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Abstract. Using classical rheological principles, a model
is proposed to depict the molecular diffusion in a moist-
saturated dissipative atmosphere: due to the saturation con-
dition existing between water vapor and liquid water in the
medium, the equations are those of a double diffusive phe-
nomenon with Dufour effect. The double diffusivity is im-
portant because of the huge diffusivity difference between
the liquid phase and the gaseous phase. Reduced equa-
tions are constructed and are then applied to describe the lin-
ear free convection of a thin cloudy layer bounded by two
free surfaces. The problem is solved with respect to two
destabilizing parameters, a Rayleigh numberRa and a moist
Rayleigh numberRh. Two instabilities may occur: (i) os-
cillatory modes, which exist for sufficiently large values of
the Rayleigh number: these modes generalize the static in-
stability of the medium; (ii) stationary modes, which mainly
occur when the moist Rayleigh number is negative. These
modes are due to the molecular diffusion, and exist even
when the medium is statically stable: the corresponding mo-
tions describe, in the moist-saturated air, configurations such
as “fleecy clouds”. Growth rates are determined at the in-
stability threshold for the two modes of instability occurring
in the process. The case of vanishing moisture concentra-
tion is considered: the oscillatory unstable case appears as
a singular perturbation (due to the moisture) of the station-
ary unstable state of the Rayleigh-Bénard convection in pure
fluid, and, more generally, as the dynamical perturbation of
the static instability. The convective behaviour of a cloud in
the air at rest is then examined: the instability of the cloud is
mainly due to moisture, while the instability of the surround-
ing air is mainly due to heating.
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1 Introduction

The role of the moisture on the dynamics of atmospheric air
has been studied several years ago, from various points of
view. For instance, Dudis (1972), Einaudi and Lalas (1973),
Durran and Klemp (1982a, b; 1983), considered its influence
on the Brunt-V̈ais̈alä frequency and inviscid flows (such as
mountain lee waves). Einaudi and Lalas and later, Durran
and Klemp, focused their attention on media with a non-
constant distribution of moisture with respect to the altitude.
Deardorff (1976, 1980), and Betts (1982) constructed re-
duced schemes using the so-called “liquid-water moist po-
tential temperature”: such schemes were used by Bougeault
(1981a, b), in order to study the moist atmospheric turbu-
lence. From another point of view, Kuo (1961, 1965), Ogura
(1963) studied convective instability in dissipative media.
More recently, Bretherton and Smolarkiewicz (1987, 1988,
1989) considered the motion, the appearance and the disap-
pearance of clouds under moist convection effects. Some
consequences of the diffusion taking into account the mi-
crostructure of the medium have also been exhibited by
Kambe and Takaki (1975), and Merceret (1977). In these
works, the double diffusive characteristics of the medium are
either absent (when dissipation is neglected in the medium),
or not really taken into account.

In fact, it has been admitted a long time ago, that,
since the diffusivities of dry air and water vapor are almost
equal, double diffusion has no important effect on the atmo-
spheric flows (see, for instance, Huppert and Turner, 1981).
This property is valid in unsaturated atmosphere, where the
molecular diffusion equation takes the classical form of the
binary diffusion of one constituent (say, the water vapor) in
the whole mixture. The diffusion, in this case, follows the
well-known Fick’s law. In saturated atmosphere, the diffu-
sivity of the liquid phase also plays a role in the phenomenon.
This diffusivity is not of the same order of magnitude as
that of the gaseous phase, and the laws governing the phe-
nomenon are not yet well known. In practice, two models
of molecular diffusion may be found in the literature: (i) a
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binary Fick’s law is chosen for the diffusion of the total wa-
ter in the total mixture{air + total water} (e.g. in Bretherton’s
papers); (ii) a binary Fick’s law is chosen for the diffusion of
water vapor in the gaseous phase, i.e.{water vapor + dry air},
the diffusion of the liquid water being neglected: this law
(see Hijikata and Mori, 1973) is also adopted in works deal-
ing with industrial thermodynamics, and a variant may be
found in Deardorff’s papers and Bougeault’s papers. Hence,
the first question set in the present paper is that of the choice
of a law of molecular diffusion: by applying the basic princi-
ples of thermodynamics and of rheology, we construct a dif-
fusion law stating precisely the validity of Bougeault’s for-
mulae. A simplified form of this law is also discussed in the
case of weak moisture.

Another singularity arises in the analysis of the phe-
nomenon of moist convection. Since the water concentration,
sayqv, is small, the Schmidt numberS∗, characterizing the
molecular diffusion, plays an effective role in the equations
through the combination 1/S = qv/S

∗ only; this number
is very small whenS∗ is of order unity (in practice, in this
mixture, S∗

≈ 0.721). However, the factor 1/S multiplies
a laplacian, so that even for small 1/S, the molecular diffu-
sion acts through some boundary layers, and, in a stability
problem, such boundary layers may originate specific insta-
bilities.

The following paper is organized as follows: in Sect. 2,
the equations of motion are set up using a classical mixture
theory; the basic equations are written using a model of con-
tinuous medium, with the diffusive dissipation being given
using the principles of thermodynamics. The major simpli-
fying assumption is that the condensed water is treated as
an aerosol (its pressure is neglected in the whole mixture,
so that we are led to describe it as a polytropic gas whose
adiabatic constant is zero); the additional assumption of neg-
ligible diffusion of the liquid water is not needed. A second
basic assumption is that of a saturated medium. These as-
sumptions are classical in non-precipitating cloud theories.
Because the molecular diffusion in saturated mixtures is not
very well known, the molecular diffusion law is especially
examined. It is shown that the phenomenon follows a gener-
alized Fick’s law with Dufour effect. In fact, the problem of
ternary convection may be finally reduced to a convection in
a binary mixture, and this reduced problem is that of a dif-
fusion with Dufour effect. However, some properties of the
ternary nature of the mixture remain present in the model, as
will be seen later.

In the Sect. 3, the linearized gravity wave equation gov-
erning the motions is derived. The study is made using the
asymptotic frame of the Boussinesq approximation already
used in previous papers (Bois, 1991, 1994). The use of this
approximation first implies the existence of a particular so-
lution describing a static state of the medium, depicted with
the help of unique variable (the altitude referred to the “dry”
atmospheric scale). Second, the characteristic vertical scale
of the perturbation motion is small before the atmospheric
scale, and the characteristic time of the motion is also scaled
with the help of static data (namelyt0 = c0/g, wherec0 de-

notes the speed of sound in the medium at the rest); this for-
mulation follows the classical analysis of Spiegel and Vero-
nis (1960). An advantage of using the asymptotic formu-
lation of the Boussinesq approximation is to allow one to
write the equations with the help of two scales (the fast scale,
which is the scale of the convection, and the scale of the strat-
ification of the medium, or slow scale); their ratio is the small
Boussinesq parameter, sayε. After linearizing the equations
around the static state, we obtain a wave equation general-
izing to the considered medium the classical gravity wave
equation used, for instance, in the Rayleigh-Bénard convec-
tion. The analogy with the equations of thermohaline con-
vection is also noted.

In Sect. 4, we consider shallow convection in the medium
at rest. Since the considered problems are dissipative, two
diffusion factors remain present in the reduced problem. In
order to solve the singular perturbation occurring in the phe-
nomenon, we first assume that the Schmidt numberS∗ is
small, of the same order asqv. We introduce the reduced
Schmidt numberS, which is, itself, of order unity. Af-
ter solving the corresponding instability problem (so-called
auxiliary problem) it is simpler to obtain the solution of the
real problem by examining the behaviour of the solution of
the auxiliary problem whenS goes to infinity. By applying
this procedure, a moist Rayleigh-Bénard problem is solved,
and its solution is described with respect to two destabilizing
parameters, namely the Rayleigh numberRa , and a moist
Rayleigh numberRh, itself proportional to the total water
gradient. Finally, the following properties are derived: first,
because of the permanent exchange of mass between the two
liquid phases, a stationary instability mainly occurs for a neg-
ative moist Rayleigh number, even whenRa is, itself, nega-
tive. The corresponding cloud configurations appear in a first
approximation, as motions of the dry air and the aerosol only.
These motions describe fleecy cloud configurations. Such
motions are partially located in the statically stable region
of the (Ra , Rh) plane, in the same manner as the salt fin-
gers found in thermohaline convection (see Baines and Gill,
1969). Second, an oscillatory instability appears in an angu-
lar region of the (Ra , Rh) plane, itself located between the
stationary stable region and the stationary unstable region,
in such a manner that the instability threshold may be either
stationary or oscillatory, except in the vicinity of the poly-
critical point, where the two instabilities may simultaneously
exist. The oscillatory instability is related to the static insta-
bility of the medium, while the stationary instability is due
to the molecular diffusion. Starting from the results of this
problem, we then deduce those of the corresponding prob-
lem when the Schmidt number is of order unity. The case
of vanishing moisture is also examined, and it is shown that
the classical Rayleigh-B́enard convection appears when the
moisture vanishes, this state appearing as a limit case of the
oscillatory unstable state already exhibited. The growth rate
of the unstable modes is determined in the neighbourhood of
the instability thresholds: this determination is straightfor-
ward for oscillatory modes. For stationary modes, because
the bifurcation is singular (all wavelengths are unstable), this
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determination allows one to select the preferential instabili-
ties occurring in the medium. To end with, we match the in-
stability conditions in the cloud with the corresponding con-
ditions in unsaturated air (clear air), so that we may conclude
about the instability of a cloud surrounded by clear air.

2 Rheological model

2.1 Thermodynamics of moist saturated air

The medium is modelled as a ternary mixture: dry air, wa-
ter vapor and condensed water. The constituents are identi-
fied by the subscriptsg (dry air), v (water vapor),L (liquid
water). The densities are denotedρg, ρv, ρL. The density
of the medium beingρ = ρg + ρv + ρL, the concentra-
tions are denoted byqα = ρα/ρ, and satisfy the relation
qg + qv + qL = 1. We will also use the total water con-
centrationqw = qv + qL (more generally, the subscriptw
will denote “total water”). The velocity of each constituent
is denoteduα, and the barycentric velocity of the fluid is
u = qgug + qvuv + qLuL. The diffusion velocitiesvα are
then defined byva = uα − u, and satisfy the relation

ρgvg + ρvvv + ρLvl = 0. (1)

The specific variables defining the system satisfy the ther-
mostatic Gibbs-Duhem equation

de = T ds − pd(1/ρ)+ gLdqL + gvdqv + ggdqg, (2)

wheree denotes the internal energy per mass unit, and the
gα ’s denote the free enthalpies per mass unit of the con-
stituents. For a reversible infinitesimal transformation of
the medium, because of the saturation hypothesis, the free
enthalpiesgL and gv are equal. Hence, settingdqw =

dqL + dqv and usingdqg + dqw ≡ 0, Eq. (2) reads

de = T ds − pd(1/ρ)− (gg − gv)dqw. (3)

After Eq. (3) we have e = e(s, ρ, qw), T =

(∂e/∂s)(s, ρ, qw) andp = −(∂e/∂υ)(s, ρ, qw), whereυ =

1/ρ. Eliminating s between these relations, we have in the
saturated mixture

e = e(T , ρ, qw), p = p(T , ρ, qw). (4)

In the sequel we assume that the mixture is an ideal mixture
of polytropic gases. Moreover, following a classical approx-
imation for the aerosols, we neglect the pressure of the liquid
phase so that this phase is also a polytropic gas (with a zero
polytropic constant).

2.2 The Clausius-Clapeyron equation

The saturation equation is the Clausius-Clapeyron equation.
We introduce the latent heat of vaporization of the liquid,
namelyLv = hv − hL, (hα is the specific enthalpy of the
phaseα). A form of this equation, valid when the liquid

phase is an aerosol (see, for instance, Zemansky, 1968), may
be written as

dpv = LvρvdT /T . (5)

It is of interest to examine some consequences of the
Clausius-Clapeyron formula, when the partial pressure of the
liquid phase is neglected. The dry air, the water vapor and the
whole mixture follow the equations of state, respectively,

pg = RgρgT , pv = RvρvT ,

p = RmρT , Rm = Rgqg + Rvqv, (6)

whereRg andRv are two constants. The third relation (6)
expresses Dalton’s law. As said above, the partial pressure
pL is neglected in Dalton’s law. Let us now differentiate
Dalton’s law. After some calculation and using the Clausius-
Clapeyron equation, we obtain the relation

dqw = dqL + dqv =

−
qg

qv
dqv −

Rm

Rg

dp

p
+

Rm

Rg

Lv

RvT 2
dT . (7)

The relation (7) expresses the total water variations with re-
spect to the variations of vapor, pressure and temperature.
Now, denotingcpv and cpL the heat capacities of the wa-
ter vapor and the liquid water, respectively, the latent heat of
vaporization can be written as

Lv = Lv0 +
(
cpv − cpL

)
(T −20) , (8)

Lv0 and20 being two constants.Lv0 is the latent heat at
the temperature20. Introducing Eq. (8) in the Clausius-
Clapeyron equation (written with the variablesqv, ρ andT ),
we obtain the relations

qv = q0
ρ020

β

ρT β
exp

[
{30 + β − 1}

[
1 −

20

T

]]
,

3 =
L0

Rv20
, β = 1 −

cpv − cpL

Rv

, (9)

whereq0, ρ0, 20 are some constants. By eliminatingρ in
(9) with the help of the third of (6), we deduce, after some
calculation, the relations

qv/qg = Qs(p, T ) =
Rgps0G(T )

Rv[p − ps0G(T )]
,

ps0 = q0Rvρ020,

G(T ) = (20/T )
β−1exp[{30 + β − 1}(1 −20/T )]. (10)

Sinceqv/qg denotes the concentration of water vapor in the
gaseous phase, the pressureps0G(T ) is the saturation pres-
sure of the water vapor for the corresponding vapor con-
centration, with the constantps0 being the saturation pres-
sure of the water vapor at the temperature20. The function
Qs(p, T ) defined in Eqs. (10) is the saturation concentration
of the water vapor in the gaseous mixture. Both Eqs. (9) and
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(10) may be taken as “equations of state” and used in order to
eliminate secondary variables in the equations of motion. Ex-
tractingqv/qg as functions ofp, ρ, andT from Eqs. (10) and
the third of (6), an explicit expression of the equation of state
p = p(qv, ρ, T ) could be obtained by inserting these expres-
sions in Dalton’s law. However, although these expressions
theoretically could allow one to eliminate some unknowns
in the equations of motion, it is simpler to keep the original
variables in these equations.

2.3 The diffusion equations

We now consider a moving system. The barycentric mo-
tion of the system is described using the material derivative
d/dt = ∂/∂t + u·∇. First, consider the balance of mass
for the dry air: this equation, (so-called molecular diffusion
equation) reads

ρ
dqg

dt
+ ∇·(ρgvg) = 0. (11)

The balance of mass for the whole mixture in the barycentric
motion reads

∂ρ

∂t
+ ∇·(ρu) = 0. (12)

The diffusion velocities are themselves related to the gradi-
ents of concentrations by Fick’s law. For the mixture consid-
ered here, this Fick’s law (see Appendix A) reads

ρgvg = C

(
∇qv −

qv

qg
∇qg

)
, (13)

whereC is a positive constant coefficient. Becauseqv is
small, an approximation of Eq. (13) isρgvg = C∇qv; such
equation has been used in Kubicki and Bois (2000). How-
ever, it will be seen later that, in convection problems, as
we further investigate, this approximation is too rough if we
look for a realistic solution. Hence, even for smallqv, we
will keep the whole relation (13) in what follows. The rela-
tion (13) inserted in Eq. (11) provides the new equation

ρ
dqg

dt
+ C∇·

(
∇qv −

qv

qg
∇qg

)
= 0. (14)

Now consider the first law of thermodynamics: for a moving
mixture of dissipative fluids, this law, written in terms of en-
thalpy in place of the internal energy, after some calculation,
provides the equation

cp
dT

dt
−

1

ρ

dp

dt
+ hL

dqL

dt
+ hv

dqv

dt
+ hg

dqg

dt
=

8+
k

ρ
1T −

1

ρ
{∇·(ρqLhLvL + ρqvhvvv + ρqghgvg)}.(15)

The coefficientcp denotes the heat capacity of the mixture
with constant pressure and concentrations. On the right-hand
side, the dissipation is the sum of the viscous dissipation8,
the thermal dissipationk1T/ρ (k is the thermal conductiv-
ity), and the diffusive dissipation in the third term: thehα ’s
are the partial enthalpies of the constituents.

According with classical hypothesis of small diffusion
velocities (Bowen, 1976), the thermodynamical potentials
e, h, g are related to the partial potentialseα, hα, gα by the
approximate relationse =

∑
qαeα, h =

∑
qαhα, g =∑

qαgα. Note that(∂h/∂qα)p,T = hα.
Finally, using Eq. (5) and Eq. (14), we replacedqg by

−(dqv + dqL), andhv − hL byLv: the Eq. (15) reads, after
some rearrangement,

cp
dT

dt
−

1

ρ

dp

dt
+ Lv

dqv

dt
=
k

ρ
1T − qqvg·∇(hg − hv)+

Lv
C

ρ
∇·

(
∇qv −

qv

qg
∇qg

)
+8. (16)

The motion of the medium is described by using the classical
variablesu, p, ρ, T , and two concentrations, sayqv andqg.
It is convenient to write the diffusion equations with the same
variables: hence, replacingdqg by −(dqv +dqL) in Eq. (14)
and using Eq. (7) to eliminatedqL, Eq. (14) also reads

−
qq

qv

dqv

dt
+

Rm

Rg

Lv

RvT 2

dT

dt
−

Rm

Rg

1

p

dp

dt
=

C

ρ
∇·

(
∇qv −

qv

qg
∇qq

)
. (17)

The two Eqs. (16) and (17) are two symmetrical forms of the
diffusion equations: assuming thatdp/dt is known in these
equations (it is an approximate consequence of the Boussi-
nesq equations, see Sect. 3) the real unknowns, in Eqs. (16)
and (17), aredT /dt and dqv/dt . These equations can be
solved in two independent forms dealing with linear com-
binations of these quantities. The molecular diffusion and
the heat conduction appear in laplacians figuring in the right-
hand sides of these equations and cannot separately be con-
sidered; this property characterizes a double diffusive phe-
nomenon.

Finally, the equations of motion for a saturated mixture
are: the third Eq. (6), and Eqs. (9), (12), (16), (17), to which
we must add the balance of momentum

ρ
du
dt

+ ∇p = ρg + µ0

[
1u +

1

3
∇(∇·u)

]
, (18)

whereµ0 denotes the dynamic viscosity. Finally, we have
a complete set of 8 scalar equations for the 8 unknowns
u, p, ρ, T , qv, qg.

3 The Boussinesq equations

3.1 Validity conditions and nondimensional equations

The Boussinesq approximation refers to the motion to a static
state of the medium, in which the variables depend only on
one variable, namely the altitude scaled by the so-called at-
mospheric heightH = p0/(ρ0g), wherep0 andρ0 denote
characteristic values of pressure and density.
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The general validity conditions of the Boussinesq approx-
imation (Bois, 1991) first imply that the characteristic scale
L of the motion is small beforeH : L/H = ε � 1, and
second, that the characteristic velocity scaleU of the mo-
tion is related toε by the equalityU

√
ρ0/p0 = ε: that is

equivalent to choosing a characteristic time of the motion
t0 = H

√
ρ0/p0. We don’t discuss the validity of these con-

ditions, which are assumed to be true. We note, however,
that, when rewritten for the significant nondimensional pa-
rameters of the problem (defined further, see relations (25),
F = U/

√
gL is the Froude number of the flow), these con-

ditions imply the relations

ε � 1, F 2
= ε. (19)

The variables are now scaled by characteristic values:
U,L, ρ0,20, cpg. The scaling pressure isp0 = ρ0cpg20,
and we haveRg = (γ −1)cpg/γ , γ being the adiabatic con-
stant of the dry air. Rewritten with nondimensional variables
the former equations read

ρ
du
dt

+
1

ε2
∇p +

1

ε
ρk =

1

Re

[
1u +

1

3
∇(∇·u)

]
, (20)

−
qg

qv

dqv

dt
+

(
qq +

Rv

Rg

qv

)[
3v

T 2

dT

dt
−

1

p

dp

dt

]
=

1

ReS∗

1

ρ
∇·(∇qv −

qv

qg
∇qg), (21)

Cp
dT

dt
−

1

ρ

dp

dt
+
γ − 1

γ

Rv

Rg

3v
dqv

dt
=

1

PrRe

1

ρ
1T +

χv − 1

ReS∗

1

ρ
∇qv·∇T+

γ − 1

γ

Rv

Rg

3v

ReS∗

1

ρ
∇·

(
∇qv −

qv

qg
∇qg

)
+
ε2

Re
8, (22)

qv = q0
1

ρT β
exp

[
{30 + β − 1}

[
1 −

1

T

]]
, (23)

p =
γ − 1

γ

(
qg +

Rv

Rg

qv

)
ρT . (24)

The Eq. (12) remains unchanged. We have set in the
Eqs. (20)–(24)

Re =
LUρ0

µ0
, Pr =

µ0cp0

k,

S∗
=
µ0

C
, F =

U
√
gL

ε =
U√
cp020

, χv =
cpv

cpg
,

χL =
cpL

cpg
, 3v =

Lv

Rv20
, (25)

30 andβ being defined in Eqs. (9) and (10). The two diffu-
sion parameters are the Prandtl numberPr and the Schmidt
numberS∗, which match the thermal dissipation (Prandtl)
and the molecular dissipation (Schmidt) with the viscous dis-
sipation (Reynolds numberRe). We have used the relation
(8) and the relations

cp = qgcpg + qvcpv + qLcpL,

Cp = qg + χvqv + χLqL,

3v = 30 + (1 − β)(T − 1). (26)

The first two equations of (26) are valid for polytropic gases,
the third equation results from Eq. (8). Since we are con-
cerned only with shallow convection, it is possible to find
equilibrium solutions to the system Eqs. (20)–(24). Hence,
we consider an equilibrium state(u = 0), having a pre-
scribed temperature distribution and a prescribed water va-
por concentration, sayT = T0(ζ ), qv = Qv0(ζ ), then
Eqs. (20)–(24) are satisfied (up to and including orderε) by
pressure, density and dry air concentrationsp = P0(ζ ), ρ0 =

R0(ζ ), qg = Qg0(ζ ): denoting with primes the derivatives
d/dζ , these quantities satisfy the static equations

P ′

0(ζ )+ R0(ζ ) = 0, ζ = εz,

P0(ζ ) =
γ − 1

γ
(Qg0(ζ )+(Rv/Rg)Qv0(ζ )R0(ζ )T0(ζ ),(27)

Q′
w0(ζ ) = −Qg0(ζ )

Q′
v0(ζ )

Qv0(ζ )
+

γ

(γ − 1)T0(ζ )
+

(Qg0(ζ )+ (Rv/Rg)Qv0(ζ ))

[
30 + β − 1

T0(ζ )
+ 1 − β

]
T ′

0(ζ )

T0(ζ )
. (28)

The variablez is the physical vertical variable (sayz′)
scaled byL, while ζ(= εz) is the same variablez′ scaled
byH . Note that Eq. (28) is nothing but the static form of the
Eq. (7).

3.2 Boussinesq asymptotic expansion

Following the Boussinesq procedure (Bois 1991), we now
expand the variables with respect toε in the following form:

p = P0(ζ )+ ε2ρ̃, ρ = R0(ζ )+ ερ̃,

T = T0(ζ )+ εT̃ , qv = Qv0(ζ )+ εq̃v,

qg = Qg0(ζ )+ εq̃g, u = ũ. (29)

We expand Eqs.(12) and (20)–(24) with respect toε. Dis-
carding the static terms, we obtain the following perturbation
equations

∇·ũ = O(ε), (30)

R0(ζ )
dũ
dt

+ ∇p̃ + ρ̃k =
1

Re
1ũ +O(ε), (31)
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−
Qg0(ζ )

Qv0(ζ )

dq̃v

dt
+

[
Qg0(ζ )+

Rv

Rg

Qv0(ζ )

]
λ0(ζ )

T0(ζ )

dT̃

dt

−w̃

{
Qg0(ζ )

Qv0(ζ )
Q′

0v(ζ )−

[
Qg0(ζ )+

Rv

Rg

Qv0(ζ )

]
[
λ0(ζ )

T ′

0(ζ )

T0(ζ )
−
P ′

0(ζ )

P0(ζ )

]}
=

1

ReS∗

1

R0(ζ )

{
1q̃v −

Qv0(ζ )

Qg0(ζ )
1q̃g

}
+O(ε), (32)

Cp0(ζ )
dT̃

dt
+
γ − 1

γ

Rv

Rg

λ0(ζ )
dq̃v

dt
+

w

[
γ − 1

γ

Rv

Rg

λ0(ζ )Q
′
v0(ζ )+ Cp0(ζ )T

′

0(ζ )−
P ′

0(ζ )

P0(ζ )

]

=
1

PrRe

1

R0(ζ )
1T̃ +

γ − 1

γ

Rv

Rg

λ0(ζ )

ReS∗

1

R0(ζ ){
1q̃v −

Qv0(ζ )

Qg0(ζ )
1q̃g

}
+O(ε), (33)

q̃v

Qv0(ζ )
+

ρ̃

R0(ζ )
−

(
30 + β − 1

T0(ζ )
− β

)
T̃

T0(ζ )
= O(ε),(34)

Rg q̃g + Rv q̃v

RgQg0(ζ )+ RvQv0(ζ )
+

ρ̃

R0(ζ )
+

T̃

T0(ζ )
= O(ε). (35)

We have set in Eqs. (32)–(35)

λ0(ζ ) =
30 + (1 − β)(T0(ζ )− 1)

T0(ζ )
,

Cp0(ζ ) = Qg0(ζ )+ χvQv0(ζ )+ χLQL0(ζ ). (36)

Simplified forms of Eqs. (30)–(35) may be looked at in two
ways: (i) by assuming that the water concentration is weak
(see below) and, (ii) by approximating the values of the coef-
ficients by their values at a given level (shallow convection,
see Sect. 4).

3.3 The reduced problem

In order to look for simplifying assumptions about the sys-
tem (30)–(35), we first note that the magnitude of both wa-
ter vapor concentration and liquid water concentration are
usually small, of the same order: their order of magnitude
(namely the parameterq0 introduced in Eqs. (9) and (23))
is, in practice, about 10−3. Hence, we expand the system
with respect toq0: keeping only the leading terms of the ex-
pansion, many coefficients in Eqs. (30)–(35) take simpler ap-
proximate forms. However, this simplification induces some
singularities. The most important of these is that the double
diffusive character of the system disappears when we neglect
terms of orderq0 (the laplacians1q̃v and1q̃g figuring in
Eqs. (32) and (33) become negligible) . In order to avoid this

singularity, we now assume thatS∗ is also small, of the same
orderq0 as the water concentrations. Thus, we set

S∗
= q0S, (37)

whereS is a modified Schmidt number, which is itself as-
sumed of order unity. Since the Schmidt number appears
only in the combination(1/S∗)1q̃v, the assumptionS =

O(1) allows one to keep the laplacian in the simplified equa-
tions, and, further, when we letS go to infinity in the solu-
tions of realistic problems, we can directly examine the in-
fluence of the singular perturbation induced by the double
diffusivity whenS∗

= O(1).
For smallq0, taking into account the assumption (37), the

Eqs. (32) and (33) read

dT̃

dt
+ w̃

[
T ′

0(ζ )+ 1
]

=
1

PrRe

1

R0(ζ )
1T̃+

γ − 1

γ

Rv

Rg

λ0(ζ )T0(ζ )

ReS∗R0)(ζ )

[
1q̃v −Qv0(ζ )1q̃g

]
+O(ε), (38)

−
1

Qv(ζ )0

dq̃v

dt
+
λ0(ζ )

T0(ζ )

dT̃

dt
−

w̃

{
1

Qv0(ζ )
Q′
v0(ζ )−

[
λ0(ζ )

T ′

0(ζ )

T0(ζ )
−
P ′

0(ζ )

P0(ζ )

]}
=

1

ReS∗R0(ζ )

[
1q̃v −Qv0(ζ )1q̃g

]
+O(ε). (39)

In Eqs. (38) and (39) we have approximated the variables by
constant values when their expansions for smallq0 don’t lead
to singularities: for instance, for smallq0 , Cp0 andCg0 are
approximated by 1. The system [(30), (31), (34), (35), (38),
(39)] may be yet simplified by extracting the unknownq̃g (or,
equivalently, the unknowñqv) from the algebraic Eq. (35), as
a linear combination of the other variables. The remaining
system is the reduced system associated with the problem.
Note that, since we have allowed in the system the coeffi-
cients depending on the variableζ , the equations are valid
for deep convection, as well as for shallow convection.

4 Moist Rayleigh-Bénard shallow convection

4.1 Linearized equation

The preceding equations are now applied to the study of shal-
low free convection in a thin layer (a cloud). The levelz = 0
is the mean altitude of the convecting cloud. The thickness
of the layer is chosen as scaling lengthL in the equations.
Because of the weak thickness of the layer, and since we are
interested only in terms of order 0 with respect toε, all slowly
varying coefficients of the Eqs. (31)–(36) and (39)–(40) are
approximated by their values atz = 0, namely

−P ′

0(0) = R0(0) = T0(0) = 1,

P0(0) = (γ − 1)/γ, QL0(0) = q0(Rv − Rg)/Rg,
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Qv0(0) = q0, Qg0(0) = 1 − q0Rv/Rg,

30v(ζ ) = 30, Cp0(0) = 1. (40)

Taking into account the assumption of smallq0, we set

q̃v = q0 ˜̃qv, q̃L = q0 ˜̃qL,

q̃g = q0 ˜̃qg, Q′
v0 = q0Q

′

0. (41)

The state of rest (namelỹu = 0, ρ̃ = p̃ = T̃ = ˜̃qv = 0) is
an exact solution of the reduced system (30)-(31)-(34)-(35)-
(38)-(39). The linearized equations associated with the sys-
tem, approximated by their first term with respect toq0, then
read

∇·ũ = 0 (42)

∂ũ
∂t

+ ∇p̃ + ρ̃k =
1

Re
1ũ, (43)

ρ̃ + (1 −30)T̃ + ˜̃qv = 0, (44)

ρ̃ + T̃ = −q0

[
˜̃qg + (Rv/Rg) ˜̃qv

]
. (45)

∂ ˜̃qv

∂t
+ 0w̃ =

30µ− 1

ReS

[
1 ˜̃qv − q01 ˜̃qg

]
+

30

PrRe
1T̃ , (46)

∂T̃

∂t
+N2w̃ =

1

PrRe
1T̃ +

µ

ReS

[
1 ˜̃qv − q01 ˜̃qg

]
. (47)

We have used, in the preceding equations, the notations

0 = Q′

0 −
γ

γ − 1
+30, N2

= T ′

0 + 1,

µ =
γ − 1

γ

Rv

Rv

30. (48)

Becausẽ̃qg figures in Eqs. (43)–(47) only through the com-

binationq0 ˜̃qg, the limit of Eqs. (43)–(47) for vanishingq0 is
singular (8 equations for seven unknowns only). Because all
boundary conditions are zero in a free convection problem,
this singularity may be avoided by assuming that the vari-
ablesũ, p̃, ρ̃, T̃ , ˜̃qv are themselves of orderq0, while ˜̃qg is
of order 1. Hence, we set

ρ̃ = q0ρ
∗, ˜̃qv = q0q

∗
v ,

˜̃qg = q∗
g , T̃ = q0T

∗,

p̃ = q0p
∗, ũ = q0ũ∗. (49)

The first approximation of Eq. (45) now takes the nondegen-
erate form

ρ∗
+ T ∗

= −q∗
g . (50)

Hence, after Eq. (44) we also have

q∗
g = q∗

v −30T
∗. (51)

Finally, extractingq∗
v from Eq. (51), the system (42)–(47)

reduces to the following

∇·u∗
= 0,

∂u∗

∂t
+ ∇p∗

+ ρ∗k =
1

Re
1u∗,

ρ∗
+ T ∗

+ q∗
g = 0, (52)

∂q∗
g

∂t
+

(
0 −30N

2
)
w∗

= −
30

ReS
1T ∗,

∂T ∗

∂t
+N2w∗

=
1

Re

[
30µ

S
+

1

Pr

]
1T ∗. (53)

The system (52)–(53) clearly exhibits the particularities of
the problem: first, the problem is a double diffusive problem
for a fictitious binary mixture whose equation of state is the
third equation listed in Eq. (52). Second, due to the form of
the right-hand side of the first equation listed in Eq. (53), the
diffusion equations in this medium involve the Dufour effect
(the time derivative∂q∗

g/∂t doesn’t depend on1q∗
g but on

1T ∗ only !). The significance of the first diffusion Eq. (53)
may be understood by the help of the static Eq. (28): effec-
tively, taking into account the shallow convection assump-
tion and the smallness ofq0, the leading approximation of
this equation reads

Q′
w0 = −Q′

0+30+30T
′

0+
γ

γ − 1
= −

(
0 −30N

2
)
,(54)

so that0 − 30N
2 is nothing but the total water gradient in

the medium at rest. SinceQ′
w0 is of orderq0, a rigorous

study would impose to cancel0−30N
2 (at the order 0 with

respect toq0) in the system (52)–(53). In fact, it is equivalent
to solve this system for arbitrary values of0 − 30N

2 and,
furthermore, to consider small values of this parameter; this
procedure is adopted in the sequel.

4.2 Solution of the linear Rayleigh-Bénard problem with
two free surfaces

The Rayleigh-B́enard problem with free surfaces is the sim-
plest case of boundary conditions associated with the system
(52)–(53). In spite of its academic character, it allows one to
simply exhibit analytical solutions (in fact, with the help of
the only dispersion equation). The linear stability of the sys-
tem may be studied by a normal modes analysis, by looking
for solutions in the formu∗

= U(x, y, z)eηt , with η = ξ+iω.
Since we don’t envisage boundary conditions depending on
the horizontal variables, all modes are assumed in the form:

(u∗, v∗, w∗, p∗, ρ∗, T ∗, q∗
g )

= (U, V,W,P,R, T ,Q)eηt−1(kx−hy), (55)

whereU,V,W etc., depend onz only, and wherek, h, are the
components of a horizontal wave number vector. We search
the values ofN2 and0 such that all possible exponentsη
have a negative real part. First, inserting the variables (55)
in the Eqs. (52)–(53), the system reduces, for the unknown
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W , to an equation of sixth order with constant coefficients.
This equation itself takes a simpler form, by introducing the
characteristic parameters

Ra = −PrR
2
eN

2,

Rh = PrR
2
e

(
0 −30N

2
)

= −PrReQ
′
w0, τ = S/Pr . (56)

Ra is the Rayleigh number,Rh is the moist Rayleigh number,
τ is the ratio of the diffusivities of the medium. Moreover,
we adopt the notations

σ = ηRe, K2
= k2

+ h2,

D2
= d2/dz2

−K2, D2n
= (D2)n. (57)

Rewritten with these notations, the equation satisfied by
W reads

σPr(30µ+ τ)D6W − σ 2Pr(30µ+ τ + τPr)D
4W

+

[
σ 3τP 2

r +K2
{(30µ+ τ)Rh −30Ra}

]
D2W

= −στPrK
2(Ra − Rh)W. (58)

The boundary conditions are free surfaces conditions at
z = 0 andz = 1. If we require continuity of the temperature
and the concentration at the boundaries, the other boundary
conditions are standard (see Drazin and Reid, 1981), so that
we assume

W = D2W = 0, T = 0,

Q = 0, in z = 0 and z = 1. (59)

The boundary conditions (59) are satisfied by particular so-
lutions of (58) of the formW = W sinnπz, n ≥ 1, where
W = const. The dispersion equation takes the algebraic form

σPr(30µ+ τ)Q6
+ σ 2Pr(30µ+ τ + τPr)Q

4

+

[
σ 3τP 2

r +K2
{(30µ+ τ)Rh −30Ra}

]
Q2

−στPrK
2(Ra − Rh) = 0, (60)

where we have set

Q2
= K2

+ n2π2, Q2n
= (Q2)n. (61)

Equation (60) is a third-degree equation with respect toσ ,
similar (but, however, simpler) to the equation from Baines
and Gill (1969) for thermohaline convection. The thresholds
are reached forRe(σ ) = 0, so that these thresholds are as-
sociated with stationary solutions or purely oscillatory solu-
tions of Eq. (60): the procedure is standard (see Drazin and
Reid, 1981) and leads to the following conclusions: (i) sta-
tionary solutions: Eq. (58) possesses stationary solutions if
the condition

(10µ+ τ)Rh −30Ra = 0, (62)

is satisfied independently ofn; this property characterizes a
singular bifurcation, because all harmonics of a solution ap-
pear at the same threshold as the fundamental mode. Hence,
the growth rates of the unstable solutions must effectively be
computed in order to select the mode which effectively ap-
pears in an unstable process (see Sect. 4.3); (ii) oscillatory
solutions: two conditions must be satisfied: first, denoting�

the pulsation of the solution(σ = i�),� exists only if the
inequality

τ {30(µ− 1)+ τ + τPr}Ra − τ2PrRh

(30µ+ τ)(30µ+ τ + τPr)
≥

27π4

4
, (63)

is satisfied. Second, in the half plane defined by the condi-
tion (63),�2 is, itself, positive, only if

(30µ+ τ)Rh −30Ra ≥ 0, (64)

is satisfied. In the (Ra, Rh) plane, both inequalities are
simultaneously satisfied inside the angular sectorUAY of
Fig. 1. A is the polycritical point of the problem. The for-
mulae (62) and (63) allow one to determine the coordinates
(Raa, Rha) of A, namely

Raa =
27π4

4

(30µ+ τ )2

τ [30(µ− 1)+ τ ]
,

Rha =
27π4

4

30(30µ+ τ )

τ [30(µ− 1)+ τ ]
. (65)

Since the left-hand side of Eq. (54) is of orderq0, we see
that the only realistic values of the numberRh/(PrR2

e ) are
small of the same order. Hence, the solutions exhibited here
are available only in the region of the(Ra, Rh) plane, such
asRh/(PrR2

e ) = O(q0) � 1. Note that this condition is
not very restricting, because, in general, the Reynolds num-
ber is large. The above analysis also shows that the least
value ofRh in an oscillatory unstable state is that reached
at the polycritical pointA. Hence, in order to satisfy the
conditionRh/(PrR2

e ) � 1, it is of interest to study the pos-
sible positions ofA when the intensityq0 of the moisture
(even remaining small) varies. We have plotted, in Fig. 2,
the way followed byA in the (Ra, Rh) plane whenτ varies
from 0 to+ ∞. Eliminatingτ between the two formulae
(65), the equation of this curve may be easily derived, namely
Rha = {(µ+1)Raa−[(µ−1)2Raa

2
+27π4µRaa]

1/2
}/(2µ).

For infiniteτ, A is located at the pointC = 27π4/4(≈ 657)
of theRa-axis: this point is just the threshold of the stationary
instability in a pure fluid. For smaller values, and, in particu-
lar, for vanishingτ , the trajectory is asymptote to the straight
line of equationRaa = µRha + 27π4µ/[4(µ− 1)]. Hence,
for vanishingq0 (large values ofτ ),A is located near theRa-
axis, and for large values ofq0 (small values ofτ ), A is far
from theRa-axis. However, the inequalityRh/(PrR2

e )) � 1
remains satisfied due to the presence of the Reynolds number
in this condition: in the considered problem, the Reynolds
number characterizes the thickness of the unstable layer, and
this thickness should be very small (practically less than a
few meters), in order that the inequality is not satisfied. In
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Fig. 1. Linear instability diagram of moist-saturated air in the (Ra, Rh) plane. In order to exhibit the different regions more explicitly, the
scales are not respected in this figure. The realistic instability is located in the shaded regionRh = O(q0R

2
e ), so that the polycritical point

may be either inside or outside the instability domain. The straight lineRa = Rh delineates the statically stable region. The numerical values
chosen for determine the polycritical pointA are (units M.K.S.A.):L0 = 2600 103 J/kg,20 = 288◦K, cpv = 1004 J/(kg.◦K), Rv = 464

J/(kg.◦K), Rg = 287 J/(kg.◦K), S = S∗/q0 = 721,Pr = 0, 76,q0 = 10−3.

practical problems, because the pointA is located in a real-
istic region of the(Ra, Rh) plane, oscillatory instability may
also exist.

4.3 Stable and unstable regions and growth rates at the in-
stability thresholds

The preceding analysis, although allowing one to determine
the instability thresholds, doesn’t place in evidence the sta-
ble and the unstable regions of the(Ra, Rh) plane. In order
to localize these stable and unstable regions, because of the
indetermination led by the equality (62), it is convenient to
examine the real part ofσ in the neighbourhood of the thresh-
olds:

(i) Stationary thresholdXA: as a preliminary remark,
we note that a procedure followed by Baines and Gill

(1969) may be applied here: setting

σ = Q2θ, R′
a = K2Ra/Q

6, R′

h = K2Rh/Q
6,(66)

Eq. (60) takes the canonical form

τP 2
r θ

3
+ Pr(30µ+ τ + τPr)θ

2

+[(30µ+ τ)Pr − τPr(R
′
a − R′

h]θ

+(30µ+ τ)R′

h −30R
′
a = 0. (67)

Equation (67) is an algebraic equation of the third de-
gree forθ . By examining the sum and the product of
the roots, it is easily verified that, when the inequality

(30µ+ τ )R′

h −30R
′
a ≤ 0 (68)
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Fig. 2. Locus of the pointA in the (Ra, Rh) plane whenτ varies
from 0 to + ∞. The numerical values are the same as in Fig. 1.
The way followed byA whenτ varies (continuous curve) is almost
rectilinear. This curve goes very slowly to its asymptote (dotted
straight line).

is satisfied, this equation possesses one real positive root
only. Hence, the half plane defined by Eq. (68) is an un-
stable region with unstable direct modes: one mode ex-
actly for a given value of(R′

a, R
′

h), i.e. for fixedRa, Rh,
andK. In order to determine the growth rates and the
wavelengths of those unstable modes (and the most un-
stable modes themselves), we linearize Eq. (67) near the
threshold defined by Eq. (68): hence, we set

R′

h = R′

h0 +1R′

h, R′
a = R′

a0, θ = 0 +1θ, (69)

whereR′

h0 andR′
a0 satisfy the relation

(30µ+ τ)R′

h0 −30R
′
a0, (70)

and where1R′

h and1θ are assumed small. After lin-
earizing Eq. (67), and taking into account the relation
(69), we obtain the following relation between1R′

h and
1θ

1θ =
30(30µ+ τ)1R′

h

Pr
{
τ [30(µ− 1)+ τ ] R′

h0 −30(30µ+ τ)
} . (71)

After the second equation listed in (65), becauseRh0 <

Rha along the half-straight lineXA, the denominator
of Eq. (71) is negative alongXA. Hence, for negative
1R′

h, 1θ is real and positive: the stable region is lo-
cated overXA, and the unstable region is located under
XA (Fig. 1). Moreover, Eq. (71) allows one to find the
most unstable mode in the following manner: first, we
deduce from Eq. (71) by reinserting the variablesσ and
Rh with the help of Eq. (66)

1σ = Qn
2

30(30µ+ τ)(K2/Qn
6)1Rh

Pr
{
τ [30(µ− 1)+ τ ] (K2/Qn

6)Rh0 −30(30µ+ τ)
} .(72)

By studying the variations of1σ with respect ton,
with K being fixed, we deduce from Eq. (72) (see Ap-
pendix B) that the greatest value of1σ is obtained when
n = 1; hence, the most unstable mode is always the
fundamental mode. Furthermore, restricting the study
to the casen = 1, we deduce, after some calculation,
the wave numberKmax for which the maximum of1σ ,
say1σmax, is reached:Kmax is the only root of the al-
gebraic equation

(Kmax
2
+ π2)3

Kmax
2

(
1 −

π2

Kmax
2

)

= −
τ [30(µ− 1)+ τ ] Rh0

30(30µ+ τ)
(73)

(the calculations are given in the Appendix B). The cor-
responding1σmax is given by the formula (72).Kmax
is a function ofRh0 (or, equivalentlyRa0); hence, it
varies along the whole straight lineXA, up toA. For
instance, for the numerical values used in Fig. 1, the
curvesKmax = F(Ra0) and|1σmax/1Rh| = G(Ra0)

are drawn on Fig. 3, where Fig. 3a shows thatKmax is al-
ways greater than the valueπ/

√
2(≈ 2.221) of the wave

number of a regular B́enard convection.Kmax decreases
whenRa0 increases, until the value is reached at the crit-
ical value ofRa0. Figure 3b shows that the growth rate
of the fundamental mode is much larger than the first
harmonic (n = 2), and that, forn ≥ 3, these growth
rates become negligible. Of course the formula (72) be-
comes invalid in the neighbourhood of the critical point:
near this point we must use a second order expansion,
which leads to an expression of1σmax proportional to
(1Rh)

1/2 (see later).

(ii) Oscillatory thresholdAU . Since the instability near the
thresholdAU is a regular problem, the instability al-
ways occurs for the fundamental moden = 1, and the
corresponding wave numberKc = π/

√
2: this situation

is analogous to that of the classical Rayleigh-Bénard
convection. However, the preceding analysis is useful
in order to determine the growth rates of the oscillating
unstable modes; we set

R′
a = R′

a0 +1R′
a, R′

h = R′

h0, (74)

where (R′
a0 , R′

h0) are the coordinates of a point ofAU ,
and1R′

a denotes a small variation ofR′
a from an arbi-

trary valueR′
a0. We set, moreover,

θ = iφ0 +1θ, (75)

whereφ0 is real, and we assume that1θ is small. Since
iφ0 is an exact imaginary root of Eq. (67),R′

a0 andR′

h0
satisfy the relations

τ {30(µ− 1)+ τ + τPr}R
′
a0 − τ2PrR

′

h0
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= (30µ+ τ)(30µ+ τ + τPr), (76)

φ0
2

=
1

τPr

[
30µ+ τ − τ(R′

a0 − R′

h0)
]

=
(30µ+ τ)R′

h0 −30R
′
a0

Pr(30µ+ τ + τPr)
. (77)

Now, linearizing Eq. (67) for the unknown1θ and us-
ing Eq. (76) and the first of (77), we obtain after some
calculation

1θ = 1ψ + i1φ, (78)

1ψ =
τ [30(µ− 1)+ τ + τPr ]1R′

a

2
[
(30µ+ τ + τPr)2 + τ2Pr

2φ0
2
] ,

1φ =

[
τ2Pr

2φ0
2
+30(30µ+ τ + τPr

]
1R′

a

2φ0Pr
[
(30µ+ τ + τPr)2 + τ2Pr

2φ0
2
] . (79)

After Eq. (79), for positive1R′
a,1ψ is always posi-

tive along the thresholdAU . In fact,1ψ is nothing but
some scaling of the real growth rateRe(1σ); hence, us-
ing Eq. (66) to reintroduce the variablesσ,Ra, Rh,K,
and noticing that, for the oscillatory instability,K2

=

Kc
2

= π2/2, we obtain

Re(1σ) = (3/2)π21ψ =

τ [30(µ− 1)+ τ + τPr ]

9π2
[
(30µ+ τ + τPr)2 + τ2Pr

2φ0
2
]
1Ra

. (80)

We have drawn on Fig. 4, for the same numerical val-
ues as in the preceding figures, the curve|1σ/1Ra| =

F(Ra0) along the half straight lineUA. Note thatφ0
2

can be extracted, in terms ofRa0, from the relations
(77). In the same manner as in Fig. 3, the neighbour-
hood of the critical point is singular, but, after Eq. (79),
only the phase becomes singular at this point.

(iii) Neighbourhood of the critical point. Near the critical
point, the linear expansion of the dispersion equation is
invalid, for the stationary case, as well as for the oscil-
latory case. SinceRe(1σ) is small in this neighbour-
hood, we now set

R′
a = R′

aa +1R′
a, R′

h = R′

ha +1R′

h,

θ = 1ψ + i1φ, (81)

where1R′
a,1R

′

h,1ψ,1φ are assumed small. Since
the critical point is a stationary threshold and an oscil-
latory threshold simultaneously, the following relations

(30µ+ τ)R′

ha −30R
′
aa = 0,
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Fig. 3. Wave numberKmax (a) and growth rates (b) of the three
first stationary unstable modes. The numerical values are the same
as in Fig. 1 (the scales are not respected on the figure forRa0). The
x-axis is taken along the stationary threshold, the variable being
the Rayleigh numberRa0. The figure is invalid in the vicinity of
the asymptotes and, in particular,Raa (shaded region), because the
linearized formula (71) becomes invalid. It is also invalid when
Ra > Raa , because this region is already unstable. WhenRa0 →

−∞, |1σ/1Rh| → 0 very slowly (as|Ra0|
−1/2).

(30µ+ τ )− τ(R′
aa − Rh′a) = 0,

τ {30(µ− 1)+ τ + τPr}R
′
aa − τ2PrR

′

ha

= (30µ+ τ)(30µ+ τ + τPr), (82)

are satisfied. We first rewrite Eq. (67) by separating its
real part and its imaginary part, taking into account the
relations (82). Hence, we obtain the two following real
equations

τP 2
r 1ψ

3
− 3τP 2

r 1ψ1φ
2
+

Pr(10µ+ τ + τPr)(1ψ
2
−1φ2)

−τPr(1R
′
a −1R′

h)1ψ+

(10µ+ τ)1R′

h −301R
′
a = 0, (83)

1φ
{
3τPr1ψ

2
− τPr1φ

2
+
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Fig. 4. Growth rate of the oscillatory most unstable mode. Thex-
axis is taken along the oscillatory threshold, the variable being the
moist Rayleigh numberRh0. The numerical values are the same as
in Fig. 1. WhenRa0 → ∞,Re(1σ)/1Rh → 0 asRa0

−1.

2(30µ+ τ + τPr)1ψ + τ(1R′

h −1R′
a)
}

= 0. (84)

According to Eq. (84), we separately consider the cases
1φ = 0 and1φ 6= 0. We obtain the following conclusions:

(a) if 1φ 6= 0 : 1φ2 may be extracted from Eq. (84) and
inserted in Eq. (83). This equation is then an equa-
tion of the third degree for the unknown1ψ . Since
we look for solutions of Eq. (83) only for small1R′

h

and 1R′
a , approximated values of the roots can be

looked for. We obtain one positive root if the condition
τPr1R

′

h−[30(µ−1)+ τ + τPr ]1R
′
a is negative; this

condition corresponds to a point(R′
a, R

′

h) located be-
yond the oscillatory thresholdVU of the(R′

a, R
′

h) plane
(see Fig. 1). In this half plane, the condition1φ2

≥ 0 is
satisfied if the inequality(10µ+τ)1R′

h−301R
′
a ≥ 0

is satisfied. Finally, the corresponding modes exist if the
figurative point(R′

a, R
′

h) is located in the oscillatory re-
gion previously determined on Fig. 1. The values of
1ψ,1φ are

1ψ =
τ [30(µ− 1)+ τ + τPr ]1R′

a − τ2Pr1R
′

h

2(30µ+ τ + τPr)2

+o(1R′

h,1R
′
a), (85)

τPr1φ
2

=

(30µ+ τ)1R′

h −301R
′
a

30µ+ τ + τPr
+ o(1R′

h,1R
′
a). (86)

(b) if 1φ = 0 : 1ψ is directly given by Eq. (83), which
possesses a solution only if the inequality(30µ +

τ )1R′

h −101R
′
a ≤ 0 is satisfied; this corresponds to a

figurative point inside the stationary unstable region of
Fig. 1. In this case the solution reads

τPr1ψ
2

=

301R
′
a − (30µ+ τ)1R′

h

30µ+ τ + τPr
+ o(1R′

h,1Ra). (87)

After Eqs. (85) and (87), the order of magnitude of the
growth rates isO(301Ra − (30µ + τ)1Rh)

1/2 in the
stationary region, and 0(τ [30(µ − 1) + τ + τPr ]1Ra −

τ2Pr1Rh) in the oscillatory region. The three expansions
(85), (86) and (87) may be asymptotically matched without
difficulty, either with Eq. (71) (for the stationary instabil-
ity), or with Eq. (79) (for the oscillatory instability). The
behaviour of the oscillations is given, in the latter case, by
Eq. (86). Finally, in the(Ra, Rh) plane, the stable region
is the region inside the angular domainXAU (Fig. 1). The
thresholdXA leads to direct instabilities (stationary onset).
The thresholdAU leads to unstable oscillating modes (os-
cillatory onset). The growth rates of these modes are those
calculated above.

4.4 The fleecy configurations of clouds

It is of interest, in order to understand the role of the diffu-
sion in the medium, to compare the instability regions in the
(Ra, Rh) plane, to the static instability regions. In fact, it
is well-known (see Durran and Klemp, 1982a or Bois 1994)
that the moist Brunt-V̈ais̈alä frequency of the medium, say
Nm , is given by the formula

N2
m = N2 [1 +O(q0)]−Q

′
w0 ≈ −Ra [1 +O(q0)]+Rh,(88)

so that the neutral line of static stability, in the(Ra, Rh)
plane, is (at orderq0) the straight lineRh = Ra (the dotted
line of Fig. 1). Hence, the stationary instability is partially lo-
cated in the statically stable region (the angular sectorXOT

of Fig. 1). In this region, the instability regime which sets in
is entirely analogous to the well-known “salt fingers regime”,
existing in the thermohaline convective instability (see Nield,
1967 or Huppert and Turner, 1981). Indeed, as said formerly,
this regime is a very slow motion of dry air and liquid water
only; effectively, the variables̃qg andq̃L defined in Eq. (29)
are of orderq0 , while the variablẽqv, (after Eq. 49) is of or-
derq0

2. Hence, rather than “moisture fingers”, the solution
depicts, in fact, the fleecy appearance of clouds in an air at
the rest.

4.5 The caseS∗
= O(1)

As we have seen above, the caseS∗
= O(1)may be deduced

from the preceding analysis by examining the behaviour of
its solution whenS → ∞; in fact, this case corresponds to
τ → ∞ in the former formulae. Whenτ → ∞, the pointA
of the(Ra, Rh) instability moves along the curveCD of this
plane, towardsC (see Fig. 2 and Fig. 5b). This point becomes
exactly the pointC when τ = +∞. Since the instability
thresholds are delineated by straight lines joiningA andO
itself, the corresponding positions of these thresholds may
be very easily followed. More precisely, for infiniteτ the
inequalities (63) and (64) become

Ra ≥
Pr

1 + Pr
Rh +

27π4

4
, Rh ≥ 0, (89)
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while the equality (62) now reads

Rh = 0. (90)

After Eq. (90), at order 0 with respect toq0, the station-
ary instability threshold becomes theRa-axis itself: the sta-
ble region is the half planeRh > 0, the unstable region is
the half planeRh < 0. From Eq. (89), the oscillatory un-
stable region is the angleUCY of the (Ra, Rh) plane (see
Fig. 5c), whereC is the pointRa = Ra0 = 27π4/4 of the
Ra-axis. In fact, for vanishing moisture, i.e.q0 → 0, the
Ra-axis forRa > Ra0 is not a singular bifurcation line. At
order 0 with respect toq0 (Fig. 5c) the thickness of the real-
istic region of the flow is zero, so that this region reduces to
theRa-axis itself; stationary instability is, in this case, irrel-
evant. On the contrary, oscillatory instability is realistic: the
stable part of theRa-axis isRa < Ra0, the unstable part is
Ra > Ra0. Moreover, since the unstable region corresponds
to the boundary�2

= 0 of the “oscillatory” instability, this
instability is, in fact, stationary. We recognize the instability
scheme of the classical Rayleigh-Bénard convection, where
the instability is due to the only Rayleigh number. This be-
haviour is regular, since, for vanishingq0, the fluid becomes
a pure fluid. At order 1 with respect toq0 (Fig. 5b), the re-
alistic region of the flow is a very narrow strip around the
Ra-axis, and the critical pointA is distinct ofC. The case
τ → ∞ also allows one to understand the singularity occur-
ring if we directly assume{q0 � 1, S∗

= O(1)} in Eqs. (20)
to (24): in this latter case Eq. (53) is replaced by

∂q∗
g

∂t
+

(
0 −30N

2
)
w∗

= 0,

∂q∗
g

∂t
+N2w∗

=
1

PrRe
1T ∗ (91)

and the problem is now governed by the system [(52), (91)],
which reduces to the equation

σPrD
6W − σ 2Pr(1 + Pr)D

4W+[
σ 3Pr

2
+K2Rh

]
D2W = −σPrK

2(Ra − Rh)W. (92)

Let us look for stationary solutions of Eq. (92): such solu-
tions (except the state of rest) exist only ifRh = 0, i.e if
0 − 30N

2
= 0. The first equation (91) degenerates in this

case, so that the system (52)–(91) is now a system of 6 scalar
equations for seven unknowns. However, we can note that,
in this case, the changes of variables defined by (49) are su-
perfluous. The original variables̃u, p̃, ρ̃, T̃ are solutions of
the system (42), (43), and the two equations

ρ̃ + T̃ = 0, N2w̃ =
1

PrRe
1T̃ . (93)

The first equation listed in Eq. (93) is the leading approxima-
tion of Eq. (45), and the second is the stationary version of
the second equation in Eq. (91). Equations (42), (43), (93)
constitute a complete, regular set forũ, p̃, ρ̃, T̃ , which are
solutions of an exact stationary Rayleigh-Bénard problem.
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Fig. 5. Successive positions of the oscillatory instability threshold
for decreasingq0. Whenq0 → 0 (and, hence,τ → +∞), the
thickness of the realistic region decreases so that, for vanishingq0,
the oscillatory instability region progressively goes to the stationary
instability region of the classical Rayleigh-Bénard convection (in
order to exhibit the different regions more explicitly, the scales are
not respected on the figure).

Finally, in this case, a stationary solution of the full problem
exists only ifRa ≥ 27π4/4, instead of the fullRa-axis, as
shown above. Contrary to the stationary solutions, the oscil-
latory solutions are not singular in this case. Moreover, if we
let the heat conductivity go to zero (i.e. forPr → ∞), tak-
ing into account the definitions (56), the oscillatory thresh-
old defined by Eq. (89) becomes−N2

= −(0 − 30N
2).

Furthermore, letRe go to infinity and the frequencies� of
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the oscillating modes go to zero (for instance, after Eq. 57),
so that these modes become stationary, and the condition
�2 > 0 has no sense. The oscillatory instability threshold
is, in this case, the whole straight lineUV of Fig. 1, i.e. ex-
actly the static threshold. Hence, the oscillatory instability is
the regular dynamical degeneracy of the static instability of
the medium.

5 Convection in unsaturated air

Because a cloud is always confined between layers of clear
air, it is of interest to match the results of the preceding anal-
ysis with those of the corresponding analysis in unsaturated
air: it is simple to repeat the analysis in this case. In such
a medium, Eq. (3) remains valid, taking into account that,
now,qv = qw. The diffusion Eq. (11) also remains valid, but
Eq. (16) is replaced by

cp
dT

dt
−

1

ρ

dp

dt
=

k

ρ
1T − qgvg ·∇(hg − hv)+8. (94)

The scaled form of the diffusion equations now read

dqv

dt
=

1

ReS∗

1

ρ
1qv, (95)

Cp
dT

dt
−

1

ρ

dp

dt
=

1

PrRe

1

ρ
1T

+
χv − 1

ReS∗

1

ρ
∇qv ·∇T +

ε2

Re
8. (96)

Since there is not a change of phase in the medium, the static
Eq. (28) is replaced by the equation

Rv − Rg

Rg

Q′
v0(ζ ) = −

γ

(γ − 1)T0(ζ )

−

[
Qg0(ζ )+

Rv

Rg

Qv0(ζ )

](
R′

0(ζ )

R0(ζ )
+
T ′

0(ζ )

T0(ζ )

)
. (97)

The Boussinesq analysis of the problem does not require one
to use the parameterS instead ofS∗. The reduced linearized
Eqs. (42) and (43) remain valid, while Eqs. (45), (46), (47)
are replaced by

ρ̃ + T̃ = −q0
Rv − Rg

Rg

˜̃qv, (98)

∂ ˜̃qv

dt
+Q′

0w̃ =
1

ReS∗
1 ˜̃qv, (99)

∂T̃

∂t
+N2w̃ =

1

PrRe
1T̃ . (100)

Equations (99) and (100) explicitly show the disappearance
of double diffusivity whenS∗

= Pr , the operator applied

to T̃ and ˜̃qv being, in this case, the same in both Eqs. (99)
and (100). The singularity of Eq. (98) is the same as that of
Eq. (45), and may be similarly treated. Finally, defining the
parameters

Ra = −PrR
2
eN

2, R′′

h = −PrR
2
eQ

′

0,

τ ∗
= S∗/Pr , (101)

and looking for solutions in the form (55), we obtain forW
the equation

D8W − σ(1 + Pr + τ ∗Pr)D
6W

+σ 2Pr(1 + Pr + τ ∗Pr)D
4W +

{
−σ 3P 2

r τ
∗

−K2 [(Rv − Rg)τ
∗PrRh

′′/Rg + Ra
]}
D2W

= σK2τ ∗Pr
[
Ra + (Rv − Rg)Rh

′′/Rg

]
W. (102)

Equation (102) with boundary conditions (Eq. 59) may be
discussed as follows: (i) stationary solutions: such solutions
exist if the condition

Ra ≥ −τ ∗(Rv − Rg)Rh
′′/Rg + 27π4/4, (103)

is satisfied. In the(Ra, Rh′′) plane, the inequality (103) de-
fines a half plane bounded by the straight lineX′Y ′ (see
Fig. 6a), with the unstable region mainly corresponding to
positive values ofRa and positive values ofRh′′; (ii) oscil-
latory solutions: denoting� the pulsation(σ = i�) two
conditions must be satisfied: first,�2 being given, solutions
exist only if the inequality

τ ∗Pr
[
τ ∗(1 + Pr)Ra + (1 + τ ∗Pr)(Rv − Rg)Rh

′′/Rg

]
(1 + τ ∗)(1 + Pr)(1 + τ ∗Pr)

≥
27π4

4
, (104)

is satisfied. Second, in the half plane defined by Eq. (104),
�2 is, itself, positive only if the inequality

RgRa +
τ ∗(1 + τ ∗Pr)

1 + Pr
(Rv − Rg)Rh

′′
≤ 0, (105)

is satisfied. In the(Ra, Rh′′) plane, both conditions (104)
and (105) are simultaneously satisfied inside the angular sec-
tor U ′A′W ′ of Fig. 6. The pointA′, which also lies on the
straight lineX′Y ′, is the polycritical point. Figure 6 shows
the behaviour of the system when the parametersS∗ andPr
are almost equal (here:S∗

= 0.72, Pr = 0.76). In Fig. 6a
the variables areRa andRh′′ The coordinates ofA′ are very
large (A′ is far from the origin), and the angleU ′A′W ′ is very
sharp. Moreover,�2 is small inside the domainU ′A′W ′.
In Fig. 6b the variables areRa and Rh (itself defined in
Eq. (56):Rh is a relevant variable if we consider a problem
where both unsaturated and saturated fluids coexist, such as
the convection of a cloud in unsaturated atmosphere. For in-
stance, if we consider the convective instability of a cloud
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Fig. 6. Instability diagram in clear air:(a) in the (Ra, Rh
′′) plane;(b) in the (Ra, Rh) plane. The numerical values are the same as in

Fig. 1. In Fig. 4a the stability parameterR′′
h

is defined with respect to the total moisture of the medium. Because the Schmidt number is very
near the Prandlt number, the double diffusion is weak (almost absent) in this figure, the oscillatory instability being confined in a very sharp
angular sectorU ′A′W ′. In Fig. 6b, the parameterRh = −Rh

′′
+30Ra+PrRe

2
[30 −γ /(γ −1)] is used instead ofRh

′′, in order to be able
to match together stable and unstable regions of both saturated and unsaturated cases, as it occurs in the coupled instability of two layers of
fluid. In the latter case, three values ofRe are considered: (i)Re = 1 (stable region inside the angleXF1Y

′
1); (ii) Re = 150 (stable region

inside the angleXF2Y
′
2); (iii) Re = 300 (stable region inside the sectorXF3A

′
3Y

′
3): in that case, the instability of the clear air may be

oscillatory (thresholdF3A
′
3).

surrounded by two layers of unsaturated air, the two stability
diagrams of the clear air layers and of the cloud itself may be
superimposed (Fig. 6b); the stability is confined in the region
XFY ′ or XFA′Y ′ of this figure, according to the values of
the Reynolds number. The figure also shows that the instabil-
ity of the cloud is mainly due to moisture, while the heating
first destabilizes the surrounding air.

6 Concluding remarks

We have exhibited, in this paper, some singularities of the
instability phenomena related to the double diffusive struc-
ture of the moist-saturated air. The most important conclu-
sion concerns the law of molecular diffusion in the medium:
following Onsager’s assumptions, generalized expression of
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Fick’s law of diffusion is given (Eq. 13). Furthermore, with
the magnitudeq0 of the water concentration assumed to be
small, the cases where this law may be simplified or not sim-
plified are also studied. With the parameterq0 being taken
as a small parameter, we have made an asymptotic expan-
sion of the equations with respect to that parameter. It is
interesting to note that the method we used in order to derive
Fick’s law (13) also indicates how one would arrive at other
laws of diffusion (in particular viscoplastic diffusion: such
a law is not necessarily irrelevant if we consider that, very
often, the motion of clouds seem like rigid, solid motions).

From a physical point of view, the main conclusions are
the following:

(i) There exist stationary, unstable states, analogous to
the salt fingers of the thermohaline convection: in the
present case, these states describe fleecy clouds (rolls
or cells), and mainly involve motions of the dry phase
and the liquid phase of the mixture. These stationary
states are due to the combined influences of molecular
diffusion in the system and change of phase.

(ii) Oscillatory instability may occur, mainly because of the
heating (Rayleigh number). The classical destabilizing
influence of the Rayleigh number in a pure fluid is the
limit of the oscillatory instability for vanishing mois-
ture. Moreover, it is this instability which generalizes
in a dissipative medium the eventual statically (nondis-
sipative) instability of the medium.

(iii) By matching the results of a saturated instability with
those of the corresponding unsaturated instability, we
have shown, as a application, that stationary instabil-
ity of a cloud can develop in a stable unsaturated atmo-
sphere, mainly because of the moisture gradient, while
the surrounding air becomes unstable, mainly because
of the temperature gradient.

From a mathematical point of view, although the disper-
sion equation is of the sixth degree (instead of the eighth de-
gree) this problem is more singular than the analogous prob-
lem of the thermohaline convection in the oceans. Physically,
this singularity expresses that the wavelengths of unstable
modes strongly depend on the values of the Rayleigh number
and of the moist Rayleigh number in convecting modes.

Some assumptions necessary for the modelling have been
made in the paper: the first, which is the assumption of a
small Schmidt numberS∗, is used in order to find Eq. (58).
This assumption is only an artifice related to the mathemati-
cal procedure. The Schmidt numberS is a Schmidt number
defined with respect to the total water density (instead of the
total density of the mixture).

A second mathematical assumption is that of the “Boussi-
nesq free surfaces” bounding the medium. This assumption
facilitates the determination of the instability thresholds, but
also allows one to qualitatively estimate the behaviours of the
solutions of problems involving other boundary conditions.
The last assumption, which is that of a smallq0, is straight-
forward: this assumption is classically used, supplemented

by the assumption of a large30, in such a manner that30
2

q0 remains of order unity (Einaudi and Lalas, 1973); such a
new assumption would not change the basis of our analysis.

Appendix A Derivation of the molecular diffusion
Eq. (13)

The diffusion velocities in a fluid mixture are related to the
gradients of concentrations by phenomenological relations
(in classical mixtures: Fick’s law). The general way to ob-
tain such relations consists of calculating the rate of the en-
tropy production (the dissipation in the medium): by assum-
ing that this dissipation is a quadratic positive form (it is the
so-called Onsager hypothesis), we obtain the most usual cor-
respondences between the variables. In the present medium,
denoting the dissipation by8, we obtain after some calcula-
tion

8 = τijDij −
q′

·∇T

T
− ρgvg ·

∇T (gg − gv) =

8v +8t +8d , (A1)

whereτij denotes the stress tensor,Dij denotes the deforma-
tion rate tensor,∇T denotes a gradient at constant tempera-
ture,q denotes the heat flux through the medium, andq’ is
related toq by the formula

q′
= q − ρgvg(hg − hv). (A2)

The relation (A1), which is not straightforward, is derived in
Bois (2002). The three dissipations,8v,8t ,8d , are the vis-
cous dissipation, the thermal dissipation, and the dissipation
by molecular diffusion. The second law of thermodynam-
ics stipules that8 must be positive for any thermodynam-
ical process applied to the medium. The three dissipations
8v,8t ,8d are written, in Eq. (A1), using independent pan-
els of variables, so that they must separately be positive: the
Onsager hypothesis corresponds to the simplest case where
this condition is satisfied. After this assumption, the dissipa-
tion appears as a positive quadratic form, so that the variables
figuring in the quantities8v,8t ,8d are related by linear
correspondences: first, writing8v as quadratic form leads
to the classical Navier-Stokes equations for the whole mix-
ture; second, the examination of8t leads to the Fourier law,
but this law does not affectq but q’ ; hence,q’= −k∇T (k
is the thermal conductivity) ; third, writing8d as a quadratic
form of its arguments provides the generalized Fick’s law,
namely

ρgvg = −D∇T (gg − gv) =

−D
∂

∂qg
(gg − gv)T ,qv∇qg −D

∂

∂qv
(gg − gv)T ,qg∇qv,(A3)

where∇T denotes a gradient taken at constant temperature,
andD is a scalar coefficient. The last expression (A3) results
from the Clausius-Clapeyron relation (9). Furthermore, the
Fourier’s law joined to (A3) yields

q = −k∇T − (hg − hv)
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D

∂

∂qg
(gg − gv)T ,qv∇qg +D

∂

∂qv
(gg − gv)T ,qv∇qv

]
.(A4)

The expression (A4) of the heat flux, inserted in the energy
equation, provides Eq. (15). Now, assuming that the medium
is a mixture of polytropic gases with constant heat capacities
we have

hg = cpg(T −20), hv = cpv(T −20)+ Lv0,

hL = cL(T −20),

gg(ρg, T ) = RgT log(ρg/ρg0)

+cpg(T −20)− cvgT log(T /20),

gv(ρv, T ) = RvT log(ρv/ρv0 + cpv(T −20)

−cvvT log(T /20)+ Lv0(1 − T/20, )

gL(T ) = cL(T −20)− cLT log(T /20). (A5)

Using (9) we deduce from (A5)

(∂/∂qg)(gg − gv)T ,qv = −RgT/qv,

(∂/∂qv)(gg − gv)T ,qg = −RgT/qv. (A6)

Finally, for a mixture of polytropic gases, Eq. (A3) takes the
form

ρgvg = −D
RgT

qg
∇qg +D

RgT

qv
∇qv =

DRgT
qg

qv
∇

(
qv

qg

)
= C∗

∇

(
qv

qg

)
. (A7)

The new coefficientC∗
= DRgT qg/qv is the effective diffu-

sion coefficient. In a problem of shallow convection this co-
efficient may be assumed constant. Another form of Eq. (A7)
is

ρqvg = C

(
∇qv −

qv

qg
∇qg

)
, (A8)

whereC = C∗/qg. Equation (A8) is the diffusion law used
along our paper (formula (13)). The form used by Bougeault
for the diffusion law is Eq. (A7), taking into account that the
concentrations, in his paper, are scaled by the density, of dry
air (instead of the total density as here: our variableqv/qg
corresponds to Bougeault’s variableqv).

Appendix B Variations of 1σ with respect to n and K
in Eq. (72)

K being fixed, we setλ = K2/(K2
+ n2π2)3. We have

Qn
2

= 1/(K2/3λ1/3), so that Eq. (72) may be rewritten

1σ =

1

K2/3

30(30µ+ τ)λ2/31Rh

Pr {τ [30(µ− 1)+ τ ] λRh0 −30(30µ+ τ)}
. (B1)

The derivatived(1σ)/dλ is positive if 0≤ λ < λ0, where
λ0 = 30(30µ + τ)/{Pr{]τ [30(µ − 1) + τ ]Rh0}}. Hence,
sinceλ is a decreasing function ofn, 1σ is also a decreas-
ing function ofn. Finally, the greatest value of1σ is that
reached for the smallest value ofn, namelyn = 1. Now for
n = 1, Eq. (71) may be rewritten as

δ =

∣∣∣∣ Pr1σ)

30(30µ+ τ )1Rh

∣∣∣∣ =

K2(K2
+ π2)

|τ [30(µ− 1)+ τ ]K2Rh0 −30(30µ+ τ )(K2 + π2)3|
. (B2)

After some calculation, the derivativedδ/dK2 vanishes if the
following equality is satisfied:

(K2
+ π2)3(K2

− π2)

K4
=
τ [30(µ− 1)+ τ ]Rh0

30(30µ+ τ)
. (B3)

Equation (B3) is nothing but Eq. (73). WhenK2 varies from
0 to + ∞, the left-hand side of Eq. (B3) is a monotonic
function ofK2 varying from−∞ to + ∞ (its derivative is
always positive); hence, Eq. (B3) always possesses a unique
root. This root defines the valueKmax of K, determining the
greatestδ, sayδmax, and, hence, the greatest1σ , say1σmax.
Kmax is easily determined by a numerical method.
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