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ABSTRACT: 

After an earthquake, damage assessment plays an important role in leading rescue team to help people and decrease the number 

of mortality. Damage map is a map that demonstrates collapsed buildings with their degree of damage. With this map, finding 

destructive buildings can be quickly possible. In this paper, we propose an algorithm for automatic damage map generation 

after an earthquake using post-event LiDAR Data and pre-event vector map. 

The framework of the proposed approach has four main steps. To find the location of all buildings on LiDAR data, in the first 

step, LiDAR data and vector map are registered by using a few number of ground control points. Then, building layer, selected 

from vector map, are mapped on the LiDAR data and all pixels which belong to the buildings are extracted. After that, through 

a powerful classifier all the extracted pixels are classified into three classes of “debris”, “intact building” and “unclassified”. 

Since textural information make better difference between “debris” and “intact building” classes, different textural features 

are applied during the classification. After that, damage degree for each candidate building is estimated based on the relation 

between the numbers of pixels labelled as “debris” class to the whole building area. Calculating the damage degree for each 

candidate building, finally, building damage map is generated.  

To evaluate the ability proposed method in generating damage map, a data set from Port-au-Prince, Haiti’s capital after the 

2010 Haiti earthquake was used. In this case, after calculating of all buildings in the test area using the proposed method, the 

results were compared to the damage degree which estimated through visual interpretation of post-event satellite image. 

Obtained results were proved the reliability of the proposed method in damage map generation using LiDAR data. 

 

1. INTRODUCTION 

In recent years, natural disasters such as earthquake, flood, 

volcano eruption, drought, etc. took thousands of lives and 

had bad affection in people's life and many people become 

displaced. The necessity and importance of this issue need 

particular attention. Unfortunately, despite the immense 

technological advancements, humans still cannot predict 

earthquakes. In comparison with other natural disasters, 

therefore, earthquake is more significant.  

One of the biggest earthquakes of the 21 century is Haiti 

earthquake that occurred on 12 January 2010 a magnitude 

7.0 Mw earthquake. The reports show 222,570 people 

killed, 300,000 injured, and 1.3 million people displaced. 

According to the United States Geological Survey 

(USGS), 97,294 houses were destroyed and 188,383 were 

damaged in Port-au-Prince and in much of southern Haiti. 

Therefore, rapidly and accurately emergency response to 

help rescue missions is needed. Remote sensing data are 

the most effective and accurate sources to solve this 

problem. As rules there have four category's data: (1) 

optical, (2) SAR, (3) LiDAR. Using LiDAR system is one 

of the best and powerful techniques in remote sensing to 

collect information from surface of earth. This technique 

is similar to RADAR .the LiDAR system use 3 

technologies: Laser ranging for accurate distance 

measurement, Satellite positioning using GPS, Inertial 

Measurement Unit (IMU) to record orientation. LiDAR 

technology provides 3D point clouds from the earth 

surface.  The advantages of using LiDAR system is the 

ability to work in any weather condition, laser penetration 

in vegetation, sands, and surface layers of snow as well as 

rapid data gathering for a large area.  The laser source 

emits a pulse, the energy is reflected on the ground and 

sensed by a photodiode, the elapsed time is recorded. The 

laser range is computed by multiplying the elapsed time 

by the speed of light(Tong, Hong et al. 2012). 

LiDAR data is one of the best data source to quickly 

determine collapsed buildings with high accuracy. LiDAR 

data provides three-dimensional representations of 

damaged area and this information greatly helps to 

generate damage map, automatically. A recent 

development of LiDAR technology causes higher spatial 

resolution of LiDAR data. Consequently, many 

researchers have focused on using LiDAR data for 

automatic damage map generation. One may not easily 

find damaged buildings by only visual interpretation of 

LiDAR data. However, considering textural information 

of LiDAR data such as homogeneity in a building area can 

be helpful in distinguishing damaged buildings from 

undamaged buildings.  In this paper, we propose an 

algorithm for automatic damage map generation after an 

earthquake using post-event LiDAR Data and pre-event 

vector map. 
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2.    DAMAGE MAP GENERATION 

Available techniques of damage map generation using 

Geo-Information data can be categorized into two 

different groups of visual interpretation and automatic 

processing. Although visual interpretation is an accurate 

method, it is time consuming and also need an expert to 

interpret the data. Therefore, researchers have focused on 

automatic processing techniques for generating damage 

map. Different automatic change detection techniques 

based on satellite images have been developed for 

earthquake damage assessment such as comparison 

satellite images in two epochs of pre and post-event and 

shadow analysis of buildings. 

A number of studies have investigated the use of remote 

sensing data to detect earthquake damaged buildings. For 

instance, pre- and post-seismic stereo HRSI in two 

methods were used for generating damage map. First, 

detection of an individual collapsed building by 

comparing the height differences at the corner points of 

the building calculated from the pre- and post-seismic 

IKONOS stereo pairs and, in the second method, 

calculating the difference between the pre- and post-

seismic digital elevation models (DEMs) collapsed 

buildings were detected in region scale (Tong, Hong et al. 

2012). Another study from use shadow analysis method 

for detection of collapsed buildings after an earthquake by 

using high-resolution satellite images. (Tong, Lin et al. 

2013).  

Determines collapse building of the city of Bam, Iran, by 

using pre-event vector map and extracted spectral and 

textural features from post-event high resolution images 

(Samadzadegan, Zoj et al. 2010). detects collapse building 

by constructed digital surface models (DSMs) using aerial 

images captured by a digital airborne imaging system with 

GPS and IMU) DSM constructed from differences of 

building heights between pre and post- event 

models(Maruyama, Tashiro et al. 2011). Generated Point 

clouds from airborne oblique images, to detect damaged 

building (Vetrivel, Gerke et al. 2015). applied pre and 

post-event data for damage map generation after 

earthquake through a fuzzy inference system(Rastiveis, 

Samadzadegan et al. 2013). detected damaged building by 

using post-disaster LiDAR data with slope and texture of 

roof planes(Labiak, Van Aardt et al. 2011).  

detected damaged building using laser scanning data 

based on the comparison of pre-event building models 

composed of planar surfaces with planar surfaces, 

extracted from laser scanning data.(Rehor and Bأ¤hr 

2007). Aerial images and LIDAR data to detect disaster 

changes (Trinder and Salah 2012). 

 

3.     PROPOSED METHOD 

The framework of the proposed approach is based on the 

flowchart shown in Fig. 1. As can be seen from the figure, 

in this method, pre-event vector map and post-event 

LiDAR data are required for generating damage map. 

Initial step is pre-processing of LiDAR data. Then 

extracting textural features along with nDSM from 

LiDAR data, classification of the post-event image is 

performed. Finally, building areas are extracted from the 

resulted classification image to evaluate the degree of 

damage and, consequently damage map generation.   

 
 

Fig. 1. Flowchart of the proposed method for damage map 
generation using pre-event vector map and post-event LiDAR  

3.1 Pre-Processing 

A set of pre-processing algorithms is necessary in order to 

prepare input data. First of all increasing quality of the 

LiDAR DSM with histogram equalization and higher 

quality of extracted features which leads to higher 

classification accuracy.   

The second step here is registration between LiDAR data 

and vector map. It needs some ground control point. This 

registration helps to eliminate shift and drift errors of 

LiDAR data.  

3.2 Feature Extraction 

It is proved that feature vector have direct influences on 

classification accuracy. Since textural information make 

better distinction between “debris” and “intact building” 

classes, different textural features are applied during the 

classification. In the proposed method, two kinds of 

feature have been used in classification: textural 

information and nDSM. 

3.2.1 Textural Information 

Texture is an important cue for biological vision systems 

to estimate the boundaries of objects. Many approaches 

such as statistical are exist for textural feature extraction. 

Haralick features, which can be produced g from gray 

level co-occurrence matrix, have been used for damage 
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map generation in many researches. (Samadzadegan, Zoj 

et al. 2010).  

GLCM is a matrix that contains the number of each grey 

level pairs that are located at distance d and direction θ 

from each other.  

,
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Table (1) shows different descriptors that can be 

extracted from co-occurrence matrix. 
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Table (1) Extracted Features from Co-occurrence matrix 

3.2.2 nDSM 

Another feature that can be used in the classification 

process is nDSM which is made from LiDAR data and 

DTM. To generate nDSM both DTM and DSM of an area 

are needed. Here, first DTM is generated from LiDAR 

data using morphological operators and subtracting from 

LIDAR DSM, nDSM can be generated. The process of 

generating DTM based on image reconstruction by 

morphological geodesic operation. Geodesic operations 

employ two input images. The images are named marker 

and mask images. Here, DSM takes as mask and marker is 

created from mask, and then performs geodesic dilation to 

generate DTM generated from mask and marker. This 

method has great accuracy to make DTM. After all nDSM 

is created from difference of DSM and DTM. 

Receiving great accuracy possible with use more feature. 

This article uses all of this information as feature to 

enhance accuracy. 

3.3 Classifications 

There are many methods for image classification such as 

SVM, Nearest Neighbour, Maximum Likelihood, 

Minimum Distance, etc. But, nowadays the scientist 

interested in to use SVM for classification, because it has 

much ability with good accuracy as well as rapid process.  

The Support Vector Machine (SVM) is a non-linear 

approximation that is a method for binary classification. 

For finding hyperplane that separates the d-dimensional 

data into two classes.  The points nearest to the separating 

hyperplane are called Support Vectors. And, just 

determine the position of the hyperplane. Other points are 

no affection. SVM use kernel feature space that transmits 

the data into higher dimensional space and the data can be 

linearly separable there.  

 

Fig.2. Choosing the optimum hyperplane which 

maximizes the margin. 

 

Let l training samples {xi , yi} , i=1,…,l, and (xi ϵ Rd)  

Parameterized hyperplanes by a vector (w) → w. x+ b=0. 

Hperplane (w,b) that separates the data → f(x)=sign(w. 

x+b)by a distance +1,-1  
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More compact notation: 
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(5) 

Linear combination of the training examples 
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( ( . ) 1) 0,( )i i i iy w x b      

If  we have optimal α should determine b to fully specify 

the hyperplane.(Joachims 2002) 
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In this classification process, three classes of “debris”, 

“intact building” and “unclassified” are considered.  

3.4 Building Area Extraction 

In this step, corners of a candidate building are extracted 

from vector map and are mapped on LiDAR data to find 

all pixels in the classification results which belong to the 

building. By analysing the number of pixels which belong 

to intact part or debris the building situation can be 

estimated.  

3.5 Damage Assessment 

After classification, DD (damage degree) for each 

candidate building is estimated based on the relation 

between the number of pixels labelled as “debris” class to 

the whole building area (Eq. 7).  

      

      

number of pixels to debris to class
DD

number of pixels inside the building area


 

(7

) 

 

Calculating the damage degree for each candidate building 

and considering a threshold level on DD, finally, damaged 

and undamaged buildings can be distinguished and 

damage map can be generated. 

 

4.     TEST AND RESULTS 

4.1 Data Set 

The study area is located in Port-au-Prince is the capital 

and largest city of the Caribbean country of Haiti. (Fig3). 

 

 
Fig.3. The study area is located in Port-au-Prince is 

the capital of Haiti 

 

 

This article use pre-event vector map (a) and post-event 

LiDAR data (b) and test area contains 43 building  

 
 

a b 

Fig.4. The study area (a) vector map (b) LiDAR data 

4.2 Feature Extraction 

After implement all features only six features were 

suitable for classification because they made a better 

difference between debris and intact building. Table (2) 

shows all the selected textural features that used in 

classification.  
 

Contrast Second Moment Dissimilarity 

   
Homogeneity Entropy Variance 

   

Table (2) texture features 

Extracted nDSM which is used in classification is depicted 

in Fig. 6.  

 

 
Fig.6. Extracted nDSM in feature extraction step. 

4.3 Classifications 

In this paper, ENVI software was used to perform SVM 

classification. Here, two classes of “debris” and “intact 

Building” were considered. Classification result after 

removing none-building area is shown in Fig.7. In this 

figure, debris and intact building classes are shown by red 

and green colors, respectively. 
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Fig.7 classification result. Red: debris class. Green: 

intact building 

4.4 Damage Map 

In the proposed methods, depending on the damage 

degree, each building is shown by a specific color. In this 

paper, damage degree of 30% considered as threshold 

value. In other words, buildings with higher damage 

degree than 30% are labelled as damaged building. 

Otherwise, the buildings are labelled as intact building.  

Fig.8 demonstrates final damage map of the test area using 

the proposed method. As can be seen from the figure, 

damaged and intact buildings are shown in red and cyan 

color, respectively.  

 
Fig.8 Resulted damage map using proposed method. 

 

4.5 Accuracy Assessments 

Confusion matrix of the classification, which can be seen 

in Table 3, is obtained by comparing the algorithm results 

and the reference data. In this algorithm, overall accuracy 

of 91.59%, kappa coefficient of 71.61 %, were obtained. 

Confusion Matrix 
Algorithm 

Debris  Undamaged 

R
ef

er
en

c
e
 

Debris  70.54 3.27 

Undamaged  29.46 96.73 

                          OA=91.59%         K=71.61 

Table (3) Confusion Matrix 

 

To evaluate the final damage map, all the buildings in the 

test area were labelled as damaged or undamaged by 

visually interpretation of post-event high resolution 

satellite imagery comparing these results with output of 

the algorithm, Table (4) were obtained. 

 

Confusion 

Matrix 

Algorithm 

Damaged 

Building 

Undamaged 

Building 

E
x

p
er

t 

Damaged 

Building 

5 0 

Undamaged 

Building 

4 34 

                          (TP+TN)/N=91%  

Table (4) Confusion Matrix 

According to Table (4) 9 damaged buildings were labelled 

as damaged while only 5 damaged buildings were 

distinguished by expert. In other words, 4 false alarms 

were resulted by the algorithm. On the other hand, all the 

buildings which labelled as damaged by the experts 

distinguished correctly 

5.  CONCLUSION 

This article used post-event LiDAR data and pre-event 

vector map to create damage map. The study area was 

selected from available data set of the Haiti earthquake. 

Overall accuracy of 91.59% and kappa coefficient of 

71.61% proved the abilities of SVM classification in 

distinguishing debris and intact buildings. Finally, 91 

buildings in the test area were correctly labelled as 

damaged/undamaged. Although the results were 

promising, further studies are needed to improve the final 

decision, especially to reduce the number of false alarms.   
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