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ABSTRACT: 
 
One of the major problems in processing LiDAR (Light Detection And Ranging) data is its huge data volume which causes very high 
computational load when dealing with large areas with high point density. A fast and simple algorithm based on scan line analysis is 
proposed for automatic detection of building points from LiDAR data. At first, ground/non-ground classification is performed to 
filter out the ground points. Douglas–Peucker algorithm is then used to segment the scan line into segment objects based on height 
variation. These objects are preliminarily classified into buildings and vegetation based on local analysis using simple rules. At last, 
the region growing method is used to improve the quality of the extraction. The test data provided by the ISPRS test project on urban 
object extraction, containing a lot of buildings with complex roof structures, various sizes, and different heights, is used to test the 
algorithm. The experimental results show that the proposed algorithm can extract building regions effectively. 
 

1. INTRODUCTION 

LiDAR (Light Detection And Ranging) data provides dense, 
discrete, and accurate point which is fundamentally different 
from the traditional remote sensing data. Although most of the 
problems of technical difficulties in hardware and system 
integration have been solved, the interpretation and modeling of 
LiDAR data has been a challenging task (Axelsson, 1999). New 
data processing methods different from the ones used in the 
traditional photogrammetry and remote sensing are urgently 
needed. One of the most important tasks of using LiDAR data is 
automatic extraction of buildings from LiDAR point cloud. The 
processing of airborne LiDAR data for automatic extraction of 
building regions has been a hot topic of research in 
photogrammetry for the last two decades (Mayer, 2008). A lot 
of algorithms of building extraction have been reported with the 
focus shifting to detailed representations of objects, to using 
data from sensors, or to advanced processing techniques 
(Rottensteiner et al., 2012).  
 
Most of the algorithms of building extraction can be categorized 
into two groups. The first group which is used in this paper is to 
remove the ground points from the non-ground points first, then 
to classify non-ground points into vegetation points and 
building points. Particularly, ground point elimination 
procedure is known as ground filtering. Tóvári and Pfeifer 
(2005) categorized the ground filtering algorithms into 
morphological (Vosselman, 2000), progressive (Axelsson, 
2000), surface based (Kraus, 1998), and segment based (Sithole, 
2005) filters. The extensive studies show that all filters perform 
well in smooth rural landscapes, but all produce errors in 
complex urban areas and rough terrain with vegetation (Sithole 
and Vosselman, 2004). After filtering out the ground points, the 
remaining non-ground points are classified into vegetation and 
buildings by the features such as height differences from the 
Digital Terrain Model (DTM) and local statistical analysis.  
 
 

                                                                 
* Corresponding author. 

Haithcoat et al. (2001) extract size, height and shape 
information from the point cloud, and use thresholds to 
discriminate small objects like cars and trees. The building 
footprints are simplified by orthogonality. Gross et al. (2005) 
start from the normalized DSM (nDSM=DSM-DTM) and use 
the first-last echo differences and a roughness measurement to 
discriminate vegetation and building points. At last, the building 
footprints are approximated and generalized by rectangles 
aligned with the boundary edges. Frédéricque et al. (2008) 
focuses on the ROI and extract the skeletons of the buildings. A 
set of rectangle hypotheses is then generated with the principal 
directions at given points of the skeleton. An iterative algorithm 
then allows obtaining a simplified graph of rectangles, which 
providing the representation of building blocks by a set of 
rectangles. 
 
The other group extracts ground, buildings, and vegetation 
simultaneously. Moussa and El-Sheimy (2012) use a rule-based 
segmentation method to classify the LiDAR data into building, 
tree and ground segments, and use the spectral information 
obtained from the ortho-rectified CIR image to refine the 
classification. Zhang and Lin (2012) use a supervised 
classification of the airborne LiDAR data based on Support 
Vector Machine (SVM). Dorninger and Pfeifer (2008) firstly 
detect planar surface patches in the point cloud, followed by the 
model-based classification and the combination of patches to 
refine the detection result. Finally, the borders of the regions are 
delineated. Zhou and Neumann (2009) propose a streaming 
framework for building reconstruction. The buildings are 
extracted by SVM on local geometric features. 
 
From the practical system point of view, besides the problems 
in object modeling and recognition, one of the major problems 
in processing LiDAR data is its huge data volume which causes 
very high computational load when dealing with large areas 
with high point density.  This paper focuses on fast detection of 
buildings using scan line analysis. Compared to many 
algorithms that use two dimensional or three dimensional 
analyses of local features (planar, facade and others) directly, 
the proposed method makes use of segmented scan line to find 
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elements of building roofs by local geometric regularity. 
Although scan line analysis method is limited by directions 
(Meng et al., 2009), it is a 1D data structure which is easy to use 
GPU based parallel computing. It is unlike most of the other 
approaches processing data within a 2D/3D neighborhood of a 
point or a subset of the points. Finding and storing such 
neighborhood requires a large amount of computation and 
memory because of the large volume of LiDAR data and their 
irregular sampling pattern. With the simple algorithm it can 
extract building regions efficiently.  
 
 

2. THE PROPOSED METHOD 

The proposed algorithm for building extraction in airborne 
LiDAR data can be divided into three key steps: Filtering, scan 
line segmentation, object based classification. 
 
2.1 Ground Filtering 

In raw LIDAR data, both ground and non-ground objects, such 
as low vegetation, high vegetation, buildings, and vehicles, 
generate backscatter (Meng et al., 2009). Non-ground points 
need to be identified and filtered out from LIDAR data before 
DEM interpolation. Likewise, ground points need to be 
eliminated before extracting non-ground objects, such as 
vegetation and buildings. 
 
Since all ground filtering algorithms perform well in smooth 
simple urban areas, in this paper we use the TIN (Triangular 
Irregular Network) progressive based algorithm (Axelsson, 
2000) to classify ground and non-ground points.  
 
2.2 Scan Line Segmentation 

Most of the object extraction algorithms process point clouds 
within a 2D/3D neighborhood. Searching and storing such 
neighborhood need a large amount of memory and 
computational load because of the large volume of LiDAR data 
and their irregular sampling pattern. In this paper, the Douglas–
Peucker algorithm (Douglas and Peucker, 1973), which is 
known as the most effective line simplification algorithm, is 
used to segment the scan line into objects based on the height 
variation.  
 
The Douglas-Peucker algorithm uses the closeness of a vertex 
to an edge segment (distance to an edge segment). It is a 
recursive procedure that starts with a line segment whose 
extreme vertices coincide with the extreme vertices  and  
of the polyline to be simplified. Each segment v v  is split at 

the farthest vertex  ( ), to it until the distance 

between the sequence of vertices  and  and the 

sequence of vertices  and are less  than the fixed 
tolerance 

0v
k j

k iv v

nv

iv k i j 
k iv v…

iv v… j i jv v
 (WU and Márquez, 2003).   

 
Given a scan line (a sequence of points) of the LiDAR data as 
depicted in Figure 1(a), the segmentation starts with a crude 
initial guess, namely the single edge  joining the first and the 
last points of the scan line (Figure 1(b)). Then the remaining 
points are tested for distance to that edge. If there are points 
further than a specified tolerance 

e

 , then the point farthest 
from the edge is added to the previously simplified polyline. 
This creates a new approximation for the original polyline 
(Figure 1(c)). This iterative process continues for each edge 
(Figure 1(d)) until all points’ distances to the original polyline 
are within the tolerance   (Figure 1(e)). Figure 2 depicts the 
result of a scan line, different colors in the figure label different 
segments. 
 
Figure 2(a) shows the segmentation result of a scan line from 
real LiDAR data. Figure 2(b) shows the segmentation result of 
an area from the test LiDAR data set, different colors in the 
figure label different segments.  
 
2.3 Classification of Segment Objects 

Most of the building roofs are composed of planes, while the 
vegetation points show rather rough pattern. After the scan line 
segmentation procedure, the scan lines are divided into line 
segments, in which the building roof segments are usually 
longer (segment size = number of points) than the vegetation 
segments. Usually, most of the vegetation segments have no 
more than 2 points for our test data, as shown in Figure 2(b). 
 
For the convenience of description, the following text “long  
segment” is a line segment whose segment size (number of 

points) is equal or greater than a certain number , while 
the “short segment” is a line segment whose segment size is less 

than . In this paper, points will be classified as the 
building category, if they satisfy three criteria: 

throN

throN

1)  Belong to a long segment, 
2) Proportion of points belong to long segments in a 

certain local neighbourhood, is more than , thoP
thoH3) Height from DEM is higher than . 

 
The first one (belong to a long segment) means that the segment 
is most likely a part of plane. The second criterion has the same 
purpose of the computation of roughness, which is often used to 
separate building from tree points. But the computation of 
roughness, which is usually computed by the normal vectors of 
the nearest points, is very time consuming. The third criterion 
means that the building roof must have a certain height from 
ground. 

 

   
(a)                                                                          (b)                                                                  (c) 

   
(d)                                                                          (e)                                                                  (f) 

Figure 1: The basic Douglas-Peucker algorithm used in scan line segmentation. 
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(a)                                                                                   (b) 

Figure 2: Scan line segmentation results, (a) segmentation result of a scan line; (b) segmentation result of a test area (different colors 
label different segments, 3D view). 

 
Though building roofs can be modelled by a composition of 
planar faces (Dorninger and Pfeifer, 2008), not all the roof 
components, such as skylights and rough edges, can be 
segmented into long segments (as shown in Figure 3(a) and 
Figure 3(b)) in our segmentation procedure. These roof points 
will be rejected as they do not fit the first criterion. These 
misclassifications are revised by a region growing based 
method. The region growing chooses all the building points, 
which are classified by the classification procedure, as seeds. In 
the growing step, the neighbouring points are searched using a 
grid index data structure. Although this simple and fast data 
structure may not accurate in searching a neighbourhood, it is 
enough for our algorithm. If the height difference between the 

seed point and the neighbouring point is within , the 
neighbouring point is accepted as the building point. Figure 3(c) 
and Figure 3(d) are the building extraction results before and 
after the region growing based quality improvement. 

thoD

 

  
(a)                                               (b) 

  
(c)                                                (d) 

Figure 3: (a) and (b) segmentation results (red: long segments, 
yellow: short segments); (c) and (d) building extraction results 
before and after the region growing based quality improvement 

(red: buildings, green: vegetation). 
 
 

3. EXPERIMENTS AND RESULTS 

3.1 Data Sets 

The International Society for Photogrammetry and Remote 
Sensing (ISPRS) Commission III/WG3 provides LIDAR data 
for urban object classification and 3D building reconstruction. 
This is a subset of the data used for the test of digital aerial 
cameras carried out by the German Association of 
Photogrammetry, Remote Sensing, and Geoinformation (DGPF) 
(Cramer, 2010). Tow test sites are selected: Test data 1 is 
characterized by a residential area with detached houses and 
many surrounding trees (about 1.2 million points). Test data 2 is 
a highly developed area, consisting of complex buildings, roads 
and big trees (about 1.1 million points). Figure 4 shows the true 
ortho-photo of the test areas.  
 

 
Figure 4: The true ortho-photo of the test areas. 
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3.2 Parameters 

The proposed algorithm has 5 parameters:  , ,  , 

, .  The density of the data can be accommodated by 

setting . Since the main goal of the algorithm is to find 
roof planes, the proportion of points belong to long segments 
should be as large as possible, and buildings should be higher 

than an adult person. Therefore, 

throN thoP
thoH thoD

throN

 =0.5 meters,  = 4, 

 = 0.6,  = 2.5 meters, and = 1.0 meter. 

Actually, except the “long segment” threshold , all the 
other parameters can be set as fixed values in different 
experiments or data sets, as they have specific “physical 
meanings”. 

throN

throN
thoP thoH thoD

 
3.3 Results 

The proposed building extraction algorithm has been 
implemented by using Microsoft Visual Studio C++. A desktop 
computer (CPU with 2.5 GHz and 4G Memory) is used to 
process the test data sets. Both of the two test data sets cost no 
more than 5 seconds (including ground filtering, scan line 
segmentation, object-based classification and region growing 
based quality improvement).  

Figure 5 and Figure 6 show extraction results of the two test 
areas, which contain more than 200 roof planes. By comparing 
with the true ortho-photos (Figure 5(c) and Figure 6(c)), it 
becomes clear that for most buildings, the majority of the planes 
has been detected, but some of the building roofs have irregular 
shapes (see Figure 5(b)), which should be regulated in the 
outline extraction procedure. As shown in Figure 5(b), roof 
planes, which have been occluded by dense trees, have been 
detected correctly. 
 
The detection results are compared to reference data acquired 
using photogrammetric plotting. To quantitatively evaluate the 
proposed algorithm, the method (Rutzinger et al., 2009), which 
provides completeness, correctness, and quality of the results 
both on a per-area level and on a per-object level, is used. 
Figure 7 shows the evaluation of the building detection results 
on a per-pixel level. Table 1 gives the evaluation results of the 
building detection results for the two test areas. Both of the 
completeness and the correctness of the buildings are higher 
than 90%, but vegetation with very flat canopies and buildings 
with very rough or irregular roof surfaces, our method will 
produce wrong results due to the improper assumptions in 
section 2.3. 

 

  
(a)                                                                 (b) 

  
(c)                                                                 (d) 

Figure 5: Extraction results of test area 1, (a) point cloud coloured by classification results (red: buildings, green: vegetation, brown: 
ground); (b) local enlarged view of (a) (3D view); (c) true ortho-photo of test area 1; (d) extracted building points (green) shown on 

the true ortho-photo. 
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(a)                                                                 (b) 

  
 (c)                                                                 (d) 

Figure 6: Extraction results of test area 2, (a) point cloud coloured by classification results (red: buildings, green: vegetation, brown: 
ground); (b) local enlarged view of (a) (3D view); (c) true ortho-photo of test area 2; (d) extracted building points (green) shown on 

the true ortho-photo. 

  
Figure 7: Evaluation of the building detection results on a per-pixel level (yellow: true positive, red: false positive, blue: false 

negative; left: part of test area 1, right: part of test area 2). 
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Evaluation results Test area 1 Test area 2 

Per area 
completeness 92.5% 91.5% 
correctness 94.3% 94.4% 
quality 87.6% 86.8% 

Per object 
completeness 94.5% 92.1% 
correctness 100.0% 100.0% 
quality 94.5% 92.1% 

Table 1. Evaluation of the building detection results. 
 
 

4. CONCLUSION 

This paper proposes a simple and fast algorithm to separate 
points of building roofs from variegation points after filtering of 
the point cloud. Based on scan line segmentation and simple 
rules based classification of the segments it can detect roof 
points effectively and efficiently. The proposed method can be 
used for fast detection of buildings. Regarding for the speed of 
the algorithm, there is much room for accelerating it using GPU 
based parallel computing for the scan line process, as we did in 
filtering of point cloud (Hu et al., 2013). 
 
However, in cases of vegetation with very flat canopies (Figure 
8(a)) and buildings with very rough or irregular roof surface 
(Figure 8(b)), the proposed method will produce wrong results 
due to the improper assumption about the roughness of the 
surfaces of building roof and variegation. 2D or 3D 
neighborhood is still needed to model the fine details of the 
objects in order to obtain high quality reconstruction of 
buildings. How to combine the detected building roofs by the 
fast algorithm with more features in order to achieve correct 
building extraction and 3D modeling with fine details is our 
major work in the future. 
 

 
(a)                                                   (b) 

Figure 8: Some poor performances (red: buildings, green: 
vegetation, brown: ground). 
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