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The parameters of a radio environment map play an important role in radio management and cognitive radio. In this paper, a
method for estimating the parameters of the radio environment map based on the sensing data of monitoring nodes is presented.
According to the principles of radio transmission signal intensity losses, a theoretical variogram model based on a propagation
model is proposed, and the improved theoretical variation function is more in line with the attenuation of radio signal propagation.
Furthermore, a weight variogram fitting method is proposed based on the characteristics of field strength parameter estimation.
In contrast to the traditional method, this method is more closely related to the physical characteristics of the electromagnetic
environment parameters, and the design of the variogram and fitting method is more in line with the spatial distribution of
electromagnetic environment parameters. Experiments on real and simulation data show that the proposedmethod performs better
than the state-of-the-art method.

1. Introduction

The radio environment map, which was first proposed by
Zhao et al. [1], is mainly used in cognitive radio [2, 3]. A
radio environment map is an integrated database that is used
to describe the electromagnetic environment. Because of its
wide range of applications for radio [4–8], it has been further
extended. The radio environment map is a comprehensive
database that contains many fields of information, such as
the available spectrum profile, geographical features, rules,
relevant laws and regulations, radio equipment situation,
and expert experience [9]. The radio environment map
is fundamental to the construction of a communication
network, improving operation efficiency, andmanaging radio
resources. Ojaniemi et al. [10] believe that the core content of
the radio environment map is the field strength estimation,
so accurately estimating the field strength of the radio signal
in the geospatial space with a certain granularity is key. Pesko
et al. [11] called this problem the construction of the radio
frequency layer. In this paper, we call it radio environment
map parameter estimation. This problem, especially since
2012, has been increasingly studied in depth [11–15].

Methods for estimating the parameters of the radio
environment map can be divided into three categories [11].
The first are based on direct spatial interpolation, the second
are based on the propagation model, and the third are the
hybrid combinations of the first two methods. Propagation-
basedmethods require a large amount of information, includ-
ing the signal transmission source, latitude and longitude
coordinates, antenna height, transmitting power, and even
geographical information and climate information on the
propagation path, which greatly limits the scope of appli-
cation of this method. At the same time, because most
propagation models are empirical models based on radio
transmission, their universality is not strong. Ojaniemi et
al. [10] showed that, under certain conditions, this method
has lower prediction accuracy than spatial interpolation
methods.

In recent years, the focus of research on radio environ-
ment map parameter estimation has transferred to spatial
interpolation-based methods, especially methods based on
geostatistics. In this kind of method, the measured values of
ground truth are obtained by radio monitoring sensors, and
then the spatial environment parameters of the remaining
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locations are obtained using spatial interpolation estimation.
Comparative studies of spatial interpolation methods were
made in [15–17]. Comparative studies of the inverse distance
weighted (IDW) method, Spline interpolation method, and
Kriging interpolation method were presented in [15, 16, 18],
and the IDW, gradient plus inverse distance squared (GIDS),
and Kriging methods were compared in [17]. Prediction
experiments on indoor and outdoor electromagnetic envi-
ronments showed that the IDWmethod ismore robust, while
the Kriging method is the most accurate method. Reference
[19] presented an approach that uses the spatial dependence
of ground truth data and constructs the signal intensity map
using Kriging. In [20], several spatial interpolation methods
based on IDWwere analyzed and used to estimate the spatial
distribution of radio field strength. Reference [21] proposed
a geostatistical method for the radio environment map and
through an actual case study demonstrated that the method
is superior to the method based on path loss model and data
fitting. At the same time, this kind of method relies on the
data collected by the monitoring sensor, so the distribution
and quantity of the monitoring sensors affect the predication
accuracy of the radio environment map parameters. In
[22], the relationship between the number of sensors and
construction error of the radio environment map is analyzed
in detail.

Existing studies show that the Kriging method is the best
way to estimate the parameters of the radio environment
map. However, the radio transmission process is affected by
various factors such as the number of transmitting stations,
geographical environment, and weather. In practice, the
number ofmonitoring sensors is limited, so the data sampling
points are sparsely distributed, which increases the difficulty
of estimating the parameter space distribution. At the same
time, because the Kriging algorithm is based on a variogram,
its linear quadratic optimization is based on the assump-
tion that the data set conforms to the normal distribution
and meets the second-order stationary hypothesis or quasi-
second-order stationary assumption.Therefore, a nonnormal
distribution will affect the stability of the data and cause
the variogram to produce a proportional effect. That is, it
will improve the sill and nugget values and increase the
estimation error [23]. To solve this problem, we propose a
method to estimate the parameters of the radio environment
map based on the radio propagation model and the Kriging
method. This method retains the advantages of both the
propagation model and the Kriging method and hence
obtains better parameter space prediction precision than the
single method. The main contributions of this paper are as
follows: (1) Using the radio propagation model to improve
the variogram of the Kriging algorithm, a new theoretical
variogram model for radio environment map parameter
estimation is proposed. (2) Based on the characteristics of
radio signal propagation and data acquisition, a weighted
optimization of the variogram is proposed, and particle
swarm optimization (PSO) is applied to fit the modified var-
iogram. The modified Kriging algorithm can hence be better
adapted to the spatial distribution of the radio environment
parameters.

The rest of the paper is organized as follows. Section 2
describes the related research on interpolation-based pre-
diction of the radio environment. Section 3 introduces the
improved Kriging method based on the electromagnetic
propagation model and PSO-based weighting variogram
fitting. Section 4 presents the results of some comparative
experiments on real and simulation data to examine the
effectiveness of the proposed method. Finally, Section 5
concludes this work.

2. Related Works

The IDW has been considered for radio environment map
parameter space estimation in many studies [14–18, 20, 21,
24]. The estimated value of the forecast point parameter𝑂𝑒 can be calculated by the weighted sum of the actual
observation values of nearby observation points.Thismethod
considers that the contributions of the observation points
closer to the prediction point are greater; otherwise, the
contribution is smaller, which can be expressed as follows:

𝑂𝑒 = ∑𝑛𝑖=1 (𝑑𝑖)−𝑝 𝑂𝑑 (𝑖)∑𝑛𝑖=1 (𝑑𝑖)−𝑝 , (1)

where 𝑂𝑑(𝑖) is a sampled value of the actual parameter at the𝑖th observation point, 𝑑𝑖 is the Euclidean distance between
the 𝑖th observation point and the predicted point, and 𝑝 is a
strength parameter that defines the decrease in weight as the
distance increases. When 𝑝 equals one, the method is called
IDW, and when it equals two, themethod is called the inverse
distance squared weight.

Spline interpolation is another widely used method for
estimating the parameters of the radio environment map [16,
20, 25]. In these methods, the Spline is generated using the
actual measured values of all observation points to guarantee
global smoothness, and then the parameter values of the
predicted points are calculated using polynomial fitting.

TheKrigingmethod is amethodbased on the spatial anal-
ysis of a variogram, which is an unbiased optimal estimation
of regionalized variables over a finite area, and is considered
to be the best method for estimating the parameters of the
radio environmentmap [11–13, 13–21].The Krigingmethod is
divided into ordinary Kriging and universal Kriging depend-
ing on the existence of space field drift. Ordinary Kriging
is more commonly used than universal Kriging [11]. The
following is a description of the ordinary Kriging method.

For regionalized variable 𝑧(𝑥), the sample values for
a series of observation points 𝑥1, 𝑥2, . . . , 𝑥𝑛 are 𝑧(𝑥1),𝑧(𝑥2), . . . , 𝑧(𝑥𝑛).Then, the estimated value 𝑧(𝑥𝑡) of grid point𝑥𝑡 in a region can be estimated by a linear combination; that
is,

𝑧 (𝑥𝑡) = 𝑛∑
𝑖=1

𝜆𝑖 ⋅ 𝑧 (𝑥𝑖) , (2)
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where 𝜆𝑖 is the 𝑖th weighting coefficient. According to the
principle of optimal unbiased estimation, the value of 𝜆𝑖
should satisfy the following conditions:

𝐸 [𝑧 (𝑥𝑡) − 𝑧󸀠 (𝑥𝑡)] = 0,
𝐸 [𝑧 (𝑥𝑡) − 𝑧󸀠 (𝑥𝑡)]2 = min, (3)

where 𝑧󸀠(𝑥𝑡) is the real sample value. Assuming that 𝑧(𝑥) sat-
isfies the intrinsic hypothesis, then according to the Lagrange
theorem, the ordinary Kriging equations can be expressed as
follows:

𝑛∑
𝑗=1

𝜆𝑗𝛾 (𝑥𝑖, 𝑥𝑗) + 𝜇 = 𝛾 (𝑥𝑖, 𝑥𝑡) , 𝑖 = 1, 2, . . . , 𝑛,
𝑛∑
𝑖=1

𝜆𝑖 = 1,
(4)

where 𝛾(𝑥𝑖, 𝑥𝑗) is the value of the variogram between sam-
pling points 𝑥𝑖 and 𝑥𝑗 and 𝜇 is the Lagrange constant.
Weighting coefficient 𝜆𝑖 can be calculated by (4). When 𝜆𝑖 is
substituted into (2), the estimation value 𝑧(𝑥𝑡) of grid point𝑥𝑡 can be obtained.

The process of solving 𝑧(𝑥𝑡) shows that the key of Kriging
interpolation is how to obtain the best estimate of variogram𝛾(ℎ).
3. Proposed Method

3.1. Improved Variogram for Parameter Estimation of Radio
Environment Map. In geostatistics, a variogram is a tool
used to study the autocorrelation structure of regionalized
variables. The value of a variogram function is only related
to the distance between two regionalized variables. Larger
values of the variogram indicate smaller autocorrelation.The
variogram function is defined as follows [10]:

𝛾 (ℎ) = 12𝑛 (ℎ)
𝑛(ℎ)∑
𝑖=1

(𝑧 (𝑥𝑖) − 𝑧 (𝑥𝑖 + ℎ))2 , (5)

where 𝑛(ℎ) is the number of pairs of observation data points
with lag distance ℎ, 𝑧(𝑥𝑖) is the value of the regionalized
variable at position 𝑥𝑖, and 𝑧(𝑥𝑖 + ℎ) is the value of the
regionalized variable at a distance ℎ from 𝑥𝑖. When the data
distribution is relatively uniform, the basic lag distance can
be equal to or slightly larger than the minimum distance
between the observed data points. Alternatively, the basic
lag distance can be obtained by comparing and analyzing
the variability and stability of the experimental variogram of
several candidate basic lag distances.

In practice, the most important parameter of the radio
environment map is the signal radiation level in units of
decibels (dB). If the Kriging algorithm is used directly, the
expression of 𝛾(ℎ) can be simply obtained by (5) in units
of dB2. However, this is not consistent with the dB units of
propagation loss that are calculated by the radio propagation
model. Hence, the variogram is not dimensionally consistent

with the propagationmodel.We believe that the transmission
loss of the propagation model represents the correlation
between the two radio environment parameters. Therefore,
to combine the variogram with the propagation model,
the definition of the variation function used in traditional
geostatistics is modified as follows:

𝛾 (ℎ) = 1𝑛 (ℎ)√
𝑛(ℎ)∑
𝑖=1

(𝑧 (𝑥𝑖) − 𝑧 (𝑥𝑖 + ℎ))2. (6)

The newly defined variogram is called the parameter esti-
mation variogram of the radio environment map, and the
dimensions of the value calculated by the new variogram
are consistent with the dimensions of the transmission loss
obtained by the propagation model.

3.2. Theoretical Variogram Model Based on Propagation
Model. It is necessary to use the theoretical variogrammodel
to fit the actual variogram. The commonly used theoretical
models for a variogram are the Gaussian, exponential, and
spherical models. In practice, the most commonly used
model is the spherical model proposed by Pesko et al. [11].

In this paper, two new theoretical variogram models are
proposed based on the Longley–Rice model: one uses the
Longley–Rice to model the theoretical variogram directly,
and the other introduces free space transmission loss into
the first model. The Longley–Rice model, also called the
irregular terrain model [7], is mainly used to predict the
median path loss over irregular terrain. The median value of
the propagation loss in free space for different path lengths is
calculated as follows:

𝐴 ref

= {{{{{{{{{
max(0, 𝐴𝑒𝑙 + 𝑘1𝑑 + 𝑘2 ln( 𝑑𝑑𝐿𝑆)) , 𝑑min ≤ 𝑑 < 𝑑𝐿𝑆𝐴𝑒𝑑 + 𝑚𝑑𝑑, 𝑑𝐿𝑆 ≤ 𝑑 < 𝑑𝑥𝐴𝑒𝑠 + 𝑚𝑠𝑑, 𝑑 ≥ 𝑑𝑥,

(7)

where 𝑑min ≤ 𝑑 < 𝑑𝐿𝑆 is the visual distance spread, 𝑑𝐿𝑆 ≤𝑑 < 𝑑𝑥 is the diffraction propagation distance, and 𝑑 ≥ 𝑑𝑥 is
the scattering propagation distance. In addition,𝐴𝑒𝑙,𝐴𝑒𝑑, and𝐴𝑒𝑠 are propagation losses for sight, diffraction, and scatter-
ing in free space, respectively, 𝑘1 and 𝑘2 are propagation loss
coefficients, and𝑚𝑑 and𝑚𝑠 are loss coefficients for diffraction
and scattering, respectively. If the influence of the free space
transmission loss is not taken into account, the loss on the
whole transmission path can be expressed by (7).

In this paper, the loss prediction function of visual
distance spread is used, and hence the propagation loss can
be expressed as follows:

𝐿 = 𝐴𝑒𝑙 + 𝑘1𝑑 + 𝑘2log𝑒 ( 𝑑𝑑𝐿𝑆) , (8)

where all other variables are defined as in (7).
For given parameters such as the heights of the trans-

mitting and receiving antennae, the value of this function is
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only related to distance 𝑑. Hence, the loss prediction can be
rewritten as follows:

𝛾itm (ℎ) = 𝑎1 + 𝑎2𝑑 + 𝑎3log𝑒 (ℎ𝜃 + 𝜀) , (9)

where ℎ is the distance of two data points and 𝜀 is a very
small constant, which prevents division by zero. Note that,
in practice, the two data sampling points may be in the
same coordinate position, and ℎ is equal to 0 in this case.
Coefficients 𝑎1, 𝑎2, and 𝑎3 are coefficients to be determined.
The value of 𝜃 is set to 14,000, which is used to simulate the
distance of sight.

If the effect of free space propagation loss is taken into
account, the overall loss across the propagation path is

𝐿 = 𝐴 ref + 32.45 + 20 lg 𝑑 + 20 lg𝑓, (10)

where 32.45 + 20 lg 𝑑 + 20 lg𝑓 is the loss of free space
propagation, 𝑑 is the propagation distance, and 𝑓 is the
emissive frequency. According to the same ideas above, (11)
can be rewritten as

𝛾itmf (ℎ) = 𝑎1 + 𝑎2𝑑 + 𝑎3log𝑒 (ℎ𝜃 + 𝜀)
+ 𝑎4log10 (ℎ + 𝜀) ,

(11)

where 𝑎4 is a coefficient to be determined and the other
variables are defined as in (9).

Equations (9) and (11) are the two theoretical variogram
models proposed in this paper. The new models are more
consistent with the parameter change behaviors in the radio
environment map and more accurately reflect the relation-
ship between parameter space changes.

3.3. Weighted Fitting Algorithm for theTheoretical Variogram.
Using the ground truth data, the theoretical variogram is
fitted and the undetermined coefficients in the model are
obtained. In traditional methods, the least-squares method is
mainly used to fit the function. Its fitness function is

𝐹 (𝑗) = 𝑛∑
𝑖=1

[𝛾 (ℎ𝑖,𝑗) − 𝛾∗ (ℎ𝑖,𝑗)]2 , (12)

where 𝐹(𝑗) is the fitness function value of the 𝑗th variable, ℎ𝑖,𝑗
is the 𝑖th lag of the 𝑗th variable, 𝛾∗(ℎ𝑖,𝑗) is the estimated value
of variogram at position ℎ𝑖,𝑗, and 𝛾(ℎ𝑖,𝑗) is the real value of the
variogram at position ℎ𝑖,𝑗. The disadvantage of this method
is that it considers the contribution of all data to be equal
without considering outliers and specific data points as well
as the specificity of the radio environment parameters.

In practice, because of building occlusion and the effects
of an uneven distribution of sampling nodes, abnormal noise
exists. To overcome this problem, the method proposed in
this paper increases the corresponding weight coefficient of
the fitness function to strengthen or reduce some environ-
mental factors or meet the distribution characteristics of the
variogram. To address the problem of uneven sampling point
distributions of the radio environment parameters, the first

weight coefficient 𝜆1 = 𝑁/𝑁𝑖 is introduced, where 𝑁𝑖 is the
number of sample point pairs that correspond to a certain lag
distance and𝑁 is the total number of sample point pairs.The
second weight addresses the inconsistencies and inaccuracies
in the sampled point data, which is caused by the electro-
magnetic shadowing of buildings and reflections, multipaths,
and radio propagation diffraction. For example, there could
be some abnormally large or unusually small sampled values.
To reduce the impacts of unreasonable sample points on the
fitness function, the weight coefficient is 𝜆2 = 𝛾(ℎ)/𝛾(ℎ𝑖),
where 𝛾(ℎ) is the mean value of the variogram and 𝛾(ℎ𝑖)
is the value of the variogram at lag distance ℎ𝑖. The third
weight is added because point pairs with smaller lag distances
often better reflect the degree of variability of regionalized
variables. To increase the contribution of data point pairs
with small lag distances, the proposed method adds weight
coefficient 𝜆3 = ℎ/ℎ𝑖, where ℎ is the mean value of the lag
distance and ℎ𝑖 is the corresponding lag distance.

The final weight coefficient is the product 𝜆 = 𝜆1 ⋅ 𝜆2 ⋅ 𝜆3.
Then, 𝜆𝑖 can be computed by

𝜆𝑖 = 𝑁𝑁𝑖 ∗ 𝛾 (ℎ)𝛾 (ℎ𝑖) ∗ ℎℎ𝑖 . (13)

Hence, a new fitness function is obtained, expressed as
follows:

𝐹 (𝑗) = 𝑛∑
𝑖=1

𝜆𝑖 [𝛾 (ℎ𝑖,𝑗) − 𝛾∗ (ℎ𝑖,𝑗)]2 . (14)

For the fitness function defined by (14), the PSO algorithm
is used to fit the weighted variogram. In the particle swarm,
the position of the ith particle can be expressed as 𝑥𝑖 = (𝑥𝑖1,𝑥𝑖2, . . . , 𝑥𝑖𝑑), 𝑖 = 1, . . . , 𝑁, where 𝑑 is the dimension of the
solution space and𝑁 is the number of particles.The previous
most optimal position of the 𝑖th particle is denoted as 𝑝best𝑖 =(𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑑) and the optimal position of the swarm is
denoted as 𝑔best = (𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝑑). Each particle has a
moving speed, and the moving speed of the 𝑖th particle is
V𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑑). At each iteration, the particle velocity
and position changes are updated by the following equation:

𝑉𝑘+1𝑖 = 𝑤 ∗ 𝑉𝑘𝑖 + 𝐶1 ∗ rand1 ∗ (𝑝best𝑘𝑖 − 𝑋𝑘𝑖 ) + 𝐶2
∗ rand2 ∗ (𝑔best𝑘 − 𝑋𝑘𝑖 ) ,

𝑋𝑘+1𝑖 = 𝑋𝑘𝑖 + 𝑉𝑘+1𝑖 ,
(15)

where 𝑘 is the number of iterations and C1 and C2 are
learning factors (or acceleration coefficients) that determine
the learning ability of each iteration of the algorithm.

3.4. Radio Environment Map Field Strength Estimation Algo-
rithm. In this paper, an improved Kriging estimation algo-
rithm for radio environment map parameters is proposed
using the new variogram in (6) and the modified theoretical
variogram model in (9) and (11). The algorithm includes the
following main steps: (i) calculating the value of the vari-
ogram by sampling data; (ii) fitting the theoretical variogram
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Step 1(1) Calculate distance matrix𝐷[𝑑𝑖𝑗] and variogram value matrix G[𝑔𝑖𝑗], where 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 and 𝑔𝑖𝑗 = (𝑧𝑖 − 𝑧𝑗)2.(2) lag = min(𝐷), lag max = round (max(𝐷)/2/lag), ℎ = 1 : lag : lag max, LAGS = round (𝐷/lag).(3) Calculate experimental variogram value 𝑅(𝑖),
for 𝑖 = 1 : lag max
h(𝑖) = 𝑖 ∗ lag;
SEL = (LAGS == 𝑖);
N(𝑖) = sum(sum(SEL == 1));
R(𝑖) = sqrt(sum(𝐺(SEL))/(2 ∗ 𝑁(𝑖)));

end for
Step 2
The PSO algorithm is used to fit the theoretical variogram models 𝛾itm and 𝛾itmf using the theoretical variogram models in
Equations (9) and (12),(1) Initialization: the position and velocity of a particle in 𝑑-dimensional problem space is randomly generated.(2) Evaluation of particles: the fitness value of each particle is calculated using Equation (14).(3) Updating 𝑔best: the particle fitness values are compared with the population optimal value 𝑔best, and if the current value is
better than 𝑔best, the position of 𝑔best is set to the current particle position.(4) Updating the particle: the velocities and positions of all particles are updated using Equations (15).(5) Stop condition: return to step (2) for 𝑆max iterations to obtain optimal parameters 𝑎1, 𝑎2, 𝑎3, and 𝑎4. Then, use Equations (9)
and (11) to obtain theoretical variogram models 𝛾itm and 𝛾itmf .
Step 3(1) 𝐾 and 𝜅𝑡 are calculated using the theoretical variogram model.(2) Equation (4) is written in matrix form𝐾𝜆 = 𝜅𝑡 to get 𝜆 = 𝐾−1𝜅𝑡.(3)The estimated value is calculated by Equation (2): 𝑍𝑡∗ = ∑𝑛𝑖=1 𝜆𝑖 ⋅ 𝑍𝑖.

Algorithm 1: Radio environment map field strength estimation.

curve equation using PSO; and (iii) calculating the test weight
parameters using the theoretical variogram curve equation.
The complete process is shown in Algorithm 1. The inputs
of the algorithm are sample point coordinates 𝑥𝑛∗1 and 𝑦𝑛∗1,
sampling value 𝑧𝑛∗1, and coordinates (𝑥𝑡, 𝑦𝑡) of the point 𝑡
to be estimated. The output of the algorithm is the estimated
value 𝑍𝑡∗. In the algorithm, lag is the basic lag distance,
lag max is the maximum multiple of the lag distance, and
matrix vectors 𝐾, 𝜆, and 𝜅𝑡 are expressed, respectively, as
follows:

𝐾 = [[[[[[[

𝛾11 ⋅ ⋅ ⋅ 𝛾1𝑛 1... d
... ...𝛾𝑛1 ⋅ ⋅ ⋅ 𝛾𝑛𝑛 11 ⋅ ⋅ ⋅ 1 0

]]]]]]]
,

𝜆 = [[[[[[[

𝜆1...𝜆𝑛𝜇

]]]]]]]
,

𝜅𝑡 =
[[[[[[[

𝛾1𝑡...𝛾𝑛𝑡1

]]]]]]]
,

(16)

where 𝛾𝑖𝑗 is the value of the variogram between sampling
points 𝑥𝑖 and 𝑥𝑗 and 𝜇 is the Lagrange constant.

4. Experimental Classification
Results and Analysis

In this paper, the proposed algorithm was compared with
three kinds of mainstream algorithms, which are IDW [14–
17, 20, 21, 24], Spline [16, 20, 25], and Kriging [11–21]. We
tested them on two kinds of data sets and analyzed the
performance of the algorithms through a variety of objective
evaluation indexes.

4.1. Objective Evaluation Indexes. Five kinds of objective
evaluation indexes are used to compare and analyze the
estimation results of the various algorithms for the param-
eters of radio environment map, which are the maximum
error (MAX ERR), the average error (AVE ERR), the average
estimation error percentage (PAEE), the relativemean square
error (RMSE), and the root mean square error (RMSPE).

(1) PAEE

PAEE = 1𝑛 × 𝑧̃
𝑛∑
𝑖=1

(𝑍󸀠𝑖 − 𝑍𝑖)2 × 100%, (17)

where 𝑧̃ is the mean value of all the sampling points,𝑍󸀠𝑖 is the
predicted value at the position 𝑖, and𝑍𝑖 is the sample value at
the position 𝑖.
(2) RMSE

RMSE = 1𝑛 × 𝑆2
𝑛∑
𝑖=1

(𝑍󸀠𝑖 − 𝑍𝑖)2 , (18)

where 𝑆2 is the variance of all sample data.
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Figure 1: Data sampling position distribution map.

(3) RMSPE

RMSPE = √ 1𝑛
𝑛∑
𝑖=1

(𝑍󸀠𝑖 − 𝑍𝑖)2. (19)

4.2. Experimental Data. Two sets of data are used to validate
all thesemethods. One is realmeasured level data of FM radio
FM 99.8MHz and the max level data of bands 87–108MHz
and 1800–1900MHz. The measuring terminal is a vehicle
radio monitoring receiver, and the measurement location is
located in Chengdu. The distribution of the sampling points
was shown in Figure 1, and the specific parameters for real
measured data were shown in Table 1. Another is radio
signal simulation data which using the free space propagation
model and the shadow model is a log normal model. The
specific parameters for simulation datawere shown inTable 2.

The real data set contains a total of 256 sampling points,
and the simulation data set contains 1024 level datawith range
of 100 square kilometers. In order to compare and analyze
the estimation results of different algorithms at different
sampling granularities, we used 1/2 and 1/4 of the total data
as the training data and the remaining data as the validation
data. That is, when we used 1/4 data as the training data, the
remaining 3/4 data was the validation test data.

4.3. Analysis of Experiment Results

(1) 99.8MHz Real Sampling Data. This is the comparative
testing on the actual acquisition level data of frequency
99.8MHz. One-half of the data (128 sampling points in total)
is used for training the model, and the remaining 1/2 of the
data is used for testing and verification. The 5 evaluation
results of the five kinds of algorithms are shown in Table 3.

Table 1: Parameters for real measured data.

Measurement area 28Km ∗ 28Km
Radio type FM radio band
Broadcast 99.8MHz, 87–108MHz
Number of sources 1 or𝑁
The average vehicle speed About 80Km/h

Table 2: Parameters for simulation data.

Calculated area 10Km ∗ 10Km
Numbers of points 1024
Carrier frequency 101.7MHz
Path loss model Free space model
Shadow model Log normal model

Table 3: Estimation results of level values for 99.8MHz (1/2 training
data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 19.6973 6.3338 7.9729 0.5122 2.0172
Spline 21.2641 4.2668 5.583 0.2512 0.9893
Kriging 12.7859 3.6714 4.5996 0.1705 0.6714𝛾itm 12.6277 3.6488 4.5090 0.1638 0.6452𝛾itmf 12.5643 3.5610 4.4359 0.1586 0.6244

Table 4: Estimation result of level values for 99.8Mhz (1/4 training
data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 26.2765 6.3642 8.1205 0.5381 2.0736
Spline 57.8689 4.9106 7.7875 0.4949 1.9070
Kriging 16.0234 4.0510 5.1165 0.2136 0.8232𝛾itm 16.7655 4.0749 5.0926 0.2116 0.8155𝛾itmf 15.8968 3.9979 5.0414 0.2070 0.8040

A quarter of the data (64 samples in total) is used to train
the model, and the remaining 3/4 of the data is used for test
validation. The results are shown in Table 4.

In order to reflect the estimation results of various
algorithms directly, all the five kinds of algorithms use the
same 1/4 training data, the results of which are compared
with the same measured data. The comparisons of various
algorithms were shown in Figure 2.

In the 1/2 data for training, there are 128 sampling points
in the range of about 784 square kilometers. A sampling point
covers an average of about 6 square kilometers. As could
be seen from Table 3, the results of the prediction of our
two methods and the Kriging method are relatively close,
and the worst method is the IDW. For Spline and IDW, the
former is significantly better than the latter on all indexes
except the maximum error.The 𝛾itmf method of our methods
has achieved the best results on all the evaluation indexes.
Compared with other methods, our methods have obvious
advantages both in prediction accuracy and in prediction
stability. The best average estimation error of our algorithms
was 3.561Db. According to the research results of [6], it
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Figure 2: Estimation result of level values of 99.8 MHz (1/4 training data).

shows that our methods are very competitive. While in the
1/4 data for training, a sampling point covers about 12 square
kilometers. From the results in Table 4, the methods based
on Kriging system have better prediction and estimation
effects. In particular, the prediction errors of Kriging based
methods are all about 4Db, indicating the effectiveness of
these methods. Compared with the 1/2 training data, the
increase of maximum error is more obvious. The second
experiment showed that 𝛾itmf still has the best prediction
results in all algorithms. As could be seen from Figure 2,
although the IDW had obvious smoothing effect reflecting
the overall trend of the data distribution, the prediction
accuracy is the lowest and the estimation errors are very large
in the ranges of 40–60 and 160–180. The prediction of Spline
has two obvious outlier points, which indicated that the
algorithm is sensitive to noise data. Compared with Kriging
based methods, our methods yield significant improvements
in the range of 140–180.

Table 5: Estimation results of max level values for 87–108MHz (1/2
training data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 12.2333 3.3063 4.3205 0.6093 0.2982
Spline 12.3468 2.9376 3.8746 0.4900 0.2398
Kriging 11.8977 2.6554 3.4731 0.3937 0.1927𝛾itm 10.8254 2.5374 3.2675 0.3485 0.1706𝛾itmf 10.8099 2.5368 3.2658 0.3481 0.1704

(2) 87–108MHz Maximum Level of Real Sampling Data.
This is a comparative testing on the actual acquisition max
level data of band 87–108MHz. One-half of the data (128
sampling points in total) was used for training the model,
and the remaining was used for testing and verification. The
5 evaluation results of the five kinds of algorithms are shown
in Table 5.
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Figure 3: Estimation results of max level values of 87–108MHz (1/4 training data).

A quarter of the data (64 samples in total) is used to train
the model, and the remaining 3/4 of the data is used for test
validation. The results are shown in Table 6.

In order to reflect the estimation results of various
algorithms directly, all the five kinds of algorithms use the
same 1/4 training data, the results of which are compared
with the same measured data. The comparisons of various
algorithms are shown in Figure 3.

Themaximum signal strength in the frequency band is an
important parameter of the radio environment map. In the
large scale space, many signal sources constitute the spatial
distribution of the maximum signal strength, so it is difficult
to make estimation by using the radio propagation model.

Table 6: Estimation results of max level values for 87–108MHz (1/4
training data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 16.3241 3.3529 4.4390 0.6374 0.3152
Spline 24.8394 3.1712 4.3034 0.5990 0.2962
Kriging 12.6690 2.7459 3.4564 0.3864 0.1911𝛾itm 10.2437 2.6877 3.4220 0.3788 0.1873𝛾itmf 11.2699 2.6453 3.3709 0.3675 0.1817

The spatial interpolation method is more advantageous. The
experimental results of 1/2 training data are shown in Table 5.
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Table 7: Estimation results of max level values for 1800–1900MHz
(1/2 training data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 22.4790 5.6729 7.5337 0.6532 1.3643
Spline 18.7473 4.9472 6.6059 0.5022 1.0489
Kriging 17.2293 4.7758 6.3212 0.4598 0.9605𝛾itm 18.2057 4.6203 6.1744 0.4387 0.9164𝛾itmf 18.3114 4.6199 6.1344 0.4331 0.9046

Table 8: Estimation results of max level values for 1800–1900MHz
(1/4 training data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 28.2658 5.9683 7.9227 0.7184 1.5180
Spline 30.1425 6.7523 9.0084 0.9287 1.9626
Kriging 28.8990 6.2277 8.2594 0.7807 1.6498𝛾itm 24.1963 5.5533 7.2744 0.6056 1.2797𝛾itmf 23.9539 5.4968 7.2053 0.5942 1.2555

As could be seen from the table, all themethods have got good
results. Surprisingly, compared to the radiation estimation
of single source in experiments (1), the estimation of the
maximum signal strength had a better accuracy, which was
about 10Db. Furthermore, for the average prediction error,
the results of our methods are close to 2.6Db. Similarly,
for all the evaluation indexes, the proposed method 𝛾itmf
achieves the best results, and our method increases about
10% compared to the Kriging. For the estimation of the
maximum signal strength in frequency band, the prediction
accuracy is not significantly reduced with the training data
reduction (seen from Table 6). For the maximum error, the𝛾itm algorithm gets the best result, and the 𝛾itmf algorithm
achieves the best result on the rest of indexes. The Spline
and IDW have a large maximum error. As could be seen
from Figure 3, the Spline exhibits a significant error, which
is consistent with the previous conclusion that the method
has a weak ability to overcome noise. The proposed methods
have the best prediction and estimation effect.

(3) 1800–1900MHz Maximum Level of Real Sampling Data.
This is a comparative testing on the actual acquisition max
level data of band 1800–1900MHz. One-half of the data (128
sampling points in total) is used for training the model,
and the remaining is used for testing and verification. The 5
evaluation results of the five kinds of algorithms are shown in
Table 7.

A quarter of the data (64 samples in total) is used to train
the model, and the remaining 3/4 of the data is used for test
validation. The results are shown in Table 8.

Same as the above, all the five kinds of algorithms use the
same 1/4 training data, and the remaining data as the same
measured data. The comparisons of various algorithms are
shown in Figure 4.

Themain services in the 1800–1900MHz band aremobile
communications, of which band has more complex electro-
magnetic environment, and the estimation of the parameters

Table 9: Estimation results of level values for 101.7MHz (1/2 training
data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 26.6984 3.4255 4.4763 0.6184 0.3720
Spline 15.5874 3.0751 3.9084 0.4715 0.2836
Kriging 12.1004 2.7197 3.3944 0.3556 0.2139𝛾itm 12.8846 2.5712 3.2100 0.3180 0.1913𝛾itmf 13.5290 2.5613 3.1978 0.3156 0.1899

Table 10: Estimation results of level values for 101.7MHz (1/4
training data).

MAX ERR AVE ERR RMSPE RMSE PAEE
IDW 26.6254 3.3326 4.4070 0.6072 0.3603
Spline 23.1643 3.6385 4.9289 0.7596 0.4507
Kriging 11.0104 2.8034 3.5230 0.3881 0.2303𝛾itm 11.5091 2.7089 3.3900 0.3593 0.2132𝛾itmf 13.4562 2.6326 3.2835 0.3371 0.2000

of this band is more difficult. The experimental results of
1/2 training data are shown in Table 7. As could be seen
from the table, all the methods have good results. The
method Kriging has the best performance for MAX ERR
index. For the remaining evaluation indexes, our method𝛾itmf obtained the best results. In general, the results of the
three methods of Kriging, 𝛾itm, and 𝛾itmf are relatively close,
and the improved methods based on propagation model
are superior to the traditional Kriging method. When the
training set is reduced by half, the performance of allmethods
is significantly reduced (seen from Table 8). Among them,
the predication performance of the Kriging based methods
is reduced by nearly 20%. This is because the power of the
mobile communication station is small, and the transmission
distance is close, which causes the correlation between the
sparse sampling points to be weak. However, in this case, our
approach is significantly better than the traditional Kriging
based approach, with all the indicators increasing by nearly
15%. It is worth mentioning that the IDW algorithm also
obtains good results, indicating that the algorithm has good
stability. As could be seen from Figure 4, the data set is
difficult to predict, and in some individual positions, all
methods have large errors. But the proposed methods have
the best prediction and estimation effect, especially in the
vicinity of the test point numbered 140, and the proposed
methods are significantly better than the results of theKriging
method.

(4) 101.7MHz Simulation Data. This was a comparative
testing on the actual acquisition level data of frequency
101.7MHz. One-half of the data (512 sampling points in total)
is used for training the model and the remaining is used for
testing and verification. The 5 evaluation results of the five
kinds of algorithm are shown in Table 9.

A quarter of the data (256 samples in total) is used to train
the model, and the remaining (768 testing points) is used for
testing and validation. The results are shown in Table 10.



10 Wireless Communications and Mobile Computing

IDW results
Measurement results

Spline results
Measurement results

Kriging results
Measurement results

itm results
Measurement results

itmf results
Measurement results

itmf (1800–1900 Mhz)

itm (1800–1900 Mhz)Kriging (1800–1900 Mhz)

IDW (1800–1900 Mhz) Spline (1800–1900 Mhz)

0

10

20

30

40

50

60
Le

ve
ls

20 40 60 80 100 120 140 160 180 2000
Test points

0

10

20

30

40

50

60

Le
ve

ls

20 40 60 80 100 120 140 160 180 2000
Test points

20 40 60 80 100 120 140 160 180 2000
Test points

0

10

20

30

40

50

60

Le
ve

ls

20 40 60 80 100 120 140 160 180 2000
Test points

0
10
20
30
40
50
60
70

Le
ve

ls

0

10

20

30

40

50

60

Le
ve

ls

20 40 60 80 100 120 140 160 180 2000
Test points

Figure 4: Estimation results of max level values of 1800–1900MHz (1/4 training data).

In order to reflect the estimation results of various
algorithms directly, all the five kinds of algorithms use the
same 1/4 training data, the results of which are compared
with the same measured data. The comparisons of various
algorithms are shown in Figure 5.

We use 1/2 the simulation data for training model in our
experiment, and each sampling point covers about 0.5 square
kilometers. As can be seen from Table 9, the IDW has a
very highmaximumprediction error, and theKriging obtains
the best maximum error evaluation, while for the rest of the
evaluation indexes, the 𝛾itmf is about 10% higher than the

Kriging and about 20% higher than Spline and IDW. As can
be seen from Table 10, the Kriging yields the best maximum
error valuation, while, for the rest of the evaluation indexes,
the 𝛾itmf method obtains the best results. In 1/4 training data
situation, the predictive performance of Spline declines more
severely. As can be seen from Figure 5, IDW has a significant
prediction error, while methods based on Kriging system
have better prediction accuracy. In all compared methods,
the proposed methods based on propagation model have
achieved the highest accuracy. Because of the introduction
of the shadow model, it is difficult to have a high prediction
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Figure 5: Estimation results of level values of 101.7MHz (1/4 training data).

and estimation on the simulated data. It can be seen that the
prediction accuracy of the simulation data is equivalent to
that of the maximum signal strength of the frequency band.

5. Conclusion

In this paper, we proposed a spatial distribution prediction
method for radio environment map parameters. It was
shown that the IDW, Spline, and Kriging methods are the
most effective methods to solve this problem, and, of these,
Kriging is the best method. The main parameters of the
radio environment map are the signal strength and other
parameters are affected by it. In this study, based on the

Kriging approach, the definition of a variogramwas improved
based on the loss characteristics of radio propagation. A new
variogram theoretical model was proposed in combination
with a radio propagation model. Based on the characteristics
of data sampling and signal propagation, a new weighted
fitting method for variograms was also proposed. The new
method is more suitable for the actual characteristics of
radio environment map parameter prediction. Moreover, the
proposed model is better adapted to the spatial correlation
of radio environment parameters and has better prediction
accuracy. Experiments on the signal strength data of a
single frequency and the maximum signal strength data of a
frequency band and simulation data prove these conclusions.
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The evaluation indexes of our method are improved by about
10% on average compared with those of the conventional
Kriging method.

Radio signal propagation in space is a complex pro-
cess. There are some intractable problems such as building
shadows, same-frequency adjacent channel interference, and
multipath propagation.Therefore, to obtain better prediction
accuracy, the terrain and station information to the model
will be taken into consideration in our future research.
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