2004.

[8] S. C. Douglas, “Analysis and implementation of the max-NLMS
adaptive filter,” in Proceedings of the 29th Asimolar Conference
on Signals, Systems and Computers, pp. 659–663, Pacific Grove,
Calif, USA, October 1995.

[9] T. Aboulnasr and K. Mayyas, “Selective coefficient update of
gradient-based adaptive algorithms,” in Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing,
pp. 1929–1932, Munich, Germany, April 1997.

[10] G. L. Sicuranza and A. Carini, “Filtered-X affine projection
algorithm for multichannel active noise control using second-
order Volterra filters,” IEEE Signal Processing Letters, vol. 11, no.
11, pp. 853–857, 2004.

[11] S. G. Sankaran and A. A. Beex, “Normalized LMS algorithm
with orthogonal correction factors,” in Proceedings of the 31st
Asilomar Conference on Signals, Systems&Computers, pp. 1670–
1673, November 1997.

[12] S. G. Kratzer andD. R.Morgan, “The partial-rank algorithm for
adaptive beamforming,” inReal-Time Signal Processing VIII, vol.
0564 of Proceedings of SPIE, pp. 9–14, 1985.

[13] K.-Y. Hwang and W.-J. Song, “An affine projection adaptive
filtering algorithm with selective regressors,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 54, no. 1, pp. 43–
46, 2007.

[14] H.Medwin and C. S. Clay, Fundamentals of Acoustical Oceanog-
raphy, Academic Press, San Diego, Calif, USA, 1998.

[15] R. P. Hodges,Underwater Acoustics Analysis, Design and Perfor-
mance of Sonar, John Wiley & Sons, New York, NY, USA.

[16] L. M. Brekhovskikh and Y. Lysanov, Fundamentals of Ocean
Acoustics, Springer, Berlin, Germany, 3rd edition, 2003.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


