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ABSTRACT:

Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using
a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via
texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further
analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models
and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D
building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model
edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is
calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are
tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from
helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models
and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

1. INTRODUCTION

Coregistration of multiple data is one of the main tasks in pho-
togrammetry and remote sensing and often is an important step
of data fusion needed for various applications. Depending on the
application, many methods and strategies have been proposed in
literature. In this paper, we present alignment of 3D building
models and thermal infrared (TIR) image sequences taken from a
flying platform.

1.1 Motivation

The interest in thermal images of urban scenes at various scales
has been of increasing interest in the recent years. The applica-
tions range from urban climate observation and heat island detec-
tion in large scale satellite images (Weng, 2009), through urban
districts inspections using airborne TIR imagery (Iwaszczuk et
al., 2012), to building inspection using street view TIR images
(Chandler, 2011).

Combining TIR images with three-dimensional (3D) geometries
allows for the spatial reference of the thermal data and facilitates
their interpretation. Thermal data can be combined with differ-
ent kinds of 3D geometries: with Building Information Models
(BIM) (Mikeleit and Kraneis, 2010), with 3D building models
(Hoegner et al., 2007) and (Iwaszczuk et al., 2011), with 3D point
clouds (Cabrelles et al., 2009), (Borrmann et al., 2012) and (Vi-
das et al., 2013) or with a point cloud and aerial photographs
at the same time(Boyd, 2013). Combination with point clouds
is carried out by assignment and interpolation of the measured
temperature to the points. Using point cloud as spacial reference
enables fast generation of results with a high level of detail and
is appropriate for visual interpretation. 3D building models de-
liver more generalized and structured representation to support
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automatic analysis. The TIR images can be fused with 3D build-
ing models by texturing, i.e. assignment of image sections to the
polygons of the 3D building models. Such textures map thermal
radiation of one building element (for example façade) on a geo-
referenced 3D polygon. Hence, they allow for geolocation of the
outputs of further analysis in the 3D object space, for example for
embedding of detected heat leakages in the 3D building model.
Using a semantic 3D building model, also combination with other
data and spatial queries are possible (Kaden and Kolbe, 2013).

To make such use of the thermal textures, large scale coverage
and precise texture extraction are needed. Airborne oblique TIR
videos taken from a flying platform such as UAV or helicopter
allow for capturing complete building envelope including roofs
and façades in inner yards and enable fast acquisition of entire
cities. Precise texture extraction can be achieved based on a well
coregistered data. The coregistration is made by 3D to 2D pro-
jection of the 3D building model using known exterior orienta-
tion parameters. Approximated exterior orientation parameters
are usually derived from the navigation device with an accuracy
of up to several meters for the position and up to few degrees
for orientation, depending on the accuracy class of the device.
However, these initial exterior orientation parameters are not suf-
ficient for precise texture extraction in most cases, even using a
high accuracy navigation. In addition, the mismatch between the
projected 3D model and image structures can be causes by some
other errors, such as error in boresight and lever-arm calibration
or errors in the 3D model related to the creation technique and
generalization. Therefore, the coregistration should be refined in
a matching process which takes not only the uncertainty in the
exterior orientation parameters, but also in the 3D model and in
image features. Moreover, the advantage of the high frequency
rate in the image sequences should be taken.
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1.2 Related work

The model-to-image matching problem for airborne imagery is
frequently addressed in literature and many methods for solving
the problem have been presented, also in the texturing context. In
(Früh et al., 2004) line matching based on slope and proximity
by testing different random camera positions is proposed. In this
method the relation between the frames is not used. In (Hsu et al.,
2000) and (Sawhney et al., 2002) existing 3D models are textured
using a video sequence taking the small change of the perspective
from frame to frame. They assume the camera pose to be known
in the first frame of the sequence and predict the pose in the next
frame. The correspondence between the frames is estimated us-
ing optical flow. Then they search for the best camera position by
minimizing the disagreement between projected edges and edges
detected in the image by varying the camera pose and try to max-
imize the integral of this field along the projected 3D line seg-
ment in the steepest descent method. This methodology employs
the properties of image sequences, but it uses random SIFT for
tracking and not features related to the buildings. Besides, it does
not take the uncertainty of the 3D building models into account.

In some other researches, uncertainty is considered in different
context. (Sester and Förstner, 1989) and (Schickler, 1992) intro-
duce uncertainty in three model parameters (width, length and
slope) for a simple case of roof sketches and integrate them in the
adjustment, together with the uncertainties in 2 parameters of 2D
lines detected in the image. (Luxen and Förstner, 2001) present
a method for optimal estimate for the projection matrix with the
covariance matrix for its entries using point and line correspon-
dences. Using homogeneous coordinates, they represent 3D lines
as join of two 3D points and the projection of these lines as pro-
jection planes. In doing so, the entries of the projection matrix
for points of size 3x4 has to be calculated, avoiding calculation
of the projection matrix for lines of size 3x6. In the adjustment
model they introduce the uncertainty of the 2D points and lines.

(Heuel and Förstner, 2001) and (Heuel, 2002) also use homo-
geneous representation of geometric uncertain entities to match
line segments, to optimally reconstruct 3D lines and finally group
them. (Heuel, 2002) gives a very detailed and structured overview
of representation of uncertain entities in 2D and 3D, such as points,
lines and planes and geometric reasoning with them. He also
presents the constructions using uncertain entities and appropri-
ate error propagation. (Beder, 2004) and (Beder, 2007) uses the
same representation for grouping of points and lines by statistical
testing for incidence.

(Meidow et al., 2009a) and (Meidow et al., 2009b) collect, eval-
uate, discuss and extend various representations for uncertain ge-
ometric entities in 2D. Additionally, they provide a generic esti-
mation procedure for multiple uncertain geometric entities with
Gauss-Helmert model. They handle uncertain homogeneous vec-
tors and their possibly singular covariance matrices by introduc-
ing constrains for the observations in addition to the conditions
for the observations and parameters, and restrictions for the pa-
rameters.

1.3 Overview

In this paper we present a methodology for the alignment of 3D
building models and oblique TIR image sequences taken from a
flying platform. In Section 2., the methodology for line based
coregistration in a single image is presented. Then, a concept for
tracking linear features based on visibility prediction is presented
in Section 3. In Section 4. experiments carried out with TIR im-
age sequences taken from helicopter in a densely built up urban
area are presented.

The novelty of this work is given by employing the uncertainty of
the 3D building models in a line based matching and adjustment
and by innovative tracking strategy based on a priori knowledge
from the 3D building model and the visibility checking.

2. LINE-BASED COREGISTRANTION OF 3D
BUILDING MODELS AND TIR IMAGES

2.1 Finding correspondences

In the presented approach, line segments are selected to be used
for matching. The corresponding image line segments are as-
signed to the model edges using an accumulator approach. The
model edges are projected into the image using the initial exterior
orientation taken from the navigation device and moved and ro-
tated in the image creating a 3D accumulator space. For each po-
sition of the projected model in the image, the number of fitting
line segments in the image is counted. Correspondences which
voted for the accumulator cell with most line correspondences
are used for the optimal pose estimation.

2.2 Optimal camera pose estimation

Estimation of the exterior orientation parameters in the projective
space is formulated using the complanarity of lj , X1i and X2i,
where X1i and X2i are the endpoints of a building edge corre-
sponding to line segment lj detected in the image (Fig. 1). In
this Section, the index i refers to the edges of the 3D building
model, and the index j to the line segments extracted in the im-
age. Coplanarity of lj , X1i and X2i is expressed as incidence of
the projected points x ′1i and x ′2i with the line lj . The projected
points x ′1i : x′1i = PX1i and x ′2i : x′2i = PX2i, where P is
the projection matrix. Then, the incidence conditions lTj x′1i = 0

and lTj x′2i = 0 write

lTjPX1i = 0, (1)

lTjPX2i = 0. (2)

These two equations are directly adapted in the Gauss-Helmert
model as conditions

g1(β̂, ŷ) = lTjPX1i, (3)

g2(β̂, ŷ) = lTjPX2i (4)

for the observations and parameters.

Also in the projective space the uncertainty of the image features
and 3D building model can be introduced. The covariance ma-
trix for a 3D point X represented in homogeneous coordinates X
can be directly derived from the cavariance matrix ΣXX for the
Euclidean representationX of this point as

ΣXX =

[
ΣXX 0

0T 1

]
. (5)

However, due to redundancy in the homogeneous representation,
the cavarinace matrix ΣXX is singular (Förstner, 2004) which
leads to restrictions in the optimization. To solve this problem, all
entities have to be spherically normalized1 (Kanatani, 1996), so
that lsj = Ns(lj), Xs

1i = Ns(X1i) and Ys
1i = Ns(Y1i). In the rest

of this Section, the index s is omitted assuming the homogeneous

1The covariance matrix Σll calculated as shown in eq. 10 is not sin-
gular but l is also spherically normalized in order to avoid ambiguity of
the homogeneous representation.
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Figure 1: Assignment of 3D model edges and 2D line segments
detected in the image

coordinates to be spherically normalized. This normalization has
to hold also during the estimation. Therefore, also the constrains

c1(ŷ) = ‖lj‖ − 1 (6)

c2(ŷ) = ‖X1i‖ − 1 (7)

c3(ŷ) = ‖X2i‖ − 1 (8)

for the observations are needed.

To find optimal solution for the unknown parameters
β̂ = [X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂], the optimization method for homoge-
neous entities presented in (Meidow et al., 2009a) and (Meidow
et al., 2009b) is adapted for this functional model. For this pur-
pose, the Lagrange function

L =
1

2
v̂TΣ−1

yy v̂ + λT
1g1(β̂, y + v̂) + λT

2g2(β̂, y + v̂)

+ νT
1c1(y + v̂) + νT

2c2(y + v̂) + νT
3c3(y + v̂) (9)

is minimized, where λ and ν are the Lagrangian vectors. In con-
trast to (Meidow et al., 2009a) and (Meidow et al., 2009b), here
the restriction for the estimated parameters h1(β̂) = 0 is not
needed, because the estimated parameters are defined directly
as exterior orientation parameters X0, Y0, Z0, ω, φ, κ. The
observation vector for each pair of corresponding lines writes
yij = [lj , X1i, X2i]

T, where l = [a, b, c]T is the homogeneous
representation for the image line segment and X1i, X2i is the ho-
mogeneous representation of the corners of the corresponding 3D
building edge. The covariance matrix Σll is assumed to be known
as result of the line fitting or as result of error propagation know-
ing the covariance matrices of the end points of the detected line
segment. This is done using

Σlj lj = S(x2j)Σx1j x1j ST(x2j)+S(x1j)Σx2j x2j ST(x1j), (10)

where S is the skew-symmetric matrix

S(x) =

 0 −w v
w 0 −u
−v u 0

 , x =

uv
w

 . (11)

Switching from the Euclidean to the homogeneous representa-
tion for point x in 2D or X in 3D is usually effected by adding
1 as an additional coordinate (homogeneous part). Hence, for a
2D point in Euclidean space x = [u, v]T, the equivalent homo-

geneous representation is x = [u, v, 1]T, and for a 3D point in
Euclidean space X = [U ,V ,W ]T, the equivalent homogeneous
representation is X = [U ,V ,W , 1]T. In many photogrammet-
ric applications, particularly in aerial photogrammetry, the points
are given in geodetic coordinate systems (for example, Gauss-
Krüger, UTM), where the values for U and V is in order 106.
Computations with such inconsistent number can lead to numer-
ical instability of the computations. To solve this problem, the
homogeneous entities should be conditioned. Similar to the con-
ditioning proposed by (Heuel, 2002), also here, the entities are
conditioned before optimizing, by checking the condition

maxhO = maxi

( ‖xhi‖
‖xOi‖

)
≥ fmin = 0.1, (12)

where xhi is the homogeneous and xOi the Euclidean part of a
homogeneous entity xi for point representation

x =

x1

x2

1

 =

 uv
w

 =
[xO

xh

]
. (13)

If maxhO < fmin the conditioning factor is calculated as

f = maxh0 · fmin (14)

In case of very large Euclidean part xO compared to the homo-
geneous part xh, f calculated as shown in eq. 14 can be smaller
than the machine accuracy εh. Hence, if f < εh then f should
be calculated as

f =
fmin

maxi(‖xOi‖)
(15)

(Heuel, 2002). Next, each entity is conditioned using matrices

W x(f) =

[
f I2 0

0T 1

]
(16)

for the 2D points,

W l(f) =

[
I2 0

0T f

]
(17)

for the 2D lines and

W X(f) =

[
f I3 0

0T 1

]
, (18)

so that the conditioned coordinates xc, lc and Xc are calculated as

xc = W x(fim)x, (19)

lc = W l(fim)l (20)

and
Xc = W X(fmod)X, (21)

where fim is the conditioning factor for the 2D image entities
and fmod is the conditioning factor for the 3D entities. Condi-
tioning entities changes also the transformation matrix. Here the
transformation matrix is the projection matrix P which can be
reconditioned using

P = W (fim)−1PcW (fmod). (22)

3. LINE TRACKING

Most digital cameras, also the cameras operating in TIR domain,
are able to capture image sequence with a relatively high frame
rate. The frame rate 20-25 frames per second is available in low
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and mid cost TIR cameras. Such frequency range enables acqui-
sition with a very large overlap between the images. Accordingly,
the position shift in the image space from frame to frame is in
range of few pixels for most objects. Besides, the viewing angle
does not change between the frames significantly. Hence, if the
correct match is found in one frame, it is relatively easy to find
correspondences in the next frame and calculate camera pose for
this frame.

Accordingly, in an image sequence with a very large overlap be-
tween the frames the whole process of model-to-image matching
does not have to be carried out for all frames. In order to reduce
computational effort, so called key-frames are introduced in this
thesis (Section 3.1) and selected lines are tracked from frame to
frame (Section 3.2).

3.1 Key-Frame Concept

The main goals of the key-frame concept is to reduce computa-
tional effort on the one hand and to ensure the reliability of the
calculated camera pose for each frame on the other hand. A key-
frame is a frame in which the image-to-model matching and pose
estimation are carried out as described in Section 2.. In a key-
frame the correspondences are selected independently of the pre-
vious frame. In general, the key-frames can be:

• pre-defined or

• dynamically selected during the process.

In order to initiate the process, the first frame fi, i = 1 is always a
key-frame. In case of pre-defined key-frames, they appear in cer-
tain intervals. The interval size should be adjusted to the overlap
between the frames. For image sequence with a very high over-
lap the interval can be higher as for frames with smaller overlap.
If the overlap is not constant and not enough reliable correspon-
dences with the model edges can be found, a dynamic selection
of key-frames is applied.

Dynamic selection of key-frames is based on the current status of
the reliability of matching and tracking. This reliability is due to
two main conditions:

• sufficient overlap between the frames fi and fi−1,

• sufficient reliability of the assignment in fi−1.

In a video sequence, the sufficient overlap between frames fi and
fi−1 is given in most cases. Sometimes, however, when for ex-
ample the camera is switched off for some time, the overlap can
be too small to reliably track line segments from frame to frame.
The reliability of the assignments depends on the number of se-
lected correspondences and how much we believe that this as-
signment is correct. While the number of correspondences is very
easy to measure, the belief is more difficult to express.

3.2 Predicted Tracking of Line Segments

Due to very small movements of the camera between the frames,
line segments can be assumed to be only shifted by few pixels
in the next frame. They can be tracked therefore using cross-
correlation. Cross-correlation method is suitable for tracking in
such application due to nearly invariant scale and viewing angle
between two neighboring frames. Accordingly, the appearance
of the tracked line segment and its surrounding will stay almost
unchanged.

During the tracking some projected model edges cannot be vis-
ible all the time in the sequence. The information which model
edge can be seen in a particular frame is derived from the model
and approximated camera position. The fact that the model edge
is seen or not can be considered as state of a particular model edge
in each frame. For each model edge, following states are possi-
ble: alive/sound (fully visible), alive/injured (partially occluded),
occluded and dead (out of field of view). Each model edge can
change its state in an event. Such event may occur for each model
edge among the image sequence. Tab. 1 presents these events in-
cluding the change of the state caused by each event.

Table 1: Possible events and states for tracked lines (alive/sound
- fully visible edge, alive/injured - partially occluded edge)

Event Possible states Possible states
before the event after the event

Birth ∅ Alive/sound
Alive/injured

Appearing Occluded Alive/sound
Alive/injured

Injury Alive/sound Alive/injured
Healing Alive/injured Alive/sound

Disappearing Alive/sound OccludedAlive - injured

Death
Alive/sound

DeadAlive/injured
Occluded

First event which occur for a model edge is birth. It is the mo-
ment, when the model edge is visible in the image for the first
time. After birth, the model edge can have one of two states
alive/injured or alive/sound. Alive/injured means that the edge
appears only partially in the frame or is partially occluded. This
will be the most common case directly after the birth of the edge,
because it happens very rarely that an entire edge appears at once
(no edge in frame fi−1, entire edge in frame fi). Such case would
directly result in alive/sound, which means fully visible edge. An
alive/injured edge can become alive/sound in the healing event.
Vice versa, alive/sound edge can become alive/ injured, it gets
partially occluded by an object or part of this edge is not seen
anymore in the current frame. Such an event is called injury.
If the edge gets completely occluded by an object such event is
called disappearing and the state after this event is occluded. Dis-
appearing can occur for alive/sound or alive/injured edges. The
opposite of the disappearing event is appearing. It happens when
an occluded edge becomes alive/sound or alive/injured. The last
possible event is death of the edge. It happens if the whole edge
is not anymore seen in the current frame, it means it is out of the
field of view. Death can happen to an alive/sound, alive/injured
or occluded edge.

By defining the states of the model, it is determined for which
model edges, a corresponding image line segments should be
searched. Correspondences can be found only for alive edges.
Injury is the only state which can be expressed with level of in-
jury, it means how much of the edge is occluded. Highly injured
edges are skipped when searching for correspondences.

4. EXPERIMENTAL RESULTS

4.1 Data description

For our experiments we used a test dataset captured in a densely
built city area The thermal images were taken with IR camera
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AIM 640 QLW FLIR with a frame rate 25 images per second,
which was mounted on a platform carried by helicopter. The fly-
ing height was approximately 400 m above ground level. The
camera was forward looking with an oblique view of approxi-
mately 45◦. The size of the chip is 640 x 512 pixels. The 3D
building model was created semi-automatically using commer-
cial software for 3D building reconstruction from aerial images.

4.2 Results

Exemplary results of the alignment are presented in Fig. 2. In
order to reduce computational effort, first lines have been prese-
lected using a buffer around each projected model edge (Fig. 2a).
Then, the preliminary correspondences are reduced using the out-
lier detector - the accumulator approach (Fig. 2b). Finally, the
selected correspondences were used for optimal pose estimation.
The model projection using estimated exterior orientation param-
eters is presented in Fig. 3.

a

b

Figure 2: Exemplary result on model-to-image matching: a) pre-
selected correspondences using a buffer around each projected
model, b) correspondences selected using the outlier detector.
Color coding: green - model edges with found correspondences,
yellow - model edges without correspondences, blue - image line
segments with correspondences, cyan - image line segments with-
out correspondences

To evaluate the method and to investigate the sensitivity of the
method with respect to changes in the initial exterior orienta-
tion parameters, one frame was selected. Using normally dis-
tributed random numbers with mean µ = 0 and standard devia-
tion σXY Z = 1 m, σωφκ = 0.1◦, the initial exterior orienta-
tion parameters were degraded. For every randomly degraded

Figure 3: 3D building model (yellow) projected into the image
with estimated exterior orientation parameters

Table 2: Percentage of successfully matched samples with down-
graded initial exterior orientation. σ denotes the standard de-
viation used for the generation of normally distributed random
numbers, with σ = [σXY Z ,σωφκ]

T, where σXY Z = 1 m, and
σωφκ = 0.1◦

Successfully matched samples when downgrading the
exterior orientation with normally distributed numbers
using mean µ = 0 and standard deviation
σ 3σ 4σ 5σ 7σ

96% 87% 82% 83% 75%

set of exterior orientation parameters, the matching was carried
out. Then, such tests were successively repeated with multiple of
σXY Z and of σωφκ. For each set of multiplied σXY Z and σωφκ,
100 normally distributed random values were generated and used
for downgrading the initial exterior orientation parameters (Tab.
2).

To test the implemented tracking, pre-defined key-frames were
used. The interval between the key-frames was set to 3, 5 and
7. The first frame was always defined as a key-frame. Exem-
plary results on tracking are presented in Fig. 4 and Fig. 5. In
these figures, sections of four following frames are shown. In the
lower right corner of each image section, the ID of correspond-
ing frame was plotted, in order to establish a link between Fig. 4
and Fig. 5. In the presented example, the interval between the
key-frames was set to 3, hence frames #13141 (initial frame fi
with i = 1) and #13144 are key-frames, while frames #13142
and #13143 are normal frames.

Fig. 4 presents the projected model: in green - tracked model
edges and in yellow - model edges projected with estimated pa-
rameters. Fig. 5 shows the image line segments corresponding to
the edges in the current frame (cyan) and the image line segments
tracked as correspondences from the previous frame (blue).

Applying the presented tracking strategy, every projected model
edge in frame fi, where i > 1 can get two types of correspon-
dences with the image edges:

1. Assigned correspondences (with extracted edges)

2. Tracked correspondences (virtual, with tracked edges)

Virtual (tracked) correspondences can be helpful when not enough
new correspondences are found in the current frame. However,
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Figure 4: Image sections from a sequence of four images with
two key-frames with projected 3D building model. Color coding:
bright yellow - model lines with correspondences projected after
parameter estimation, dark yellow - model lines without corre-
spondences projected after parameter estimation, bright green -
tracked model lines with correspondences, dark green - tracked
model lines without correspondences

Figure 5: Image sections from a sequence of four images with
two key-frames and plotted image line segments with correspon-
dence. Color coding: cyan - image line segments detected in
current frame corresponding to a model edge, blue - image line
segments tracked as correspondences from the previous frame

they are not needed, if the a new correspondence was found for a
certain edge. Hence, in each frame, a verification of correspon-
dences is carried out. It was tested, whether there was a new
correspondence which was equivalent to the tracked correspon-
dence. This case occurs when the tracked image edge and newly
assigned image edge are equal. This is tested using three condi-
tions:

• the middle points of the line segments are close to each
other,

• their are of similar length and

• their are almost incident.

The first two conditions are carried out by setting a threshold.
For the third condition, statistical test are implemented. If for
only few correspondences where found in the current frame, then
the missing correspondences are extended with the virtual corre-
spondences. Hence, the virtual correspondences are also used for
tracking in the next frame.

The results on the veryfication are presented in Fig. 6. Also here,
the frame IDs are plotted in the lower right corner. The image
section from frame #13141 is missing in this figure. The rea-
son for it is that #13141 was the initial frame, so not verification
could be carried out. Two line were verified as the same lines if
the distance between the middle points was smaller than 7 pix,
the length ratio grater 70%, and the statistical test confirmed their
incidence with the significance level α = 0.01. The virtual corre-
spondences were added to the current correspondence when less
then 30% model edges got a corresponding image line segment.

Figure 6: Verification of the edge correspondence. Color coding:
cyan - image line segments detected in current frame correspond-
ing to a model edge, blue - verified virtual correspondences with
correspondences in the current frame, dark orange - virtual cor-
respondences which were added to the correspondence list and
used for tracking in the next frame

In order to assess the accuracy of the tracking, the model edges
were also tracked into the key-frames. As a measure for this as-
sessment, the distance between the tracked and projected model
edges after estimation was used. For each corresponding pair of
tracked and projected model edges, the area between was calcu-
lated and divided by the length of the model edge. This value was
considered to be the average distance between those two edges.
This distance was summed up and averaged among whole frame,
and then stored as the quality value per frame. Tab. 3 shows
analysis of these values stored per frame, dependent on the pre-
defined interval between the key-frames.
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Table 3: Quality measure for tracking expresses with average dis-
tance between the tracked and projected model edges. Here anal-
ysis of this value per frame.

Interval between the
key-frames

3 frames 5 frames 7 frames

Average distance 1.6 pix 2.4 pix 3.1 pix
Maximum distance 2.2 pix 3.1 pix 4.0 pix
Minimum distance 0.9 pix 1.4 pix 0.8 pix

5. DISCUSSION AND OUTLOOK

Line based model-to-image matching has a high potential for co-
registration of buildings with oblique airborne images. Edges are
the most representative features for building structures and can
be easily detected in the image using standard image processing
algorithms.

Taking the uncertainty of image lines and of the building model
into account allows using statistical analysis based on uncertainty,
such as statistical test and robust estimation with outlier detector.
Also a better fit between the building model and the image struc-
tures is achieved.

By tracking the line segments assigned to the 3D model from
frame to frame the search area is restricted and the time needed
for calculation reduced. Up to now, the experiments on line track-
ing have been conducted with pre-defined key-frames. In the fu-
ture, more attention should be paid to dynamically selected key-
frames and to the criteria for reliability of the coregistration in a
single frame. Depending on this reliability, the next frame in the
sequence can be set to a key-frame (in case of low reliability) or
to standard frame (in case of high reliability).

The other idea to select the key-frames is based on the importance
of a frame. Because finally the TIR images are used for textur-
ing, the usefulness for this purpose should be considered. Due
to the large number of images in the sequence, each face of he
3D model can be seen many times. However, in certain frame,
the quality of the extracted texture of particular face, would be
better than in other frames. Frames, which deliver high quality
textures for many or for most important face, will be favored to
be key-frames.
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