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Abstract. Using classical rheological principles, a model 1 Introduction
is proposed to depict the molecular diffusion in a moist-
saturated dissipative atmosphere: due to the saturation corFhe role of the moisture on the dynamics of atmospheric air
dition existing between water vapor and liquid water in the has been studied several years ago, from various points of
medium, the equations are those of a double diffusive pheview. For instance, Dudis (1972), Einaudi and Lalas (1973),
nomenon with Dufour effect. The double diffusivity is im- Durran and Klemp (1982a, b; 1983), considered its influence
portant because of the huge diffusivity difference betweenon the Brunt-\aisala frequency and inviscid flows (such as
the liquid phase and the gaseous phase. Reduced equaountain lee waves). Einaudi and Lalas and later, Durran
tions are constructed and are then applied to describe the linrand Klemp, focused their attention on media with a non-
ear free convection of a thin cloudy layer bounded by two constant distribution of moisture with respect to the altitude.
free surfaces. The problem is solved with respect to twoDeardorff (1976, 1980), and Betts (1982) constructed re-
destabilizing parameters, a Rayleigh numBgrand a moist  duced schemes using the so-called “liquid-water moist po-
Rayleigh numbemrR,,. Two instabilities may occur: (i) os- tential temperature”: such schemes were used by Bougeault
cillatory modes, which exist for sufficiently large values of (1981a, b), in order to study the moist atmospheric turbu-
the Rayleigh number: these modes generalize the static inence. From another point of view, Kuo (1961, 1965), Ogura
stability of the medium; (i) stationary modes, which mainly (1963) studied convective instability in dissipative media.
occur when the moist Rayleigh number is negative. Theseviore recently, Bretherton and Smolarkiewicz (1987, 1988,
modes are due to the molecular diffusion, and exist ever989) considered the motion, the appearance and the disap-
when the medium is statically stable: the corresponding mopearance of clouds under moist convection effects. Some
tions describe, in the moist-saturated air, configurations sucltonsequences of the diffusion taking into account the mi-
as “fleecy clouds”. Growth rates are determined at the in-crostructure of the medium have also been exhibited by
stability threshold for the two modes of instability occurring Kambe and Takaki (1975), and Merceret (1977). In these
in the process. The case of vanishing moisture concentraworks, the double diffusive characteristics of the medium are
tion is considered: the oscillatory unstable case appears asither absent (when dissipation is neglected in the medium),
a singular perturbation (due to the moisture) of the station-or not really taken into account.
ary unstable state of the Rayleiglemard convection in pure In fact, it has been admitted a long time ago, that,
fluid, and, more generally, as the dynamical perturbation ofsince the diffusivities of dry air and water vapor are almost
the static InStablllty The convective behaviour of a cloud in equaL double diffusion has no important effect on the atmo-
the air at rest is then examined: the instability of the cloud isspheric flows (see, for instance, Huppert and Turner, 1981).
mainly due to moisture, while the instability of the surround- This property is valid in unsaturated atmosphere, where the
ing air is mainly due to heating. molecular diffusion equation takes the classical form of the
binary diffusion of one constituent (say, the water vapor) in
Key words. Atmospheric composition and structure (cloud the whole mixture. The diffusion, in this case, follows the
physics and chemistry) — Meteorology and atmospheric dy-ell-known Fick’s law. In saturated atmosphere, the diffu-
namics (convective processes, mesoscale meteorology)  sivity of the liquid phase also plays a role in the phenomenon.
This diffusivity is not of the same order of magnitude as
that of the gaseous phase, and the laws governing the phe-
nomenon are not yet well known. In practice, two models
Correspondence td?.-A. Bois (pbois@pop.univ-lille1.fr) of molecular diffusion may be found in the literature: (i) a
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binary Fick’s law is chosen for the diffusion of the total wa- notes the speed of sound in the medium at the rest); this for-
ter in the total mixturdair + total wate} (e.g. in Bretherton’s  mulation follows the classical analysis of Spiegel and Vero-
papers); (ii) a binary Fick’s law is chosen for the diffusion of nis (1960). An advantage of using the asymptotic formu-
water vapor in the gaseous phase, {veater vapor + dry aif, lation of the Boussinesq approximation is to allow one to
the diffusion of the liquid water being neglected: this law write the equations with the help of two scales (the fast scale,
(see Hijikata and Mori, 1973) is also adopted in works deal-which is the scale of the convection, and the scale of the strat-
ing with industrial thermodynamics, and a variant may beification of the medium, or slow scale); their ratio is the small
found in Deardorff’s papers and Bougeault's papers. HenceBoussinesq parameter, sayAfter linearizing the equations
the first question set in the present paper is that of the choicaround the static state, we obtain a wave equation general-
of a law of molecular diffusion: by applying the basic princi- izing to the considered medium the classical gravity wave
ples of thermodynamics and of rheology, we construct a dif-equation used, for instance, in the RayleighrBrd convec-
fusion law stating precisely the validity of Bougeault’s for- tion. The analogy with the equations of thermohaline con-
mulae. A simplified form of this law is also discussed in the vection is also noted.
case of weak moisture. In Sect. 4, we consider shallow convection in the medium
Another singularity arises in the analysis of the phe-at rest. Since the considered problems are dissipative, two
nomenon of moist convection. Since the water concentrationdiffusion factors remain present in the reduced problem. In
sayq,, is small, the Schmidt numbef*, characterizing the order to solve the singular perturbation occurring in the phe-
molecular diffusion, plays an effective role in the equationsnomenon, we first assume that the Schmidt nuntyers
through the combination/8 = ¢,/S* only; this number  small, of the same order as. We introduce the reduced
is very small whens* is of order unity (in practice, in this Schmidt numberS, which is, itself, of order unity. Af-
mixture, $* ~ 0.721). However, the factor/§ multiplies  ter solving the corresponding instability problem (so-called
a laplacian, so that even for smajls, the molecular diffu-  auxiliary problem) it is simpler to obtain the solution of the
sion acts through some boundary layers, and, in a stabilityeal problem by examining the behaviour of the solution of
problem, such boundary layers may originate specific instathe auxiliary problem whel§ goes to infinity. By applying
bilities. this procedure, a moist RayleigheBard problem is solved,
The following paper is organized as follows: in Sect. 2, and its solution is described with respect to two destabilizing
the equations of motion are set up using a classical mixturgparameters, namely the Rayleigh numligr, and a moist
theory; the basic equations are written using a model of conRayleigh numberRr;, itself proportional to the total water
tinuous medium, with the diffusive dissipation being given gradient. Finally, the following properties are derived: first,
using the principles of thermodynamics. The major simpli- because of the permanent exchange of mass between the two
fying assumption is that the condensed water is treated abquid phases, a stationary instability mainly occurs for a neg-
an aerosol (its pressure is neglected in the whole mixtureative moist Rayleigh number, even whep is, itself, nega-
so that we are led to describe it as a polytropic gas whoseive. The corresponding cloud configurations appear in a first
adiabatic constant is zero); the additional assumption of negapproximation, as motions of the dry air and the aerosol only.
ligible diffusion of the liquid water is not needed. A second These motions describe fleecy cloud configurations. Such
basic assumption is that of a saturated medium. These agnotions are partially located in the statically stable region
sumptions are classical in non-precipitating cloud theoriesof the (R,, R;) plane, in the same manner as the salt fin-
Because the molecular diffusion in saturated mixtures is nogers found in thermohaline convection (see Baines and Gill,
very well known, the molecular diffusion law is especially 1969). Second, an oscillatory instability appears in an angu-
examined. It is shown that the phenomenon follows a generfar region of the R,, R;,) plane, itself located between the
alized Fick’s law with Dufour effect. In fact, the problem of stationary stable region and the stationary unstable region,
ternary convection may be finally reduced to a convection inin such a manner that the instability threshold may be either
a binary mixture, and this reduced problem is that of a dif- stationary or oscillatory, except in the vicinity of the poly-
fusion with Dufour effect. However, some properties of the critical point, where the two instabilities may simultaneously
ternary nature of the mixture remain present in the model, agxist. The oscillatory instability is related to the static insta-
will be seen later. bility of the medium, while the stationary instability is due
In the Sect. 3, the linearized gravity wave equation gov-to the molecular diffusion. Starting from the results of this
erning the motions is derived. The study is made using theproblem, we then deduce those of the corresponding prob-
asymptotic frame of the Boussinesq approximation alreadylem when the Schmidt number is of order unity. The case
used in previous papers (Bois, 1991, 1994). The use of thi®f vanishing moisture is also examined, and it is shown that
approximation first implies the existence of a particular so-the classical Rayleigh-&hard convection appears when the
lution describing a static state of the medium, depicted withmoisture vanishes, this state appearing as a limit case of the
the help of unique variable (the altitude referred to the “dry” oscillatory unstable state already exhibited. The growth rate
atmospheric scale). Second, the characteristic vertical scalef the unstable modes is determined in the neighbourhood of
of the perturbation motion is small before the atmosphericthe instability thresholds: this determination is straightfor-
scale, and the characteristic time of the motion is also scale@vard for oscillatory modes. For stationary modes, because
with the help of static data (namedy = co/g, Wherecg de-  the bifurcation is singular (all wavelengths are unstable), this
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determination allows one to select the preferential instabili-phase is an aerosol (see, for instance, Zemansky, 1968), may
ties occurring in the medium. To end with, we match the in- be written as

stability conditions in the cloud with the corresponding con-

ditions in unsaturated air (clear air), so that we may conclude/Pv = LopodT/T. ®)

about the instability of a cloud surrounded by clear air. It is of interest to examine some consequences of the

Clausius-Clapeyron formula, when the partial pressure of the
liquid phase is neglected. The dry air, the water vapor and the

2 Rheological model whole mixture follow the equations of state, respectively,

2.1 Thermodynamics of moist saturated air Pe = RepeT, pv=RypyT,

The medium is modelled as a ternary mixture: dry air, wa-p = R,, o7, R, = Ryqs + Ryqy, (6)

ter vapor and condensed water. The constituents are identi-

fied by the subscriptg (dry air), v (water vapor),L (liquid whereR, and R, are two constants. The third relation (6)
water). The densities are denoteg, p,, pr.. The density — expresses Dalton’s law. As said above, the partial pressure
of the medium being = p, + p, + pr, the concentra-  pL is neglected in Dalton’s law. Let us now differentiate
tions are denoted by, = p./p, and satisfy the relation Dalton’s law. After some calculation and using the Clausius-
q¢ + qv +q1 = 1. We will also use the total water con- Clapeyron equation, we obtain the relation

centrationg,, = ¢v + g (more generally, the subscript
will denote “total water”). The velocity of each constituent
is denotedu,, and the barycentric velocity of the fluid is g R,dp R, L,

U = ggUg + quUy + gz ur. The diffusion velocitiess, are ~ gt - R, p R, RUTZdT' (7
then defined by, = u, — u, and satisfy the relation

dqy =dqp +dq, =

The relation (7) expresses the total water variations with re-
pgvg + pyvv + prv; = 0. (1) spect to the variations of vapor, pressure and temperature.
- , - . Now, denotingc,, andc,, the heat capacities of the wa-

The §peg|f|c variables defm.mg the system satisfy the ther'ter vapor and the liquid water, respectively, the latent heat of
mostatic Gibbs-Duhem equation

vaporization can be written as
de =Tds — pd(1/p) + grdqr + gvdqv + 8¢dqg, @) L,=Lyo+(cp, —cp,) (T — B0, (8)

wheree denotes the internal energy per mass unit, and ther,, o and ®g being two constantsL,q is the latent heat at
g«'s denote the free enthalpies per mass unit of the conthe temperatur&®g. Introducing Eq. (8) in the Clausius-

stituents. For a reversible infinitesimal transformation of Clapeyron equation (written with the variablgs p andT),
the medium, because of the saturation hypothesis, the fre@e obtain the relations

enthalpiesg; and g, are equal. Hence, settingg,, =

. B
dqr + dg, and usingiq, + dq,, = 0, Eq. (2) reads G = qopo(?g exp[{Ao +8—1) [1 _ %H ’
0
de =Tds — pd(1/p) — (8¢ — v)dqu. 3)
Ao Lo B=1-— Srv =L )
After Eq. (3) we havee = e(s,p0,q0),T = R,0¢’ R,

(0e/ds)(s, p, qu) andp = —(de/dv)(s, p, gw), wherev =
1/p. Eliminatings between these relations, we have in the
saturated mixture

whereqo, po, ® are some constants. By eliminatipgin
(9) with the help of the third of (6), we deduce, after some
calculation, the relations
e=e(T,p,qu)), p=pT,p,quw). (4) R, psoG(T)

Qv/qs = Qs(p, T) = — )
In the sequel we assume that the mixture is an ideal mixture Rylp — psoG(T)]
pf pqutropic gases. Moreover, following a classical approx- » o = goR, po®o,
imation for the aerosols, we neglect the pressure of the liquid
phase so that this phase is also a polytropic gas (with a zerG () = (©o/T)? texp{Ag+ B — 1}(1 — Og/T)].  (10)
polytropic constant).

Sinceq,/q, denotes the concentration of water vapor in the
2.2 The Clausius-Clapeyron equation gaseous phase, the pressprgG(T) is the saturation pres-

sure of the water vapor for the corresponding vapor con-
The saturation equation is the Clausius-Clapeyron equatiorcentration, with the constant;o being the saturation pres-
We introduce the latent heat of vaporization of the liquid, sure of the water vapor at the temperatéxg The function
namelyL, = h, — hy, (he is the specific enthalpy of the Qy(p, T) defined in Egs. (10) is the saturation concentration
phasex). A form of this equation, valid when the liquid of the water vapor in the gaseous mixture. Both Egs. (9) and
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(10) may be taken as “equations of state” and used in order to According with classical hypothesis of small diffusion
eliminate secondary variables in the equations of motion. Ex-+velocities (Bowen, 1976), the thermodynamical potentials
tractingg, /g, as functions op, p, andT from Egs. (10) and e, i, g are related to the partial potentials, /«, g« by the
the third of (6), an explicit expression of the equation of stateapproximate relationg = > gqeo,n = D goha, g =

p = p(qv, p, T) could be obtained by inserting these expres- ) g4 g+ Note that(d4/9q.) .7 = ha-

sions in Dalton’s law. However, although these expressions Finally, using Eq. (5) and Eq. (14), we repladg, by
theoretically could allow one to eliminate some unknowns —(dq, + dqr.), andh, — hy by L,: the Eq. (15) reads, after
in the equations of motion, it is simpler to keep the original some rearrangement,

variables in these equations.

dr._Ldp  p dav K\ v Vi, — o)+

c - = = - - : -

2.3 The diffusion equations Par  pdt Ydr T p EACM S B

We now consider a moving system. The barycentric mo- C qv

. . . . . o L,—V.|Vgy,——V [ON 16
tion of the system is described using the material derivative "p D de 9% |+ (16)

d/dt = 9/3t + u.V. First, consider the balance of mass ) o ) ) )
for the dry air: this equation, (so-called molecular diffusion The motion of the medium is described by using the classical

equation) reads variablesu, p, p, T, and two concentrations, sgy andg,.
Itis convenient to write the diffusion equations with the same
pdﬂ + V.(pgVg) = 0. (11) variables: hence, replacinly, by —(dg, +dq;) in Eq. (14)
dt and using Eq. (7) to eliminatéy;,, Eq. (14) also reads
The balance of mass for the whole mixture in the barycentric
motion reads _ 49499y R Ly dT Ry ldp _
ap gy dt Ry R,T2dt Ry pdt
o + V.(pu) =0. (12)
C qv
The diffusion velocities are themselves related to the gradi- ;V~ (qu - q—qu> : (17)
. . . . 8
ents of concentrations by Fick’s law. For the mixture consid-
ered here, this Fick’s law (see Appendix A) reads The two Egs. (16) and (17) are two symmetrical forms of the
diffusion equations: assuming th@p/dt is known in these
peVg =C (qu — q—”ng> , (13) equations (it is an approximate consequence of the Boussi-
s nesq equations, see Sect. 3) the real unknowns, in Eqgs. (16)

where C is a positive constant coefficient. Becauggis and (17), arelT /dt anddq,/dt. These equations can be
small, an approximation of Eq. (13) jsv, = CVgq,; such  solved in two independent forms dealing with linear com-
equation has been used in Kubicki and Bois (2000). How-binations of these quantities. The molecular diffusion and
ever, it will be seen later that, in convection problems, asthe heat conduction appear in laplacians figuring in the right-
we further investigate, this approximation is too rough if we hand sides of these equations and cannot separately be con-
look for a realistic solution. Hence, even for smgll we sidered; this property characterizes a double diffusive phe-
will keep the whole relation (13) in what follows. The rela- nomenon.

tion (13) inserted in Eq. (11) provides the new equation Finally, the equations of motion for a saturated mixture
d are: the third Eqg. (6), and Egs. (9), (12), (16), (17), to which
p% +CV. (qu - q_”ng> =0. (14) we must add the balance of momentum
t de
Now consider the first law of thermodynamics: for a moving pd—u +Vp=pg+ o [Au + %V(V.u)} , (18)

mixture of dissipative fluids, this law, written in terms of en-
thalpy in place of the internal energy, after some calculation

ides th i where o denotes the dynamic viscosity. Finally, we have
provides the equation

a complete set of 8 scalar equations for the 8 unknowns

dT 1dp dqr dq, dq, u,p,o,T,qu, qs-
P ,odt+Ldt+vdt+gdt

k 1 3 The Boussinesq equations
@+ ;AT - ;{V-(PCILhLVL + pguhyVy + pqghyVe)}.(15)

3.1 \Validity conditions and nondimensional equations
The coefficientc, denotes the heat capacity of the mixture
with constant pressure and concentrations. On the right-han@he Boussinesq approximation refers to the motion to a static
side, the dissipation is the sum of the viscous dissipation  state of the medium, in which the variables depend only on
the thermal dissipatiohAT/p (k is the thermal conductiv- one variable, namely the altitude scaled by the so-called at-
ity), and the diffusive dissipation in the third term: thg's mospheric heighH = po/(pog), where pg and pg denote
are the partial enthalpies of the constituents. characteristic values of pressure and density.
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The general validity conditions of the Boussinesq approx-Ag and g being defined in Egs. (9) and (10). The two diffu-
imation (Bois, 1991) first imply that the characteristic scale sion parameters are the Prandtl numBgiand the Schmidt
L of the motion is small beforél : L/H = ¢ <« 1, and  numberS*, which match the thermal dissipation (Prandtl)
second, that the characteristic velocity sc8leof the mo-  and the molecular dissipation (Schmidt) with the viscous dis-
tion is related toe by the equalityU+/po/po = ¢: thatis  sipation (Reynolds numbek,). We have used the relation
equivalent to choosing a characteristic time of the motion(8) and the relations
to = H+/po/po. We don't discuss the validity of these con-
ditions, which are assumed to be true. We note, however¢p = 4gCp, + quCp, +4LCpy,
that, when rewritten for the significant nondimensional pa-
rameters of the problem (defined further, see relations (25)¢» = 9s T Xvdv + XL4L,

F = U/+/gL is the Froude number of the flow), these con- , _
ditions imply the relations Av=Aot+d=AHT =D. (26)

The first two equations of (26) are valid for polytropic gases,
the third equation results from Eqg. (8). Since we are con-
The variables are now scaled by characteristic valuescerned only with shallow convection, it is possible to find
U, L, po, ®o, Cpy- The scaling pressure js = pocy, O, equilibrium solutions to the system Egs. (20)—(24). Hence,

and we haveR, = (y — Dep /v, v being the adiabatic con- We consider an equilibrium state = 0), having a pre-
stant of the dry air. Rewritten with nondimensional variables Scribed temperature distribution and a prescrlbed water va-

£ <1, F’=c¢. (19)

the former equations read por concentration, say’ = To(¢), qv = Quo(¢), then
Egs. (20)—(24) are satisfied (up to and including oegdny
pd_ + 1 SVp+ = pk _ 1 [Au + }V(V.u)] ’ (20) pressure, density and dry ai_r conc_:entrgtipns Po(2), o =
dt Re 3 Ro(£), g3 = Qgo(¢): denoting with primes the derivatives
d/d¢, these quantities satisfy the static equations
_q_gdqv + 4 & A_d_T _ ld_p
g dt  \MTR,T)\ T2 par P{O) + Ro(6) =0, ¢ =ez,
Rls* L. Vg — ©vgy), @1 P = —(ng<c)+(Ru/Rg)Qvo(c)Ro@)To(;) 27
qg
!/
dT  ldp y—1R,, dq, _ 0 (&) =—0 (C)Qvo@)Jr Y n
rar T par Ty RN ar T no 070,00 " (7 — DTo(@)
11 xw—11 ,
ZAT + Vg, VT+ [Ao+/3—1 }To(z)
P.R R.S* + (Ry/R —————+1-p8|—-. (28
e P e 1Y (ng(() (Ry/ g)QvO(é')) To(?) B To(?) (28)
2
y—1R, A, lv (qu _ _ng> + S_Q (22) The variablez is the physical vertical variable (say)
v RgR.S*p q R, scaled byL, while ¢(= ¢z) is the same variable’ scaled
1 1 by H. Note that Eq. (28) is nothing but the static form of the
— g _ _ = Eq. (7).
qv—qopTﬂexp[{Aow 1 [1 TH (23) Ea.()
1 R 3.2 Boussinesq asymptotic expansion
Y — v
=i = — T. 24 . . .
P y (qg + R, q”) P (24) Following the Boussinesq procedure (Bois 1991), we now

expand the variables with respectt the following form:
The Eg. (12) remains unchanged. We have set in the

Egs. (20)—(24) p = Po(¢) + &2, p = Ro(¢) +¢p,
R, — EUPO MO0 T=To@)+¢T,  qv=Quo(})+du,
I[,LO ’ r k’ )
qg = Qg()(;) + Eég’ u=u. (29)
I L
-’ = VgL We expand Egs.(12) and (20)—(24) with respect.toDis-
carding the static terms, we obtain the following perturbation
u Cpy equations
& = ® 5 XU = C_’
Vepo®o Pg V.0 = 0(), (30)

da 1
o= LPL A, = , 25 v oo oo 1o
L e "= R0 (25) Ro(@)—=+ Vjp+ ik = REAU+O(8)’ (31)
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_ Qg0(¢) dgo + [Q @)+ ﬁQ (;)} ro(4) E singularity, we now assume thét is also small, of the same
Qu0(¢) dt 80 R, "° To(¢) dt ordergo as the water concentrations. Thus, we set
_ [ Qgp(0) R §* = qoS, (37)
— { £ 00, (0) — [ng(o + R—quo(ﬁ)} _ B , -
Qvo(¢) g where S is a modified Schmidt number, which is itself as-

Ti¢)  PLE) sumed of order unity. Since the Schmidt number appears
[Ao(;“) AL A1 “ = only in the combination1/S*)Ag,, the assumptior§ =
To(©)  Po(5) 0O(1) allows one to keep the laplacian in the simplified equa-
1 1 0v0(¢) tions, and, further, when we l&t go to infinity in the solu-
" {Aqv _ 2w Aqg} + 0(e), (32) tions of realistic problems, we can directly examine the in-
ReS* Ro(£) Qs0(8) fluence of the singular perturbation induced by the double
diffusivity when $* = 0(1).

dT | y—1R, dgy For smallgo, taking int tth tion (37), th
C LTy + q0, g into account the assumption (37), the
rol&)g; y Ry o Egs. (32) and (33) read
_[r—1R, ; o P ar ., 11
w[ ” R—g)»o(é“)Qvo(é“) + Cpo(0)Tp(8) — Po(C)] i +w[T56) +1] = PR, Ro(g)AT+
1 1 . y—1R, %) 1 Y — 1Ry Ao(£)To(¢) Ay — OvolE)AG
= — e — v v {)A + 0(8)7 38
PR, Ro(g)AT Y Rg R.S* Ro(¢) Yy Rg ReS*Ro)(c)[ 1 0 a (38)
- Q@) - 1 dgy | ho()dT
{Aq” - Qg0<¢>A"g} tow. B3 "0, dr T ar
7 5 I - 1 T5(0)  Py(©)
9 p__(Aotrp—t ) r w{—Q’ (g)—[wo 0= 9 “:
+ - — = 0(e),(34 v0
0100 " Ro®) ( o F) e = @Y Qv0() o) Pol®)
q q 5 r ————[AGy — Quo(0)AGg| + O(e). 39
Reqe + Rugy o n — 0(). (35 R.S*Ro(?) [AGy — Quvo(§)AG] + OCe) (39)
Rg ng(é') +R, QvO(g) RO(g) TO@)
_ In Egs. (38) and (39) we have approximated the variables by
We have set in Egs. (32)—(35) constant values when their expansions for sgatlon’t lead
Ao+ (L— B)(To(0) — 1) to singularities: for instance, for sma , C,, andC,, are
ro(8) = T ; approximated by 1. The system [(30), (31), (34), (35), (38),
0(§) (39)] may be yet simplified by extracting the unknogyn(or,
Cpo(@) = Qgo(@) + xvQu0(0) + XL QL0(). (36)  equivalently, the unknowi, ) from the algebraic Eq. (35), as

a linear combination of the other variables. The remaining
Simplified forms of Egs. (30)—(35) may be looked atintwo system is the reduced system associated with the problem.
ways: (i) by assuming that the water concentration is weakNote that, since we have allowed in the system the coeffi-
(see below) and, (ii) by approximating the values of the coef-cients depending on the variabje the equations are valid
ficients by their values at a given level (shallow convection, for deep convection, as well as for shallow convection.
see Sect. 4).

3.3 The reduced problem 4 Moist Rayleigh-Bénard shallow convection

In order to look for simplifying assumptions about the sys- 4-1 Linearized equation

tem (30)—(35), we first note that the magnitude of both Wa—_l_h di i lied to the studv of shal
ter vapor concentration and liquid water concentration areI efprece Ing equa |onshe_1re; now applle d OThe SI u eyhoos a-
usually small, of the same order: their order of magnitude_OW ree convection in a thin layer (a cloud). The ley

(namely the parameter, introduced in Egs. (9) and (23)) is the mean altitude of the convecting cloud. The thickness

is, in practice, about T®. Hence, we expand the system of the layer is chosen as scaling lendthin the equations.

with respect tazo: keeping only the leading terms of the ex- Because of the weak thickness of the layer, and since we are
pansion, many coefficients in Eqs. (30)—(35) take simpler ap_lnterested only in terms of order O with respect tall slowly

proximate forms. However, this simplification induces Somevarying coefficients of the Eqs. (31)~(36) and (39)-(40) are

singularities. The most important of these is that the doubleapprommated by their values at= 0, namely

diffusive character of the system disappears when we neglect P§(0) = Ro(0) = To(0) = 1,
terms of ordergo (the laplaciansAg, and Ag, figuring in
Egs. (32) and (33) become negligible) . In order to avoid this Po(0) = (y — 1)/v, 01.0(0) = qo(Ry, — Rg)/R,,
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Qv0(0) = qgo. Q¢0(0) =1—qoRy/Ry,

Aoy (¢) = Ao, Cpo(0) =1. (40)
Taking into account the assumption of smgal] we set

Gy = 04, L =qod L.

Gy = qodg. Qo= q0Qp. (41)

The state of rest (namely=0,5 = p =T = év =0)is

an exact solution of the reduced system (30)-(31)-(34)-(35)-
(38)-(39). The linearized equations associated with the sys-

tem, approximated by their first term with respecygothen
read

V.i=0 (42)
3l 1

— +Vj+pk = —AQ, 43
o TYPED R, (43)
p+@1— AT +4, =0, (44)
p+ T =—g0|d, + (R/RG, |- (45)
a‘}u ~ Aopn —1 = p Ao ~

Mo |y = —[A N ] AT. (46
o T RS Gy — qoAq, +PrRe (46)
BT 2~ 1 ~ M ~ ~

&L N%p = —— AT (84, - a00d, | @7
o T PR, +RES Gy — 902G, (47)

We have used, in the preceding equations, the notations

F=Qp— —Y—=+Ao N2=T§+1,
y—1
—1R
n=r"="th (48)
y Ry

Becauseﬁg figures in EqQs. (43)—(47) only through the com-
binatioanZ}g, the limit of Egs. (43)—(47) for vanishing, is

oudy convection 2207

Finally, extractingg;: from Eq. (51), the system (42)—(47)
reduces to the following

au* 1
V.u* =0, Vp* *k = —AU*,
o TP TPR=E
P+ T +q, =0, (52)
3g* A
Y (F - AONZ) w* = — =0 AT,
ot R.S
T 1 [Aouw 1
& N = = | 2O S AT 53
o TV TR, [ s T p (3)

The system (52)—(53) clearly exhibits the particularities of
the problem: first, the problem is a double diffusive problem
for a fictitious binary mixture whose equation of state is the
third equation listed in Eq. (52). Second, due to the form of
the right-hand side of the first equation listed in Eq. (53), the
diffusion equations in this medium involve the Dufour effect
(the time derivativedq, /dr doesn’t depend omg; but on
AT* only ). The significance of the first diffusion Eq. (53)
may be understood by the help of the static Eq. (28): effec-
tively, taking into account the shallow convection assump-
tion and the smallness @j, the leading approximation of
this equation reads

Qo = —Q6+Ao+AoTé+yL1 —(r - AoN?) (59)

so thatl’ — AgN? is nothing but the total water gradient in
the medium at rest. Sinc@;, is of orderqo, a rigorous
study would impose to cancEl— AgN? (at the order 0 with
respect t@jp) in the system (52)—(53). In fact, it is equivalent
to solve this system for arbitrary values Bf— AgN? and,
furthermore, to consider small values of this parameter; this
procedure is adopted in the sequel.

4.2 Solution of the linear Rayleighé&ard problem with
two free surfaces

singular (8 equations for seven unknowns only). Because all "€ Rayleigh-nard problem with free surfaces is the sim-

boundary conditions are zero in a free convection problem
this singularity may be avoided by assuming that the vari-
ablest, p, 3, T. G, are themselves of ordep, while g, is

of order 1. Hence, we set

p=4q0p",  qy=q0q,,

dy=a;, T =qoT"

p=qop*,  U=qol" (49)
The first approximation of Eq. (45) now takes the nondegen-
erate form

p*+T* = —q5. (50)
Hence, after Eq. (44) we also have

qg =4y — AoT™. (51)

plest case of boundary conditions associated with the system
'(52)—(53). In spite of its academic character, it allows one to
simply exhibit analytical solutions (in fact, with the help of
the only dispersion equation). The linear stability of the sys-
tem may be studied by a normal modes analysis, by looking
for solutions in the formu* = U(x, v, z)e", withn = £+iw.
Since we don't envisage boundary conditions depending on
the horizontal variables, all modes are assumed in the form:

W™, v*, w*, p*, p*, T*, q3)

=(U,V,W,P,R,T, Q)" 1kx=hy) (55)
whereU, V, W etc., depend ononly, and wheré, &, are the
components of a horizontal wave number vector. We search
the values ofN? andT" such that all possible exponenis
have a negative real part. First, inserting the variables (55)
in the Egs. (52)-(53), the system reduces, for the unknown
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W, to an equation of sixth order with constant coefficients. is satisfied independently af, this property characterizes a
This equation itself takes a simpler form, by introducing the singular bifurcation, because all harmonics of a solution ap-
characteristic parameters pear at the same threshold as the fundamental mode. Hence,
the growth rates of the unstable solutions must effectively be
computed in order to select the mode which effectively ap-
pears in an unstable process (see Sect. 4.3); (ii) oscillatory
Ry = P.R? (F - AoNZ) =—PR.Q,0 T=S5/P.(56)  solutions: two conditions must be satisfied: first, denofing

the pulsation of the solutiofv = iQ2), Q exists only if the
R, is the Rayleigh numbeR), is the moist Rayleigh number, jnequality
7 is the ratio of the diffusivities of the medium. Moreover,

R, = —P,R2N?,

we adopt the notations t{Ao(w—1) + 7+ TP} R, — T2P: Ry - 277" (63)
Ao 4+ T)(Aot + T + TP, - 4
o = nR., K2 _ k2 i /’12, (Aop ) (Aop ")
is satisfied. Second, in the half plane defined by the condi-
D? = d?/dz? — K?, D% = (D?". (57)  tion (63),Q2 s, itself, positive, only if
Rewritten with these notations, the equation satisfied by(Aox + T) Ry — AoRq = 0, (64)
W reads is satisfied. In the R,, R;) plane, both inequalities are
o P, (Agi + T)DOW — 02P. (Ao + T + T P,)D*W simultaneously satisfied inside the angular seéterY of
Fig. 1. A is the polycritical point of the problem. The for-
+ [03fpr2 + K2 {(Aop + T)Ry — AORa}] D2W mulae (62) and (63) allow one to determine the coordinates

(Rua» Rny) Of A, namely
= —0tPK*(Ra — R)W. (58) _27* (Ao +1)?

aa — k]
The boundary conditions are free surfaces conditions at 4 tlho(w =1 +7]
z=0andz = 1. vaye require continuit_y of the temperature 277%  Ao(Aop + T)
and the concentration at the boundaries, the other boundarftr, = 4 tlhoi—D 11l
conditions are standard (see Drazin and Reid, 1981), so that ol
we assume Since the left-hand side of Eq. (54) is of ordgr we see
W — D2W — 0 T-0 that the only realistic values of the numb@;;/(P,Rez) are
- - - small of the same order. Hence, the solutions exhibited here
0=0, in z=0 and z =1 (59) are avallablze only in the region of th&,, Rh_) planef _such
asR,/(P-R?) = O(qo) < 1. Note that this condition is

The boundary conditions (59) are satisfied by particular so0t very restricting, because, in general, the Reynolds num-
lutions of (58) of the formW = W sinnrz,n > 1, where  ber is large. The above analysis also shows that the least

W = const. The dispersion equation takes the algebraic forn¥alue of R in an oscillatory unstable state is that reached
at the polycritical pointA. Hence, in order to satisfy the

(65)

o P (Aop +1)Q% + 0P (Ao + T + TP 0* condition R, /(P,R?) « 1, itis of interest to study the pos-
sible positions ofA when the intensityg of the moisture
+ [osrPrz + K2 {(Aop + )Ry — AoRa}] 0? (even remaining small) varies. We have plotted, in Fig. 2,
the way followed byA in the (R, R;,) plane whenr varies
—otP,K%(R, — Ry) =0, (60) from 0 to+ oco. Eliminating t between the two formulae
(65), the equation of this curve may be easily derived, namely
where we have set Rhg = {(u+DRay—[(n—1D2Ru 2+ 277w R, 1Y%}/ 210).
2 2 2.2 o0 2 For infinite 7, A is located at the poinf = 2774 /4(~ 657
Q%= K" +n°n%, o7 = (29" (61)  ofther,-axis: this pointis just the threshold of the stationary

instability in a pure fluid. For smaller values, and, in particu-
lar, for vanishingr, the trajectory is asymptote to the straight
line of equationR,, = 1Ry, + 277%u/[4(n — 1)]. Hence,

for vanishinggo (large values ot), A is located near th&,, -

axis, and for large values @b (small values of), A is far

{rom the R,-axis. However, the inequalityh/(Per)) <1
remains satisfied due to the presence of the Reynolds number
fn this condition: in the considered problem, the Reynolds
number characterizes the thickness of the unstable layer, and
this thickness should be very small (practically less than a
(Aom + )Ry, — AR, =0, (62) few meters), in order that the inequality is not satisfied. In

Equation (60) is a third-degree equation with respeet,to
similar (but, however, simpler) to the equation from Baines
and Gill (1969) for thermohaline convection. The thresholds
are reached foRe(o) = 0, so that these thresholds are as-
sociated with stationary solutions or purely oscillatory solu-
tions of Eq. (60): the procedure is standard (see Drazin an
Reid, 1981) and leads to the following conclusions: (i) sta-
tionary solutions: Eq. (58) possesses stationary solutions i
the condition
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oscillatory
instability
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Ra=Rh /
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Fig. 1. Linear instability diagram of moist-saturated air in th&,( R;,) plane. In order to exhibit the different regions more explicitly, the
scales are not respected in this figure. The realistic instability is located in the shadedR;;gion)(quL?), so that the polycritical point
may be either inside or outside the instability domain. The straightljne R, delineates the statically stable region. The numerical values
chosen for determine the polycritical poiAtare (units M.K.S.A.):Ly = 2600 16 J/kg,Bq = 288K, cp, = 1004 J/(kfK), R, = 464

JI(kg°K), Ry = 287 JI(kg°K), S = S*/q0 = 721, P, = 0, 76,90 = 1073,

practical problems, because the paints located in a real-
istic region of the(R,,, Ry,) plane, oscillatory instability may
also exist.

4.3 Stable and unstable regions and growth rates at the in-
stability thresholds

The preceding analysis, although allowing one to determine
the instability thresholds, doesn'’t place in evidence the sta-
ble and the unstable regions of th®,, R;,) plane. In order

to localize these stable and unstable regions, because of the
indetermination led by the equality (62), it is convenient to
examine the real part of in the neighbourhood of the thresh-
olds:

(i) Stationary thresholdXA: as a preliminary remark,
we note that a procedure followed by Baines and Gill

(1969) may be applied here: setting
o =0%, R,=K?R,/0°% R} =K?R;/0°(66)
Eq. (60) takes the canonical form
T P20 + P.(Aou + T + T P,)6?
+[(Aop + 7) P — T P-(R), — R0
+(Aop + T)R), — AoR, = 0. (67)

Equation (67) is an algebraic equation of the third de-
gree forf. By examining the sum and the product of
the roots, it is easily verified that, when the inequality

(Aop + T)R), — AR, <0 (68)
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Rh By studying the variations ofAc with respect tor,
1% ° with K being fixed, we deduce from Eq. (72) (see Ap-
/./'/ pendix B) that the greatest value&é is obtained when
100 a n = 1; hence, the most unstable mode is always the
ol fundamental mode. Furthermore, restricting the study
50 /»/' to the caser = 1, we deduce, after some calculation,
/_/‘" the wave numbeK max for which the maximum ofAo,
. /_/" say Aomay, 1S reached:Knay is the only root of the al-
gl gebraic equation
. N (Kmal + 72)3 . 72
600 657 739 1000 1200 1400 1600 1800 2000 Kmaxz Kmaxz
Fig. 2. Locus of the pointA in the (R,, R) plane whent varies
from O to +oco. The numerical values are the same as in Fig. 1. _ t[Ao(k =D+ 1] Rio (73)
The way followed byA whent varies (continuous curve) is almost Ao(Aou + 1)
rectilinear. This curve goes very slowly to its asymptote (dotted
straight line). (the calculations are given in the Appendix B). The cor-

respondingAomax is given by the formula (72) K max
] o ] ] » is a function ofR;q (or, equivalentlyR,q); hence, it
is satisfied, this equation possesses one real positive root 4 rjes along the whole straight linéA, up to A. For

only. Hence, the half plane defined by Eq. (68) isanun-  jnstance, for the numerical values used in Fig. 1, the
stable region with unstabl/e dl/rec_t mode_s. one mode eX-  c\rvesK ey = F(Ruo) and|Aomax/ARn| = G(Rao)
actly for a given value ofR;, R,,), i.e. for fixedR,, Ry, are drawn on Fig. 3, where Fig. 3a shows thaty s al-

and K. In order to determine the growth rates and the ways greater than the valug'v/2(~ 2.221) of the wave
wavelengths of those unstable modes (and the mostun- |, \mperofa regular 8nard convectionk may decreases

stable modes themselves), we linearize Eq. (67) nearthe  \\nenp, increases, until the value is reached at the crit-

threshold defined by Eq. (68): hence, we set ical value ofR,q. Figure 3b shows that the growth rate
of the fundamental mode is much larger than the first
R, = R,o+ AR, R, =Ry 6=0+A6, (69) harmonic ¢ = 2), and that, fom > 3, these growth
rates become negligible. Of course the formula (72) be-
whereR; , and R/, satisfy the relation comes invalid in the neighbourhood of the critical point:
near this point we must use a second order expansion,
(Aoi + TR, — AoRg, (70) which leads to an expression ffomax proportional to

(ARp)Y? (see later).

and whereA R, and A¢ are assumed small. After lin-
earizing Eg. (67), and taking into account the relation
(69), we obtain the following relation betwe&R; and

(i) Oscillatory thresholdAU. Since the instability near the
thresholdAU is a regular problem, the instability al-
ways occurs for the fundamental mode= 1, and the

AG corresponding wave numb&i, = 7/+/2: this situation
is analogous to that of the classical RayleigbrBrd
Ao(Aoit + T)AR], 9 ! yleigen
A = - .(71) convection. However, the preceding analysis is useful
Py {t[Ao(u — 1) + 7] Rjg — Ao(Aop + T} in order to determine the growth rates of the oscillating

unstable modes; we set

After the second equation listed in (65), becaRgg <
Ry, along the half-straight lin&C A, the denominator
of Eq. (71) is negative alongd A. Hence, for negative , , i )
AR;, Ad is real and positive: the stable region is lo- where (Ifao  Rj,0) are the coordinates ,ofa pointat,
cated overX A, and the unstable region is located under ~ 2NdAR, der)otes a small variation &, from an arbi-
XA (Fig. 1). Moreover, Eq. (71) allows one to find the trary valueR;,. We set, moreover,

most unstable mode in the following manner: first, we .

deduce from Eq. (71) by reinserting the variahieand 0 =lido+ A0, (75)
Ry, with the help of Eq. (66)

R, = R,o+ AR,, R}, =Ry, (74)

wheregy is real, and we assume thab is small. Since
igo is an exact imaginary root of Eq. (67, andR),,

_ 2
Ao = Qn satisfy the relations

Ao(Aort +7)(K2/ 0, ARy (
P {t[Ao( — 1) + 7] (K2/ Q45 Rug — Ao(Aop + 7))

72
) t{Ao(u — 1) + 7 + TP IR,y — T3P R}
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= (Aop +1)(Aop + T+ TFp), (76) Ko
2 1 1 / -3
$o” = P [Aon + 17— T(Ryg — Rjyp)] — = Uk
r —
8 \
Aop + )R}y — AoR, —
_ (Aop +T)R;, o — Ao a0 77 \\
Pr(Aop +T+TF) — . Kooy = 4,44 = 2TIV2
Now, linearizing Eq. (67) for the unknowné and us- s Ko =222 =002
ing Eq. (76) and the first of (77), we obtain after some -
calculation 0 79 12665
A =AY +iAp, (78) @
B - [AO(M B 1) +T4+ 'L'Pr] AR; 10%A0,.. /ARK
2[(Aop + T+ TP)2 + 12P2¢90?] L
g — [t2P%¢0® + Ao(Aon + T + TP ] AR, 79)
260P; [(Aop + T + TP)2 + 12P,%p¢?]
333
After Eq. (79), for positiveAR!, Ay is always posi- Vs s
tive along the threshold U. In fact, Ay is nothingbut
some scaling of the real growth raRe (Ao ); hence, us- s R

0 790 12665

ing Eq. (66) to reintroduce the variablesR,, R;, K,

and noticing that, for the oscillatory instability{ < = Fig. 3. Wave numberKmax () and growth rates) of the three

K% = n?/2, we obtain first stationary unstable modes. The numerical values are the same
as in Fig. 1 (the scales are not respected on the figurRfgy. The
Re(Ao) = (3/2)712A1// = x-axis is taken along the stationary threshold, the variable being
the Rayleigh numbeR,q. The figure is invalid in the vicinity of
t[Ao(w —1) + 1+ 1P] the asymptotes and, in particul®; , (shaded region), because the
. (80) linearized formula (71) becomes invalid. It is also invalid when

2 2 2p 24 2
Om?[(Aop + 7+ TP)?+ TP %00’ AR, Ra > Rag, because this region is already unstable. WRgp —

_ _ —00, |Ac/ARy| — 0 very slowly (asR,o|~Y/?).
We have drawn on Fig. 4, for the same numerical val-

ues as in the preceding figures, the cume /AR, | =

F(R,0) along the half straight liné/ A. Note thatgg? (Ao + 1) — r(R;a — Ry, =0,

can be extracted, in terms &g, from the relations

(77). In the same manner as in Fig. 3, the neighbour- t{Ao(u—1) +7+TP}R,, — fZPVR;m

hood of the critical point is singular, but, after Eq. (79),

only the phase becomes singular at this point. = (Ao + ) (Aop + 7 + TP, (82)

(iii) Neighbourhood of the critical point. Near the critical . ) . _—
point, the linear expansion of the dispersion equation js ~ &re satisfied. We first rewrite Eq. (67) by separating its

invalid, for the stationary case, as well as for the oscil- real part and its imaginary part, taking into account the
latory case. Sinc&e(Ao) is small in this neighbour- relatlo_nS (82). Hence, we obtain the two following real
hood, we now set equations

2 3 2 2
R, =R, +AR,, R, =R, +AR), TPEAYS — 3TPIAY AP

6 =AY +iAg, (81) Pr(Bop+ T + TP (AY? — AgP)

. —1P.(AR, — AR))A
where AR,, AR}, Ay, Ap are assumed small. Since TP (AR, WAV

the critical point is a stationary threshold and an oscil-

’ o
latory threshold simultaneously, the following relations (Bop +7)AR), — AoAR, =0, (83)

aa

(Ao + 7)R},, — AoR,, =0, A¢{31PrAw2 YN
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AoAR’ — (Aou + T)AR!
0AR, — (Aop + DAKR, +o(AR), ARy).  (87)
Ao+t + TP

10°x Re(40)/4Ra

After Egs. (85) and (87), the order of magnitude of the
growth rates iSO(AgAR, — (Ao + T)AR,)Y? in the
stationary region, and(®@[Ao(x — 1) + © + TP, ]JAR, —
2P, ARy,) in the oscillatory region. The three expansions
(85), (86) and (87) may be asymptotically matched without
573 difficulty, either with Eq. (71) (for the stationary instabil-
ity), or with Eq. (79) (for the oscillatory instability). The
behaviour of the oscillations is given, in the latter case, by
Rao Eq. (86). Finally, in the(R,, Ry,) plane, the stable region
is the region inside the angular domaM U (Fig. 1). The
thresholdX A leads to direct instabilities (stationary onset).

Fig. 4. Growth rate of the o_scullatory most unstable _mode. }_he The thresholdAU leads to unstable oscillating modes (os-
axis is taken along the oscillatory threshold, the variable being the

moist Rayleigh numbeRy,o. The numerical values are the same as cillatory onset). The growth rates of these mades are those
in Fig. 1. WhenR,g — 0o, Re(Aa)/AR, — 0 asRag L. calculated above.

0 790

4.4 The fleecy configurations of clouds

2(A P)A AR/—AR/}=0. 84 o _ .
(Ao +T+TP)AY FT(AR, o) (84) It is of interest, in order to understand the role of the diffu-

) ) sion in the medium, to compare the instability regions in the
According to Eq. (84), we separately consider the casegg ' g,) plane, to the static instability regions. In fact, it

A¢ = 0andA¢ # 0. We obtain the following conclusions:  ig yell-known (see Durran and Klemp, 1982a or Bois 1994)
(@) if Ap # 0 : A¢? may be extracted from Eq. (84) and that 'Fhe moist Brunt-¥isala frequency of the medium, say
inserted in Eq. (83). This equation is then an equa-Vm + IS given by the formula
tion of the third degree for the unknowfy. Since N2 = N2[1+ 0(q0)]— Q.o ~ — R4 [1+ O(qo)]+Ry.(88)
we look for solutions of Eq. (83) only for smalAR),
and AR/, approximated values of the roots can be
looked for. We obtain one positive root if the condition
TP, AR}, —[Ao(n— 1)+ 7+t P ]AR, is negative; this
condition corresponds to a poifR;, R)) located be-
yond the oscillatory thresholdU of the(R/,, R}) plane
(see Fig. 1). In this half plane, the conditiag? > 0 is
satisfied if the inequalityAou + ) AR), — AgAR), > 0
is satisfied. Finally, the corresponding modes exist if the
figurative point(R,, R)) is located in the oscillatory re-
gion previously determined on Fig. 1. The values of
AV, A¢ are

so that the neutral line of static stability, in th&,, R;)
plane, is (at ordegg) the straight linerR;, = R, (the dotted
line of Fig. 1). Hence, the stationary instability is partially lo-
cated in the statically stable region (the angular segtor

of Fig. 1). In this region, the instability regime which sets in
is entirely analogous to the well-known “salt fingers regime”,
existing in the thermohaline convective instability (see Nield,
1967 or Huppert and Turner, 1981). Indeed, as said formerly,
this regime is a very slow motion of dry air and liquid water
only; effectively, the variableg, andg; defined in Eqg. (29)
are of order , while the variablej,, (after Eq. 49) is of or-
dergo®. Hence, rather than “moisture fingers”, the solution

t[Ao(u — 1)+ 7 +P] AR — ‘L'ZPrAR;l depicts, in fact, the fleecy appearance of clouds in an air at

Ay = the rest.
2(Aop + T+ TP)?
45 Thecass* = 0(1)
+0(AR},, AR)), (85)
As we have seen above, the ca%e= 0 (1) may be deduced
TP AY? = from the preceding analysis by examining the behaviour of
its solution whenS — oo; in fact, this case corresponds to
(Aot + T)AR}, — AgAR), T — oo in the former formulae. When — oo, the pointA

+ o(ARj,, AR}). (86)  ofthe(R,, Ry) instability moves along the cun@D of this
plane, toward€” (see Fig. 2 and Fig. 5b). This point becomes
. ) e . : tly the pointC whent = +oo. Since the instability
(b) if A¢p = 0 : Ay is directly given by Eg. (83), which exac . X . L
possesses a solution only if the inequalitXox + thresholds are delineated by straight lines jointhgnd O
T)AR, — AoAR. < O is satisfied: this corresponds to a itself, the corresponding positions of these thresholds may
h a = ’ . . .p e
figurative point inside the stationary unstable region of _be Ve“l'_ _easngsfollo(\:/lveg‘i g/lore precisely, for infinitethe
Fig. 1. In this case the solution reads inequalities (63) and (64) become

P, 2774
‘L'PrAI//2= Ry > 1+PrRh+T7 Ry > 0, (89)

Aop+7t4+ 1P
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while the equality (62) now reads Rh
R, =0. (90) U D

After Eq. (90), at order O with respect t@, the station- e
ary instability threshold becomes tiig -axis itself: the sta- e
ble region is the half plan®, > 0, the unstable region is s
the half planeR, < 0. From Eg. (89), the oscillatory un-
stable region is the anglEéCY of the (R,, R;) plane (see 90 -
Fig. 5¢), whereC is the pointR, = R,q = 277*/4 of the _
R,-axis. In fact, for vanishing moisture, i.ep — 0, the .
R,-axis forR, > R,q is not a singular bifurcation line. At
order 0 with respect tgg (Fig. 5c) the thickness of the real-
istic region of the flow is zero, so that this region reduces to
the R,-axis itself; stationary instability is, in this case, irrel-
evant. On the contrary, oscillatory instability is realistic: the U D
stable part of ther,-axis isR, < R,q, the unstable part is v
R, > R,q. Moreover, since the unstable region corresponds .
to the boundanf? = 0 of the “oscillatory” instability, this e
instability is, in fact, stationary. We recognize the instability S Y
scheme of the classical Rayleigléfard convection, where e
the instability is due to the only Rayleigh number. This be- oy
haviour is regular, since, for vanishigg, the fluid becomes 0(90) -

a pure fluid. At order 1 with respect tp (Fig. 5b), the re- .
alistic region of the flow is a very narrow strip around the 0 Ray =657 z
R,-axis, and the critical poin is distinct of C. The case

T — oo also allows one to understand the singularity occur-
ring if we directly assumégo <« 1, S* = O(1)} in Egs. (20)

to (24): in this latter case Eq. (53) is replaced by

Z
[9) Ray =657 z
(@)
Rh

(b

Rh

8*

gy 2
—° 4 New* =
o VY = BR

AT* (91)

and the problem is now governed by the system [(52), (91)],
which reduces to the equation

o P,D®W — o?P,(1+ P,)D*W+ %-0 0 Ray =657

[0313,2 + Kth] D2W = —o P, K2(Ry — R)W. (92)
L_et us look for stationary solutiong of Eg. (92): suph _solu— ro?.di.cfeu;siEZ;;YevsﬁzlﬂzgS—O>f t(;mzaonsdcynféﬁlye;nsfbigo;bﬁsehom
tions (except the state of rest) exist onlyRf, = 0, i.e if  hickness of the realistic region decreases so that, for vanigging
I' — AoN? = 0. The first equation (91) degenerates in this the oscillatory instability region progressively goes to the stationary
case, so that the system (52)—(91) is now a system of 6 scalafistability region of the classical RayleigheBard convection (in
equations for seven unknowns. However, we can note thatprder to exhibit the different regions more explicitly, the scales are
in this case, the changes of variables defined by (49) are suot respected on the figure).
perfluous. The original variablds 5, 5, T are solutions of
the system (42), (43), and the two equations
1 3 Finally, in this case, a stationary solution of the full problem

= AT. (93) exists only ifR, > 277%/4, instead of the fullR,-axis, as

PrR, shown above. Contrary to the stationary solutions, the oscil-
The first equation listed in Eq. (93) is the leading approxima-latory solutions are not singular in this case. Moreover, if we
tion of Eq. (45), and the second is the stationary version oflet the heat conductivity go to zero (i.e. f&y — o0), tak-
the second equation in Eq. (91). Equations (42), (43), (93)ing into account the definitions (56), the oscillatory thresh-
constitute a complete, regular set farp, 5, T, which are  old defined by Eq. (89) becomesN?2 = —(I' — AgN?).
solutions of an exact stationary Rayleigksard problem.  Furthermore, lefR, go to infinity and the frequencie® of

o+ T =0, N2
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the oscillating modes go to zero (for instance, after Eq. 57)to T andév being, in this case, the same in both Eqgs. (99)
so that these modes become stationary, and the conditioand (100). The singularity of Eq. (98) is the same as that of
Q2 > 0 has no sense. The oscillatory instability threshold Eq. (45), and may be similarly treated. Finally, defining the
is, in this case, the whole straight lidgV of Fig. 1, i.e. ex-  parameters

actly the static threshold. Hence, the oscillatory instability is

the regular dynamical degeneracy of the static instability ofRa =

the medium. * = §*/P,, (101)

—P,R2N?, R = —P,R%Qy,

and looking for solutions in the form (55), we obtain @t
the equation

Because a cloud is always confined between layers of cleabsW
air, it is of interest to match the results of the preceding anal-
ysis with those of the corresponding analysis in unsaturated
air: it is simple to repeat the analysis in this case. In such
a medium, Eq. (3) remains valid, taking into account that,

5 Convection in unsaturated air

—o(1+ P, +1t*P)D®W

+02P,(1+ P, + " P,)D*W + {—U3P,2r*

now, ¢, = ¢, . The diffusion Eq. (11) also remains valid, but —K*[(Ry — R)T* PRy /Ry + Ra]} D*W
Eq. (16) is replaced by )
dT  1dp =0K“T"P,[Ryi+ (Ry — R)R," /R | W. (102)
Cp— — —— =
Pdr  pdr Equation (102) with boundary conditions (Eq. 59) may be
X discussed as follows: (i) stationary solutions: such solutions
—AT — qoVe.V(hg — hy) + ©. (94)  existif the condition
0
% _ " 4
The scaled form of the diffusion equations now read Raz ="(Ro = Re)Ri™/ Ry + 27" /4, (103)
dq 1 1 is satisfied. In th&R,, R,”) plane, the inequality (103) de-
d_t” =2 S*_Aq”’ (95) fines a half plane bounded by the straight liKé&r’ (see
e P Fig. 6a), with the unstable region mainly corresponding to
dT 1ldp 1 1 positive values ofR, and positive values oR;,”; (ii) oscil-
Par T ;E = PR, ;AT Iator)_/ _solutions: deno'Fin_gZ th_e pulsa‘_[ion(o_ = iQ) two
conditions must be satisfied: fir§2? being given, solutions
-11 2 exist only if the inequalit
X v, VT + o, (96) y qualtty
ReS™ p Re *P, [t*(1+ P)Rq + (L+ T*P)(Ry — ROR/R,]
Since there is not a change of phase in the medium, the static A+HA+P)A+*P)
Eq. (28) is replaced by the equation
27r*
R, — R, 0 () — y z (104)
R, ~'%°7 (v = DTo©) o _ _
is satisfied. Second, in the half plane defined by Eq. (104),
R RA()  TL©) Q2 is, itself, positive only if the inequality
- [Qg()(;) + —UQvo(é“)} ( 0 2 > L)
R, Ro(¢) ~ To(%) ™1+ t*P)
«+———— (@R, — Ry)R," <0, (105)
The Boussinesq analysis of the problem does not require one 1+ P

to use the parametérinstead ofS*. The reduced linearized g satisfied. In theR,, R,") plane, both conditions (104)
Egs. (42) and (43) remain valid, while Egs. (45), (46), (47) and (105) are simultaneously satisfied inside the angular sec-

are replaced by tor U’A’W’ of Fig. 6. The pointA’, which also lies on the
L R, — R, - straight lineX’Y’, is the polycritical point. Figure 6 shows
p+T= 0 4w (98) the behaviour of the system when the parametérand P,

8

are almost equal (heres* = 0.72, P, = 0.76). In Fig. 6a
= . the variables ar®, andR;” The coordinates of\’ are very

T Qo RLS*A‘}”’ (99)  large (@’ is far from the origin), and the angl& A’ W' is very

¢ sharp. MoreoverQ? is small inside the domait/’A’W’.
9T 5. 1 B In Fig. 6b the variables ar&, and R, (itself defined in
5 TNw= R, AT. (100)  Eq. (56): R, is a relevant variable if we consider a problem

where both unsaturated and saturated fluids coexist, such as
Equations (99) and (100) explicitly show the disappearancehe convection of a cloud in unsaturated atmosphere. For in-
of double diffusivity whenS* = P,, the operator applied stance, if we consider the convective instability of a cloud
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Fig. 6. Instability diagram in clear air(a) in the (R,, R;,”) plane; (b) in the (R,, R;,) plane. The numerical values are the same as in

Fig. 1. In Fig. 4a the stability paramet&f is defined with respect to the total moisture of the medium. Because the Schmidt number is very
near the Prandlt number, the double diffusion is weak (almost absent) in this figure, the oscillatory instability being confined in a very sharp
angular sectot/’ A’W’. In Fig. 6b, the parametet;, = —R;,” + AgRy + P, R.2[Ag—v/(y —1)]is used instead a;,”, in order to be able

to match together stable and unstable regions of both saturated and unsaturated cases, as it occurs in the coupled instability of two layers ¢
fluid. In the latter case, three valuesRyf are considered: (iR, = 1 (stable region inside the ang}eF1Y’1); (i) R, = 150 (stable region

inside the angle&X FoY'5); (i) R, = 300 (stable region inside the seci¥zA’3Y’3): in that case, the instability of the clear air may be
oscillatory (threshold3A’3).

surrounded by two layers of unsaturated air, the two stability6 Concluding remarks

diagrams of the clear air layers and of the cloud itself may be

superimposed (Fig. 6b); the stability is confined in the regionye have exhibited, in this paper, some singularities of the
XFY"or XFA'Y" of this figure, according to the values of jnsiapility phenomena related to the double diffusive struc-
the Reynolds number. The figure also shows that the instabilg,re of the moist-saturated air. The most important conclu-
ity of the cloud is mainly due to moisture, while the heating sjon concerns the law of molecular diffusion in the medium:
first destabilizes the surrounding air. following Onsager’s assumptions, generalized expression of



2216 P.-A. Bois and A. Kubicki: Double diffusive phenomena in cloudy convection

Fick’s law of diffusion is given (Eq. 13). Furthermore, with by the assumption of a larggg, in such a manner thatg?

the magnitudeyg of the water concentration assumed to be go remains of order unity (Einaudi and Lalas, 1973); such a

small, the cases where this law may be simplified or not sim-new assumption would not change the basis of our analysis.

plified are also studied. With the parametgrbeing taken

as a small parameter, we have made an asymptotic expan- ) L .

sion of the equations with respect to that parameter. It ig*PPendix A Derivation of the molecular diffusion

interesting to note that the method we used in order to derive Eq. (13)

Fick’s law (13) also indicates how one would arrive at other

laws of diffusion (in particular viscoplastic diffusion: such

a law is not necessarily irrelevant if we consider that, very

often, the motion of clouds seem like rigid, solid motions).
From a physical point of view, the main conclusions are

the following:

The diffusion velocities in a fluid mixture are related to the
gradients of concentrations by phenomenological relations
(in classical mixtures: Fick's law). The general way to ob-
tain such relations consists of calculating the rate of the en-
tropy production (the dissipation in the medium): by assum-
ing that this dissipation is a quadratic positive form (it is the
(i) There exist stationary, unstable states, analogous t®o-called Onsager hypothesis), we obtain the most usual cor-

the salt fingers of the thermohaline convection: in the respondences between the variables. In the present medium,

present case, these states describe fleecy clouds (rolfenoting the dissipation b§, we obtain after some calcula-

or cells), and mainly involve motions of the dry phase tion

and the liquid phase of the mixture. These stationary q.VT

states are due to the combined influences of moleculaf® = i Dij — T — P V7 (8e — &) =

diffusion in the system and change of phase.
D, + D, + gy, (A1)
(i) Oscillatory instability may occur, mainly because of the
heating (Rayleigh number). The classical destabilizingWherer;; denotes the stress tenspy,; denotes the deforma-

influence of the Rayleigh number in a pure fluid is the tion rate tensorV r denotes a gradient at cons.tant tempera-
limit of the oscillatory instability for vanishing mois- ture,q denotes the heat flux through the medium, ghds
ture. Moreover, it is this instability which generalizes related tog by the formula

in a dissipative medium the eventual statically (nondis- q =q— peVglhy — hy). (A2)

sipative) instability of the medium. . o . ) o
The relation (A1), which is not straightforward, is derived in

(i) By matching the results of a saturated instability with Bojs (2002). The three dissipations,, ®,, ®4, are the vis-
those of the corresponding unsaturated instability, Wecoys dissipation, the thermal dissipation, and the dissipation
have shown, as a application, that stationary instabil-hy molecular diffusion. The second law of thermodynam-
ity of a cloud can develop in a stable unsaturated atmo4cs stipules thatb must be positive for any thermodynam-
sphere, mainly because of the moisture gradient, whileica| process applied to the medium. The three dissipations
the surrounding air becomes unstable, mainly because ¢, &, are written, in Eq. (A1), using independent pan-
of the temperature gradient. els of variables, so that they must separately be positive: the

From a mathematical point of view, although the disper- Onsager hypothesis corresponds to the simplest case where
sion equation is of the sixth degree (instead of the eighth delhls condition is sat|sf_|¢d. After th|_s assumption, the d|s§|pa—
gree) this problem is more singular than the analogous probtion appears as a positive quadratic form, so that the variables
lem of the thermohaline convection in the oceans. Physicallyfiguring in the quantitiesb,, ®,, @, are related by linear
this singularity expresses that the wavelengths of unstabl&orrespondences: first, writing, as quadratic form leads
modes strongly depend on the values of the Rayleigh numbei© the classical Navier-Stokes equations for the whole mix-

Some assumptions necessary for the modelling have beeht this law does not affect butq’; henceq'= —kVT (k
made in the paper: the first, which is the assumption of aiS the thermal conductivity) ; third, writing; as a quadratic
small Schmidt numbes*, is used in order to find Eq. (58). form of its arguments provides the generalized Fick’s law,
This assumption is only an artifice related to the mathemati-"amely
cal _proce(_jure. The Schmidt numbgis a Sc_hml_dt number Ve = —DV7(gg — g) =
defined with respect to the total water density (instead of the
total density of the mixture). 9 0

—D— — Vg, — D— — Vg,,(A3

A second mathematical assumption is that of the “Boussi-  dq, (82 = 80)7.4, Vs Y (8¢ gv)T,qg qv,(A3)

nesq free surfaces” bounding the medium. This assumptior\}vherev denotes a gradient taken at constant temperature
facilitates the determination of the instability thresholds, but T 9 b '

also allows one to qualitatively estimate the behaviours of th andD is a scalar coefficient. The last expression (A3) results

. . . - Srom the Clausius-Clapeyron relation (9). Furthermore, the
solutions of problems involving other boundary conditions. o - .
Fourier's law joined to (A3) yields

The last assumption, which is that of a smg] is straight-
forward: this assumption is classically used, supplemented) = —kVT — (hy — h,)
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9
qy

(8¢ — 8)T,q qu} .(A4) The derivatival (Ao ) /dA is positive if 0< X < Ag, where
dv
ro = Ao(Aop + 1) /{P{lt[Ao(n — 1) + T]Rio}}. Hence,

. : . since) is a decreasing function af, Ao is also a decreas-
The expression (A4) of the heat flux, inserted in the energy. function ofn. Einallv. the areatest value dfo is that
equation, provides Eq. (15). Now, assuming that the medium 9 - Y. 9 o
. . . : ... reached for the smallest valuemafnamelyn = 1. Now for
is a mixture of polytropic gases with constant heat capacities .
we have n =1, EQ. (71) may be rewritten as

B ‘ P, Ao) B
" |Ao(Aop + T)ARy|

d
|:D_(gg - gv)T,qUVCIg +D
9q,

hg = cpg(T — Op), hy = cpo(T = Oo) + Lyo,
hL = CL(T - ®O)7

K2(K2 4+ 7?)
|tT[Ao( — 1) + T1K?Ryg — Ao(Aop + T)(K2 4+ 72)3|

8s(0g, T) = R,T IOg(pg/logo) (B2)

Hepg (T = ©0) = ey T10g(T/ O0), After some calculation, the derivativi$ /d K ? vanishes if the

gu(pu, T) = Ry T 10g(py/ puo + ¢ pu(T — Oop) following equality is satisfied:
2 23 2 2
—c T 10g(T/O0) + Luo(L— T/®o, ) (KZ K7 —mt) _ tlAol =D ¥ TR0 g
K4 Ao(Aop + 1)
§1(1) = (T = ©o) — e T10g(T/Oo). (A5) Equation (B3) is nothing but Eq. (73). Whét varies from
Using (9) we deduce from (A5) 0 to + oo, the left-hand side of Eq. (B3) is a monotonic
function of K2 varying from—oo to + oo (its derivative is
(0/09¢)(8g — 8)T.q, = —ReT/qu, always positive); hence, Eq. (B3) always possesses a unique
5/ _ R AB root. This root defines the valuénax Of K, determining the
(0/090)(85 — 80)1.q, = —RsT/qv. (A6) greatess, saydmax and, hence, the greatest, sayAomax.

Finally, for a mixture of polytropic gases, Eg. (A3) takes the Kmax s easily determined by a numerical method.

form AcknowledgementsThe authors are grateful to two referees for
R,T R,T their valuable comments and their fruitful suggestions.
PgVg = _Dq_V‘Ig +D q Vqy = Topical Editor I. P. Duvel thanks two referees for their help in
§ v evaluating this paper.
DR, TV (q—") —C*V <@> . (A7)
v \dg e References

- . . . e
T_he new c?o.efflmenC = DRyTqg/qvls the effectlye dlﬁ,u Baines, P. G. and Gill, A. E.: On thermohaline convection with
sion coefficient. In a problem of shallow convection this co-  |iyear gradients, J. FI. Mech., 37, 289-306, 1969.

efficient may be assumed constant. Another form of Eq. (A7)getts, A. K.: Cloud thermodynamic models in saturation point co-

IS ordinates, J. Atm. Sc., 39, 2182-2191, 1982.
% Bois, P. A.: Asymptotic aspects of the Boussinesq approximation
pgVg =C (qu - —ng> , (A8) for gases and liquids, Geoph. Astr. FI. Dyn., 58, 45-55, 1991.
dg

Bois, P. A.: Boussinesq wave theory in fluid mixtures with applica-

whereC = C*/qg. Equation (A8) is the diffusion law used t_ion to clou_dy atmvosphere, Int. J_. Eng. Sc 32_, 281—?90, ;994.

along our paper (formula (13)). The form used by BougeauItBof'S’ P.A. Sé“gllj"'_"mzde 'a: rbO"?lg'e de Fair h“m'gesgj‘;a’gtd'g _

for the diffusion law is Eq. (A7), taking into account that the usion moeculaire dans 1es miieux nuageux, &..|R.A¢.Se. Fars,
. .. . 330 Mécanique, 627-632, 2002.

concentrations, in his paper, are scaled by the density, of dr)é

o d of th I d ! h ) bl ougeault, P.: Modeling the trade-wind cumulus boundary layer.
air (instead of the total density as here: our variablgy, Part I: testing the ensemble cloud relations against numerical

corresponds to Bougeault's varialig). data, J. Atm. Sc., 38, 2414-2428, 1981a.
Bougeault, P.: Modeling the trade-wind cumulus boundary layer.
Part II: a high-order one-dimensional model, Atm. Sc., 38, 2429—

Appendix B Variations of Ao with respect ton and K 2439. 1981b.
in Eq. (72) Bowen, R. M.: Theory of mixtures, in Continuum Physics, vol. 3,
. ) 2 2 2 2.3 edited by: Eringen, A. C., Academic Press, New York, 1-127,
K being fixed, we sek = K</(K° + n“m“)°. We have 1976.
0, = 1/(K?/*\1/3), so that Eq. (72) may be rewritten Bretherton, C. S.: A theory of nonprecipitating convection between
Ao — two parallel plates. Part I: linear theory and cloud structure, J.

Atm. Sc., 44, 1809-1827, 1987.
Bretherton C. S.: A theory of nonprecipitating convection between
1 Ao(Aou + T)A%BARy, two parallel plates. Part II: nonlinear theory and cloud field orga-

K23 p, {1 [Ao(w — 1) + T] ARno — Ao(Aop + ‘E)} (B1) nization, J. Atm. Sc., 45, 2391-2409, 1988.




2218 P.-A. Bois and A. Kubicki: Double diffusive phenomena in cloudy convection

Bretherton, C. S. and Smolarkiewicz, P. K.: Gravity waves, com- Kambe, T. and Takaki, R.: Thermal convection in gas-droplet mix-
pensating subsidences and detrainment around cumulus clouds, tures with phase transition, J. FI. Mech., 70, 89-112, 1975.

J. Atm. Sc., 46, 740-759, 1989. Knobloch, E. and Proctor, M. R. E.: Nonlinear periodic convection

Deardorff J. W.: Usefulness of liquid-water potential temperature in  in double diffusive systems, J. Fl. Mech., 108, 291-316, 1981.

a shallow-cloud model, J. Appl. Meteor., 15, 98-102, 1976. Kubicki, A. and Bois, P. A.: Structure double-diffusive des

Deardorff, J. W.: Cloud top entrainment instability, J. Atm. Sc., 37,  équations de la convection en air humide satwrec application
131-147, 1980. I'air nuageux, C. R. Ac. Sc. Paris, 328, Ilb, 317-322, 2000.

Drazin P. G. and Reid, W. H.: Hydrodynamic stability, Cambridge Kuo, H. L.: Convection in a conditionally unstable atmosphere, Tel-
Univ. Press, Cambridge, 1981. lus, 13, 441-459, 1961.

Dudis, J. J.: The stability of a saturated stably-stratified shear layerKuo, H. L.: Further studies of the properties of cellular convec-
J. Atm. Sc., 29, 774-778, 1972. tion in a conditionally unstable atmosphere, Tellus, 17, 413433,

Durran, D. R. and Klemp, J. B.: On the effects of moisture on the 1965.

Brunt-Vaisala frequency, J. Atm. Sc., 39, 2152-2158, 1982a. Merceret, F. J.: A possible manifestation of double diffusive con-

Durran, D. R. and Klemp, J. B.: The effects of moisture on trapped vection in the atmosphere, Boundary-layer Met. 11, 121-123,
mountain lee waves, J. Atm. Sc., 39, 2490-2506, 1982b. 1977.

Durran, D. R. and Klemp, J. B.: A compressible model for the simu- Nield, D. A.: The thermohaline Rayleigh-Jeffrey’s problem, J. Fl.
lation of moist mountain waves, Mon. Weather Rev., 111, 2341- Mech., 29, 545-558, 1967.

2361, 1983. Ogura, Y.: The evolution of a moist convective element in a shallow

Einaudi, F. and Lalas, D. P.: The propagation of acoustic-gravity conditionally unstable atmosphere: a numerical calculation, J.
waves in a moist atmosphere, J. Atm. Sc., 30, 365-376, 1973. Atm. Sc., 20, 407-424, 1963.

Hijikata, K. and Mori, Y.: Forced convective heat transfer of a gas Spiegel, E. A. and Veronis, G.: On the Boussinesq approximation
with condensing vapor around a flat plate, Heat Transf. Jap. Res., for a compressible fluid, Astr. J., 131, 442-447, 1960.
2,81-101, 1973. Zemansky, M. W.: Heat and thermodynamics, 5th ed., Mc Graw

Huppert, H. E. and Turner, J. S.: Double diffusive convection, J. FIl.  Hill, New York, 1968.

Mech., 106, 299-329, 1981.



