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As an effective way of decreasing production cost, remanufacturing has attracted more and more attention from firms. However,
it also brings many difficulties to firms, especial when firms remanufacture products which they produce. A primary problem for
the case is how to acquire the used product sold by the firm itself. In this paper, we consider a return compensation policy for
acquiring used product from customers. Under this policy, the return quantity of used product is a proportion of demand. We
study an inventory replenishment and production planning problem for a two-period inventory system with dependent return and
demand. We formulate the problem into a three-stage stochastic programming problem, where the firm needs to make decisions
on the replenishment quantity of new raw material inventory in each period and the production quantities of manufacturing and
remanufacturingways.We give the optimal production policy ofmanufacturing and remanufacturingways for the realized demand
and prove the objective function for each stage to be concave in the inventory replenishment quantity. Moreover, we prove that the
basic inventory policy is still optimal for each period and give the analytical conditions of the optimal inventory levels which are
unrelated to acquisition price. Finally, we investigate numerical studies to analyze managerial insights.

1. Introduction

With the development of global market competition, man-
ufacturers constantly launch new products to substitute old
products rapidly, which bring more and more end-of-use
products into our life. Under the pressures of environmental
protection and profit incentive, firms pay more and more
attention to closed-loop supply chain (CLSC) management.
Besides for the traditional production and selling process,
CLSC also includes the process of taking back used products
from customers, recovering their added value, and making
recovered products reenter into the production system. In a
closed-loop supply chain system, the decision-maker needs
to consider more factors and decisions, and there are more
uncertainties, for example, the uncertainties of used product
returns on quantity, quality, and time, so managing closed-
loop supply chain is more difficult than only managing
forward supply chain or reverse supply chain, even though
a large number of firms still join the ranks of operating
closed-loop supply chain as profit or cost factor. However,
the difficulty also cannot be ignored.Therefore, how should a

firm operate closed-loop supply chain system to create more
profits is important when the firm faces more factors and
uncertainties in closed-loop supply chain system.

Remanufacturing is an important way of reusing used
product, which can recover the function of used product but
need not to change the original structure of the product.
It is a low cost and high efficiency reusing way. However,
remanufacturing also requests the firm to be more famil-
iar with the production technology of the used product;
otherwise, the firm will suffer a very high cost. Therefore,
remanufacturing a product produced by the firm itself is
more effective and profitable. The most primary problem
when a firm remanufactures its products is how to acquire
used product effectively. Pricing strategies have been adopted
in many industries and are effective for controlling customer
demand. Therefore, it may also be an effective method for
controlling the return of used products. In this paper, we
consider a policy of acquiring used product, where the firm
pays a return compensation for the customers who return
used products. It is obvious the customers will be stimulated
to return their used products.
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Under the return compensation policy, the random
return depends on the random demand and it is influenced
by the acquisition price of used products, and we consider an
inventory replenishment and production planning problem
in a two-period setting, where the firm’s marketable products
can be replenished by manufacturing way using new raw
materials and remanufacturing way using used products.
The firm needs to determine the inventory replenishment
quantity of new rawmaterial in each period, and the produc-
tion quantities of manufacturing way and remanufacturing
way. We formulate the problem into three-stage stochastic
dynamic programming model and give all optimal decisions.

Our problem belongs to production planning and inven-
tory control. However, most researchers assume that the
return process is independent of the demand process, such
as Fleischmann [1], Fleischmann and Kuik [2], Kiesmüller
[3], Inderfurth [4], DeCroix and Zipkin [5], DeCroix [6], and
Zhou et al. [7, 8]. Fleischmann et al. [9], andDekker et al. [10]
provide comprehensive reviews of production planning and
inventory control.

Few papers consider the case that the return process is
dependent on the demand process, except for the following
research. Kiesmuller and van der Laan [11] investigated
an inventory model for a single reusable product, where
the random return depends on the demand based on the
assumption that the selling quantity is approximately equal
to the demand. The results show that it is necessary to
consider the dependence between the demand process and
the return process. Dobos and Richter [12] investigated a
production/recycling system where customer demand and
return rates are deterministic and stationary. They consider
the EOQ environment with recovery and define return rate
as a fraction of the constant demand rate. Atamer et al. [13]
study an optimal pricing and production decision problem
in utilizing reusable containers. They assume the return is a
proportion of the demand under a single selling season.

Our work is mostly related to Atamer et al. [13], but
they only considered a single-period setting. We consider
a two-period setting, and another main difference from
their research is that we consider a stochastic inventory
problem, where the firm needs to make decisions on the
replenishment quantities in each period and production
decisions on remanufacturing andmanufacturing.Moreover,
we prove the existence of optimal inventory policy in each
period and give the optimal policy structure.

The rest of this paper is organized as follows. In
Section 2, we give the problem description and formulation.
In Section 3, we provide the optimal analysis of themodel and
give the optimal policies. Numerical examples are provided in
Section 4. Finally, we conclude our paper in Section 5.

2. Problem Description and Formulation

For a firmwith manufacturing and remanufacturing produc-
tionway, itsmarketable product inventory can be replenished
by manufacturing way and remanufacturing way, and the
products from different ways are homogeneous for the
end customers, so we can assume that the selling prices

Period 1 Period 2

Demand realized
Demand realizedOrder urgently

Meet demands
Meet demands

Return

Decision: 𝑄1
Calculate: 𝐼1

Decision: 𝑄2

Decisions: 𝑞𝑀, 𝑞𝑅

Figure 1: System event sequence.

of products from different ways are the same. Generally,
the production cost of remanufacturing way is less than
manufacturing way, and the firm has a motivation to collect
used product actively. For acquiring more used products
more effectively, the firm offers a return compensation for
the customers who return used products.We name the return
compensation as acquisition price, denoted by 𝑝

𝑅
.

The demand in period 𝑖 for the marketable products
is random, denoted by 𝐷

𝑖
, 𝑖 = 1, 2. Under the return

compensation policy, the return quantity of used products is
related to the selling quantity. As only part of the customers
return their used products, we assume it to be a proportion
of selling quantity, and the proportion is affected by the
acquisition price 𝑝

𝑅
and is the increasing function in 𝑝

𝑅
,

denoted by 𝜃(𝑝
𝑅
).

We consider a two-period production decision and
inventory control problem in a production-to-order sys-
tem. In each period, the firm needs to make decisions on
the replenishment quantity of new raw material inventory
before realizing the demand and determines the production
quantities of manufacturing and remanufacturing way after
realizing the demand.

The sequence of system events is as follows. At the
beginning of the first period, the firm replenishes new raw
material inventory. Next, the demand is realized. If the raw
material is enough, the firm manufactures products to meet
the demand by its raw inventory; otherwise, the firm will
urgently order the shortage by a higher cost. At the end
of the period, customers return their used products. In the
second period, based on new raw material inventory and the
returned used products in the first period, the firm needs to
make decision on the replenishment quantity of rawmaterial
inventory before realizing the demand. After realizing the
demand, the firm needs to determine the production quan-
tities of manufacturing and remanufacturing way. Here, we
assume that the returned products in current period will be
remanufactured in the next period. Therefore, the firm does
not need to collect used products in the second period. We
give the figure of event sequence in Figure 1.

The research aim of this paper is to determine the optimal
replenishment quantity of new raw material inventory in
each and the production quantities of manufacturing and
remanufacturing way so as the expectation of firm’s profit can
be maximized.

Notation definitions:

𝑝
𝑠
= Selling price of marketable product
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𝐶 = Replenishment cost for the raw material of manufac-
turing per unit product

𝑐
𝑀

= Manufacturing cost of per unit product

𝑐
𝐸
= Urgent order cost of per unit shortage

𝑐
𝑅
= Remanufacturing cost of per unit returned product

𝑝
𝑅
= Acquisition price of per unit used product

𝑠
𝑀

= Salvage value of the material of manufacturing per
unit product

𝑠
𝑅
= Salvage value of per unit returned product

ℎ = Inventory holding cost of per unitmarketable product

𝑄
𝑖
= Replenishment quantity of raw material inventory of
period 𝑖, 𝑖 = 1, 2

𝑞
𝑀

= Assigned quantity for manufacturing way after
demand of period 𝑖 is realized

𝑞
𝑅
= Assigned quantity for remanufacturing way after
demand of period 𝑖 is realized

𝐷
𝑖
= Demand of period 𝑖, 𝑖 = 1, 2

𝜃(𝑝
𝑅
) = Proportion of returning used products in the demand,

and is an increasing function in 𝑝
𝑅

𝐼
𝑖
= Initial inventory level of period 𝑖 for raw material
inventory, 𝑖 = 1, 2.

From the sequence of system events, we know the
returned quantity of used products at the end of the
first period can be denoted by 𝜃(𝑝

𝑅
)𝐷
1
. For parameters

𝑐
𝑀
, 𝑐
𝑅
, 𝑠
𝑀
, 𝑠
𝑅
, we assume 𝑐

𝑀
≥ 𝑐
𝑅
and 𝑠

𝑀
≥ 𝑠
𝑅
, which

mean the production cost of remanufacturing way is less than
manufacturing way and the salvage value of per unit used
products is less than new raw material of producing per unit
new product.

Given the acquisition price 𝑝
𝑅
, the replenishment quan-

tity of raw material inventory 𝑄
𝑖
, 𝑖 = 1, 2, and the initial

inventory level 𝐼
𝑖
, the expectation of the revenue in the first

period is as follows:

𝜋
1
(𝐼
1
, 𝑄
1
) = − 𝐶𝑄

1
+ 𝑝
𝑠
𝐸 [𝐷
1
] − 𝑐
𝑀
𝐸 [𝐷
1
]

− ℎ𝐸(𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
− 𝐶
𝐸
(𝐷
1
− 𝑄
1
− 𝐼
1
)
+

− 𝑝
𝑅
𝐸 [𝜃 (𝑝

𝑅
)𝐷
1
] .

(1)

In (1), the first term is the replenishment cost for new raw
material inventory, the second term is the selling income, the
third term is the manufacturing cost, the fourth term is the
inventory holding cost, the fifth is the urgent order cost, and
the last term is the acquisition cost for used products. The
expectation of the revenue in the second period is

𝜋
2
(𝐼
2
, 𝑄
2
) = −𝐶𝑄

2
+ 𝐸
𝐷
2

[max𝜋 (𝑞
𝑀
, 𝑞
𝑅
)] . (2)

In (2), the first term is the replenishment cost for rawmaterial
inventory, and the second term is as follows:

max𝜋 (𝑞
𝑀
, 𝑞
𝑅
) = 𝑝
𝑠
(𝑞
𝑀

+ 𝑞
𝑅
) − 𝑐
𝑀
𝑞
𝑀

− 𝑐
𝑅
𝑞
𝑅

+ 𝑠
𝑀

(𝐼
2
+ 𝑄
2
− 𝑞
𝑀
)

+ 𝑠
𝑅
(𝜃 (𝑝
𝑅
)𝐷
1
− 𝑞
𝑅
)

s.t.
{{{

{{{

{

𝑞
𝑀

≤ 𝐼
2
+ 𝑄
2

𝑞
𝑅
≤ 𝜃 (𝑝

𝑅
)𝐷
1

𝑞
𝑀

+ 𝑞
𝑅
≤ 𝐷
2

𝑞
𝑀
, 𝑞
𝑅
≥ 0.

(3)

In (3), the first term is the selling income, and the second
term is the manufacturing cost and the third term is the
remanufacturing cost, and the fourth term is the salvage value
for surplus rawmaterial and the fifth term is the salvage value
for surplus used products.

LetΠ(𝐼
1
, 𝑝
𝑅
) denote system optimal expected revenue for

given the initial inventory level 𝐼
1
and the acquisition price

𝑝
𝑅
. Therefore, our aim is to find the optimal replenishment

quantities 𝑄∗
𝑖
, 𝑖 = 1, 2 and the optimal production quantities

(𝑞
∗

𝑀
, 𝑞
∗

𝑅
) so that

Π(𝐼
1
, 𝑝
𝑅
) = max
𝑄
1
,𝑄
2
≥0

{𝜋
1
(𝐼
1
, 𝑄
1
) + 𝐸 [𝜋

2
(𝐼
2
, 𝑄
2
)]}

subject to 𝐼
2
= (𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
.

(4)

The above optimization model in (4) can be resolved
by dynamic programming. In the following, we make the
optimal analysis for the optimization model in (4).

3. Optimal Analysis for Optimization Model

By dynamic programming, we need first to solve the opti-
mization problem in (3); for convenience, we name the
problem as optimal assigning problem. Then we need to
optimize the function in (2), and finally obtain the optimal
system expectation revenue.

3.1. Optimal Decisions on Optimal Assigning Problem. When
we make decisions on optimal manufacturing and remanu-
facturing quantities in the second period both demands and
returns are realized, so we have the following proposition.

Proposition 1. Given the realized demand and return in the
second period, the optimal production decisions 𝑞∗

𝑀
and 𝑞
∗

𝑅
are

as follows:

𝑞
∗

𝑀
= min {(𝐷

2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
, 𝐼
2
+ 𝑄
2
} ,

𝑞
∗

𝑅
= min {𝜃 (𝑝

𝑅
)𝐷
1
, 𝐷
2
} .

(5)

Proof. The optimal production decision problem in (3) is a
linear programming problem. Because 𝑐

𝑀
≥ 𝑐
𝑅
and 𝑠
𝑀

≥ 𝑠
𝑅
,

that is, 𝑐
𝑀

+ 𝑠
𝑀

≥ 𝑐
𝑅
+ 𝑠
𝑅
, we have 𝑝

𝑠
− 𝑐
𝑀

− 𝑠
𝑀

≤ 𝑝
𝑠
−

𝑐
𝑅
− 𝑠
𝑅
. It is obvious that the optimal solution should make
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the remanufacturing quantity increase as possible. So when
𝜃(𝑝
𝑅
)𝐷
1
≤ 𝐷
2
, we have

𝑞
∗

𝑅
= 𝜃 (𝑝

𝑅
)𝐷
1
,

𝑞
∗

𝑀
= min {𝐷

2
− 𝜃 (𝑝

𝑅
)𝐷
1
, 𝐼
2
+ 𝑄
2
} .

(6)

And when 𝜃(𝑝
𝑅
)𝐷
1
> 𝐷
2
, we have

𝑞
∗

𝑅
= 𝐷
2
, 𝑞

∗

𝑀
= 0. (7)

Therefore, 𝑞∗
𝑀

= min{(𝐷
2
− 𝜃(𝑝

𝑅
)𝐷
1
)
+
, 𝐼
2
+ 𝑄
2
} and 𝑞

∗

𝑅
=

min{𝜃(𝑝
𝑅
)𝐷
1
, 𝐷
2
}.

Proposition 1 shows that the optimal production rule in
the second period is to satisfy the demand by remanufactur-
ingway as possible, onlywhen the demand cannot be satisfied
completely by remanufacturing way, the manufacturing way
is considered.

3.2.Optimal ReplenishmentDecision in the SecondPeriod. Let
𝑦
2
= 𝐼
2
+ 𝑄
2
, it denotes the inventory level after replenishing

the raw material inventory. And from Proposition 1, we can
rewrite (2) as follows:

𝜋
2
(𝐼
2
, 𝑦
2
) = − 𝐶 (𝑦

2
− 𝐼
2
) + (𝑝

𝑠
− 𝑐
𝑀

− 𝑠
𝑀
)

× 𝐸 [min {(𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
, 𝑦
2
}]

+ (𝑝
𝑠
− 𝑐
𝑅
− 𝑠
𝑅
) 𝐸 [min {𝜃 (𝑝

𝑅
)𝐷
1
, 𝐷
2
}]

+ 𝑠
𝑀
𝑦
2
+ 𝑠
𝑅
𝐸 [𝜃 (𝑝

𝑅
)𝐷
1
] .

(8)

Theorem 2. For 𝜋
2
(𝐼
2
, 𝑦
2
) in (8), there are the following.

(a) 𝜋
2
(𝐼
2
, 𝑦
2
) is jointly concave in 𝐼

2
and 𝑦

2
.

(b) The equation 𝜕𝜋
2
(𝐼
2
, 𝑦
2
)/𝜕𝑦
2
= 0 has unique solution.

Proof. It is obvious that 𝐸[min{(𝐷
2

− 𝜃(𝑝
𝑅
)𝐷
1
)
+
, 𝑦
2
}] is

concave in 𝑦
2
, and other parts in (8) are linear in 𝐼

2
and 𝑦

2
.

Therefore, 𝜋
2
(𝐼
2
, 𝑦
2
) is jointly concave in 𝐼

2
and 𝑦

2
.

The first-order derivative of 𝜋
2
(𝐼
2
, 𝑦
2
) about 𝑦

2
is

𝜕𝜋
2
(𝐼
2
, 𝑦
2
)

𝜕𝑦
2

= − 𝐶 + 𝑠
𝑀

+ (𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀
)

× Pr {(𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
≥ 𝑦
2
} .

(9)

Because𝑝
𝑠
−𝑐
𝑀
−𝑠
𝑀
−(𝐶−𝑠

𝑀
) = 𝑝
𝑠
−𝑐
𝑀
−𝐶 > 0 and𝐶−𝑠

𝑀
> 0,

theremust exist a certain𝑦
2
satisfying the following equation:

Pr {(𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
≥ 𝑦
2
} =

𝐶 − 𝑠
𝑀

𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀

. (10)

Therefore, 𝜕𝜋
2
(𝐼
2
, 𝑦
2
)/𝜕𝑦
2
= 0must exist.

Theorem 2 shows that the optimal inventory level must
exist and can be solved by 𝜕𝜋

2
(𝐼
2
, 𝑦
2
)/𝜕𝑦
2
= 0. The optimal

decision rule is given in the following proposition.

Proposition 3. Given inventory level 𝐼
2
, the optimal replenish-

ment decision in the second period is as follows:

𝑄
∗

2
= {

𝑆
2
− 𝐼
2
− 𝜃 (𝑝

𝑅
)𝐷
1

𝐼
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
< S
2

0 𝐼
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
≥ S
2
,

(11)

where 𝑆
2
satisfies

Pr{𝐷
2
≥ 𝑆
2
} =

𝐶 − 𝑠
𝑀

𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀

. (12)

Proof. We know that

Pr {(𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
≥ 𝑦
2
}

= Pr {𝐷
2
≥ 𝜃 (𝑝

𝑅
)𝐷
1
, 𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
≥ 𝑦
2
}

= Pr {𝐷
2
≥ 𝜃 (𝑝

𝑅
)𝐷
1
, 𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
≥ 𝑦
2
}

= Pr {𝐷
2
≥ 𝑦
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
} .

(13)

Let 𝑧
2
= 𝜃(𝑝

𝑅
)𝐷
1
+ 𝑦
2
; it can denote the whole inventory

after the new raw material inventory is replenished, where
the whole inventory includes new rawmaterial inventory and
used product inventory. Therefore, 𝑆

2
of satisfying Pr{𝐷

2
≥

𝑧
2
} = (𝐶 − 𝑠

𝑀
)/(𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀
) also must satisfy Pr{(𝐷

2
−

𝜃(𝑝
𝑅
)𝐷
1
)
+

≥ 𝑦
2
} = (𝐶 − 𝑠

𝑀
)/(𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀
), where 𝑦

2
=

𝑆
2
− 𝜃(𝑝
𝑅
)𝐷
1
.

In the following, we consider two cases.
Case 1.When 𝐼

2
+ 𝜃(𝑝
𝑅
)𝐷
1
< 𝑆
2
, from Part (a) inTheorem 2,

for any 𝑄
2
satisfying 𝐼

2
+ 𝑄
2
+ 𝜃(𝑝
𝑅
)𝐷
1
≤ 𝑆
2
, we have

𝜕𝜋
2
(𝐼
2
, 𝐼
2
+ 𝑄
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
)

𝜕𝑦
2

≥
𝜕𝜋
2
(𝐼
2
, 𝑆
2
)

𝜕𝑦
2

= 0. (14)

And for any 𝑄
2
satisfying 𝐼

2
+ 𝑄
2
+ 𝜃(𝑝
𝑅
)𝐷
1
> 𝑆
2
,

𝜕𝜋
2
(𝐼
2
, 𝐼
2
+ 𝑄
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
)

𝜕𝑦
2

<
𝜕𝜋
2
(𝐼
2
, 𝑆
2
)

𝜕𝑦
2

= 0. (15)

So 𝑄
∗

2
should satisfy 𝐼

2
+ 𝜃(𝑝

𝑅
)𝐷
1
+ 𝑄
∗

2
= 𝑆
2
, that is, 𝑄∗

2
=

𝑆
2
− 𝐼
2
− 𝜃(𝑝
𝑅
)𝐷
1
.

Case 2.When 𝐼
2
+ 𝜃(𝑝
𝑅
)𝐷
1
≥ 𝑆
2
, for any 𝑄

2
≥ 0, we have

𝜕𝜋
2
(𝐼
2
, 𝐼
2
+ 𝑄
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
)

𝜕𝑦
2

≤
𝜕𝜋
2
(𝐼
2
, 𝐼
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
)

𝜕𝑦
2

≤
𝜕𝜋
2
(𝐼
2
, 𝑆
2
)

𝜕𝑦
2

= 0

(16)

so 𝑄
∗

2
= 0.

In summary,

𝑄
∗

2
= {

𝑆
2
− 𝐼
2
− 𝜃 (𝑝

𝑅
)𝐷
1

𝐼
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
< 𝑆
2
,

0 𝐼
2
+ 𝜃 (𝑝

𝑅
)𝐷
1
≥ 𝑆
2
.

(17)

Proposition 3 holds.

Proposition 3 shows that the basic inventory policy is
still optimal. We call 𝑆

2
as the optimal inventory level in the

second period. It is obvious that it is unrelated to acquisition
price.
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3.3. Optimal Replenishment Decision in the First Period. For
the convenience of description, we define

Π
2
(𝐼
2
) = max
𝑦
2
≥𝐼
2

{−𝐶𝑦
2
+ (𝑝
𝑠
− 𝑐
𝑀

− 𝑠
𝑀
)

× 𝐸 [min {(𝐷
2
− 𝜃 (𝑝

𝑅
)𝐷
1
)
+
, 𝑦
2
}]

+ (𝑝
𝑠
− 𝑐
𝑅
− 𝑠
𝑅
) × 𝐸 [min {𝜃 (𝑝

𝑅
)𝐷
1
, 𝐷
2
}]

+ 𝑠
𝑀
𝑦
2
+ 𝑠
𝑅
𝜃 (𝑝
𝑅
)𝐷
1
} .

(18)

From (8), we know that

Π
2
(𝐼
2
) = max
𝑦
2
≥𝐼
2

{𝜋
2
(𝐼
2
, 𝑦
2
) − 𝐶𝐼

2
} , (19)

or Π
2
(𝐼
2
) + 𝐶𝐼

2
= max

𝑦
2
≥𝐼
2

{𝜋
2
(𝐼
2
, 𝑦
2
)}.

From dynamic programming, we have

Π(𝐼
1
, 𝑝
𝑅
, 𝑄
1
) = max
𝑄
1
≥0

{𝜋
1
(𝐼
1
, 𝑄
1
)

+ 𝐸 [Π
2
((𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
)

+ 𝐶(𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
]} .

(20)

For analyzing the property of Π(𝐼
1
, 𝑝
𝑅
, 𝑄
1
), we give the

following lemma.

Lemma 4. (a) If 𝑓(𝑥, 𝑦) is jointly concave in 𝑥 and 𝑦 and 𝐶 is
a convex set on 𝑅

2, then 𝑔(𝑥) = max
𝑦∈𝐶

𝑓(𝑥, 𝑦) is also concave
in 𝑥.

(b) If ℎ(𝑥) is concave and nonincreasing and𝑓(𝑥) is convex,
then 𝑔(𝑥) = ℎ(𝑓(𝑥)) is also concave.

Proof. For the proof of (a) and (b), please see Pages 84 and 81
in Boyd and Vandenberghe [14].

Let 𝐻(𝐼
1
, 𝑄
1
) denote the objective function of (20), that

is,

𝐻(𝐼
1
, 𝑄
1
)

= 𝜋
1
(𝐼
1
, 𝑄
1
) + 𝐸 [Π

2
((𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
)

+ 𝐶(𝐼
1
+ 𝑄
1
− 𝐷
1
)
+
] .

(21)

Let 𝑦
1
= 𝐼
1
+ 𝑄
1
, it denotes the inventory level after the raw

material inventory is replenished. And from (1), we have

𝐻(𝐼
1
, 𝑦
1
) = − 𝐶 (𝑦

1
− 𝐼
1
)

+ 𝐸 [ (𝑝
𝑠
− 𝑐
𝑀

− 𝑝
𝑅
𝜃 (𝑝
𝑅
))𝐷
1

− ℎ(𝑦
1
− 𝐷
1
)
+
− 𝐶
𝐸
(𝐷
1
− 𝑦
1
)
+
]

+ 𝐸 [Π
2
((𝑦
1
− 𝐷
1
)
+
) + 𝐶(𝑦

1
− 𝐷
1
)
+
] .

(22)

Theorem 5. 𝐻(𝐼
1
, 𝑦
1
) in (22) is concave in 𝑦

1
.

Proof. We divide 𝐻(𝐼
1
, 𝑦
1
) into two parts 𝑊

1
(𝐼
1
, 𝑦
1
) and

𝑊
2
(𝐼
1
, 𝑦
1
), where

𝑊
1
(𝐼
1
, 𝑦
1
) = (𝑝

𝑠
− 𝑐
𝑀

− 𝑝
𝑅
𝜃 (𝑝
𝑅
)) 𝐸 [𝐷

1
]

− ℎ𝐸 [(𝑦
1
− 𝐷
1
)
+
] − 𝐶
𝐸
𝐸 [(𝐷

1
− 𝑦
1
)
+
]

+ 𝐶𝐸 [(𝑦
1
− 𝐷
1
)
+
] ,

𝑊
2
(𝐼
1
, 𝑦
1
) = 𝐸 [Π

2
((𝑦
1
− 𝐷
1
)
+
)] + 𝐶 (𝑦

1
− 𝐼
1
) .

(23)

The first-order derivative of𝑊
1
(𝐼
1
, 𝑦
1
) about 𝑦

1
is

𝜕𝑊
1
(𝐼
1
, 𝑦
1
)

𝜕𝑦
1

= (𝐶 − ℎ)Pr {𝑦1 ≥ 𝐷
1
} + 𝐶
𝐸
Pr {𝑦
1
< 𝐷
1
} ,

(24)

and the second-order derivative of𝑊
1
(𝐼
1
, 𝑦
1
) about 𝑦

1
is

𝜕
2
𝑊
1
(𝐼
1
, 𝑦
1
)

𝜕𝑦2
1

= (𝐶 − ℎ − 𝐶
𝐸
) 𝑓
𝐷
1

(𝑦
1
) < 0, (25)

so𝑊
1
(𝐼
1
, 𝑦
1
) is concave in 𝑦

1
.

In the following, we will prove that 𝑊
2
(𝐼
1
, 𝑦
1
) is

still concave in 𝑦
1
. From Part (a) in Theorem 2, we

know that 𝜋
2
(𝐼
2
, 𝑦
2
) is jointly concave in 𝐼

2
and 𝑦

2
, so

max
𝑦
2
≥𝐼
2

{𝜋
2
(𝐼
2
, 𝑦
2
)} is also concave in 𝐼

2
by Part (a) in

Lemma 4. And From (19), we have

Π
2
(𝐼
2
) = max
𝑦
2
≥𝐼
2

{𝜋
2
(𝐼
2
, 𝑦
2
)} − 𝐶𝐼

2
, (26)

so Π
2
(𝐼
2
) is also concave in 𝐼

2
. Moreover, it is nonincreasing

in 𝐼
2
.
Let 𝜑(𝑦) = (𝑦)

+; it is convex in 𝑦. From Part (b)
in Lemma 4, we know that Π

2
(𝜑(𝑦
1
)) is concave in 𝑦

1
.

Therefore, 𝐸[Π
2
(𝜑(𝑦
1
− 𝐷
1
))] = 𝐸[Π

2
((𝑦
1
− 𝐷
1
)
+
)] is also

concave in 𝑦
1
, and𝑊

2
(𝐼
1
, 𝑦
1
) is concave in 𝑦

1
.

Therefore, 𝐻(𝐼
1
, 𝑦
1
) in (22) is concave in 𝑦

1
as follows:

𝜕𝐻 (𝐼
1
, 𝑦
1
)

𝜕𝑦
1

= − 𝐶 + (𝐶 − ℎ)Pr {𝑦1 ≥ 𝐷
1
}

+ 𝐶
𝐸
Pr {𝑦
1
< 𝐷
1
} +

𝜕𝐸 [Π
2
((𝑦
1
− 𝐷
1
)
+
)]

𝜕𝑦
1

.

(27)

Let 𝑆 = min{𝑦
1
| 𝜕𝐻(0, 𝑦

1
)/𝜕𝑦
1
≤ 0, 𝑦

1
≥ 0}, so we have the

following theorem.

Theorem 6. 𝑆 must exist.

Proof. From 𝐸[Π
2
((𝑦
1
− 𝐷
1
)
+
)] = ∫

𝑦
1

−∞
Π
2
(0) 𝑑𝐹(𝑥) +

∫
+∞

𝑦
1

Π
2
(𝑦
1
− 𝑥) 𝑑𝐹(𝑥), we have

𝑑𝐸 [Π
2
((𝑦
1
− 𝐷
1
)
+
)]

𝑑𝑦
1

= ∫

+∞

𝑦
1

𝑑Π
2
(𝑦
1
− 𝑥)

𝑑𝑦
1

𝑑𝐹 (𝑥) . (28)
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Table 1: Basic parameter setting.

Parameter 𝑝
𝑠

𝐶 𝐶
𝐸

ℎ 𝑐
𝑀

𝑐
𝑟

𝑠
𝑀

𝑠
𝑅

𝑎
𝑖

𝜎 𝑘 𝑝
𝑅

Range 3.5 1.8 2.2 0.2 0.6 0.5 0.8 0.6 1000 40∼300 0.1∼0.8 0.5∼1.3

And because Π
2
(𝐼
2
) is nonincreasing in 𝐼

2
, we have

𝑑𝐸[Π
2
((𝑦
1
− 𝐷
1
)
+
)]/𝑑𝑦
1
≤ 0, and

lim
𝑦
1
→∞

𝜕𝐻 (𝐼
1
, 𝑦
1
)

𝜕𝑦
1

= −ℎ + lim
𝑦
1
→∞

𝜕𝐸 [Π
2
((𝑦
1
− 𝐷
1
)
+
)]

𝜕𝑦
1

≤ −ℎ,

(29)

so 𝑆must exist.

Similar to Proposition 3, we have Proposition 7.

Proposition 7. Given the initial inventory level 𝐼
1
, the optimal

replenishment decision in the first period is given as follows:

𝑄
∗

1
= {

𝑆
1
− 𝐼
1

𝐼
1
< 𝑆
1
,

0 𝐼
1
≥ 𝑆
1
,

(30)

where 𝑆
1
satisfies

𝑆
1
= min{𝑦

1
|
𝜕𝐻 (0, 𝑦

1
)

𝜕𝑦
1

≤ 0, 𝑦
1
≥ 0} . (31)

Proof. The proof is similar to Proposition 3.

4. Numerical Study

In this section, we study management insights by numer-
ical examples and make the sensitivity analysis of optimal
expected profit with respect to other parameters.

We assume the demand in each period to be 𝐷
𝑖

=

𝑎
𝑖
+ 𝜀
𝑖
. Random parts 𝜀

1
and 𝜀

2
are independent and

identical distribution and are assumed to follow the normal
distribution with the zero mean and the deviation 𝜎. The
proportion of returning used products in all demand for the
first period is assumed to be 𝜃(𝑝

𝑅
) = 1−𝑒

−𝑘𝑝
𝑅 .The parameter

setting is provided in Table 1.
We analyze the following cases. (i) The effects of acqui-

sition price and standard deviation of demand on system
optimal expected profit. (ii)The effects of the return sensitive
coefficient in acquisition price on system optimal expected
profit. (iii) The effects of sensitive coefficient and standard
deviation of demand on percent improvement in optimal
expected profit.

Figure 2 shows that the system optimal expected profit
is a concave function in acquisition price, which means that
we can determine an optimal acquisition price for any set of
parameter setting. It is obvious that a comfortable acquisition
price can supply production material by a lower cost, but the
profit of unit used product is decreasing as the acquisition
price is increasing and it is possible that remanufacturing has
no profit when the acquisition price is too large. Moreover,
Figure 1 also shows that the system optimal expected profit is
decreasing as the standard deviation of demand is increasing.

Figure 3 shows that the system optimal expected profit is
increasing as different sensitive coefficients 𝑘 are increasing.
Because the return proportion is more sensitive on acquisi-
tion price, the firm can acquire used product more easily, the
acquisition cost is lower, and the remanufacturing profit is
larger.

To analyze the change of expected profit, we define a
percent improvement in the expected profit by the following:

Percent improvement in expectation profit

=
Optimal expected profit (𝑝

𝑅
is nonzero) −Optimal expected profit (𝑝

𝑅
is zero)

Optimal expected profit (𝑝
𝑅
is zero)

× 100%.

(32)

From Figure 4, we can know that the standard deviation
is larger, the percent improvement in expectation profit is
larger, the return process is more sensitive, and the percent
improvement in expectation profit is larger. Return process
can be viewed as another supply source, which may decrease
the supply risk, andwhen the standard deviation of demand is
larger, the action of multichannel for decreasing risk is larger.
The return proportion is more sensitive on acquisition price,
and the firm can control risk by a lower cost, so the profit
improvement is larger.

5. Conclusion

In this paper, we study an inventory control and production
planning problem when a firm with manufacturing and
remanufacturing production way faces stochastic demand. In
order to stimulate the return of used products, the firm offers
a return compensation for the customers who return used
products. Under the return stimulating policy, the return
process depends on the demandprocess. Based on the setting,
we investigate optimal policies on inventory replenishment
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Figure 2:Optimal expected profits for different standard deviations.
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Figure 3:Optimal expected profits for different sensitive coefficients
𝑘.

and production planning problem for a single item two-
period inventory system. Firstly, the problem is formulated
into a three-stage stochastic programming problem. Sec-
ondly, the optimal production policies onmanufacturing and
remanufacturing for the realized demand are given. Next, we
prove the objective function for each stage to be concave in
decision variable and prove the existence and the uniqueness
of optimal solutions. Moreover, the basic inventory policy
is proved to be optimal for each period, and the optimal
inventory levels are unrelated to acquisition price. Finally, we
investigate numerical studies to analyze managerial insights.

There are some possible extensions in the future investi-
gation. The current problem only considers inventory deci-
sions and a single type of used product quality class. One
extension would be to consider to make joint decisions
on inventory replenishment and acquisition price. Another
extension is to study the multitype product quality class
setting.
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Figure 4: Percent improvement in the expected profit.
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