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The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay
andMarkovian switching. By applying the stochastic analysis approach and theM-matrixmethod for stochastic complex networks,
several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived.Through
the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to
substantiate the effectiveness and characteristics of the proposed approach.

1. Introduction

As is known to all, complex networks widely exist in nature,
such as brain structures, protein interactions, social net-
works, electrical power, and World Wide Web. Recently, the
dynamical behaviors of complex networks have attracted
ever-increasing research interest from a variety of com-
munities such as mathematicians, computer scientists, and
control engineers. As a result, a number of dynamic anal-
ysis issues have been extensively investigated for complex
networks, such as synchronization, consensus, and flocking
phenomenon, in which synchronization is one of the most
important and has attracted special attention of researchers in
different fields [1–13]. In [4], by using Lyapunov method and
some properties of Kronecker product, a sufficient condition
is proposed to ensure that the dynamics of the considered
network globally exponentially synchronizes with the desired
solution in themean square sense. In particular, the proposed
criteria for network synchronization are in terms of linear
matrix inequalities (LMIs). In [13], a modified Lyapunov-
Krasovskii functional is constructed by employing the more
general decomposition approach; the novel delay-dependent

synchronization conditions are derived in terms of LMIs,
which can be easily solved by various convex optimization
algorithms.

Meanwhile, the stability and synchronization of complex
networks can be applied to secure communication systems
[14], information science [15], and brain science [16], and so
on. The synchronization of complex networks is to achieve
the accordance of the states of the drive complex network
and the response complex network in a moment. That is to
say, the state of the error system can achieve zero eventually
when the time approaches infinity. In particular, the adaptive
synchronization for a complex network is such synchroniza-
tion that the parameters of the drive complex network need
to be estimated and the synchronization control law needs to
be updated in real time when the complex network evolves.
Furthermore, the stochastic complex dynamic network con-
tains inherent time delay, which may cause instability or
oscillation.

It should be pointed out that, up to now, the problem
of adaptive asymptotical synchronization for stochastic com-
plex networks with time-delay and Markovian switching has
received very little research attention.
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Summarizing the above discussions, the focus of this
paper is on the adaptive asymptotical synchronization prob-
lem for stochastic delayed complex networks withMarkovian
switching. The main purpose of this paper is to establish
stability criteria for testing whether the stochastic complex
network is adaptive asymptotical synchronization. By using
the stochastic analysis approach and the 𝑀-matrix method,
several sufficient conditions to ensure adaptive synchro-
nization for stochastic complex networks are derived. Via
the adaptive feedback technique, some suitable parameters
update laws are obtained. Moreover, a simulation example is
provided to show the effectiveness of the proposed controller
design scheme. The main novelty of our contribution is
threefold: (1) adaptive asymptotical synchronization control
is addressed for stochastic complex networks with time-delay
and Markovian switching; (2) using the adaptive feedback
control techniques, adaptive feedback controller is designed;
(3) the 𝑀-matrix method of adaptive synchronization con-
troller is given by employing a new nonnegative function.

The organization of this paper is as follows. In Section 2,
the mathematical model of the stochastic complex networks
with time-delay and Markovian switching is presented and
some preliminaries are given. The main results of adaptive
asymptotical synchronization are proved in Section 3. In
Section 4, a simple example is given to demonstrate the
effectiveness of the proposed results. Finally, the conclusions
are presented in Section 5.

2. Problem Formulation and Preliminaries

The coupled complex networks can be called drive complex
network and described as follows:

�̇�𝑙 (𝑡) = 𝑓 (𝑥𝑙 (𝑡)) +

𝑁

∑

𝑝=1

𝑎𝑙𝑝Θ𝑥𝑝 (𝑡) +

𝑁

∑

𝑝=1

𝑏𝑙𝑝Θ𝑥𝑝 (𝑡 − 𝜏 (𝑡)) ,

𝑙 = 1, 2, . . . , 𝑁,

(1)

where 𝑡 ≥ 0, 𝑥𝑙(𝑡) = [𝑥𝑙1(𝑡), 𝑥𝑙2(𝑡), . . . , 𝑥𝑙𝑁(𝑡)]
𝑇

∈ R𝑁 is the
state vector of the 𝑙th node, 𝑓(𝑥𝑙(𝑡)) ∈ R𝑁 is a nonlinear
vector-valued function, Θ = 𝐼𝑛 = diag{1, 1, . . . , 1} ∈ R𝑁×𝑁

is an inner-coupling matrix, 𝐴 = (𝑎𝑙𝑝)
𝑁×𝑁

∈ R𝑁×𝑁 and
𝐵 = (𝑏𝑙𝑝)

𝑁×𝑁
∈ R𝑁×𝑁 are the connection weight and the

delayed connection weight matrices, and 𝑎𝑙𝑝 and 𝑏𝑙𝑝 are the
weight or coupling strength. If there exists a link from node
𝑙 to 𝑝 (𝑙 ̸= 𝑝), then 𝑎𝑙𝑝 ̸= 0 and 𝑏𝑙𝑝 ̸= 0. Otherwise, 𝑎𝑙𝑝 = 0 and
𝑏𝑙𝑝 = 0. 𝜏(𝑡) is the time-varying delay satisfying 0 < 𝜏(𝑡) ≤ 𝜏

and ̇𝜏(𝑡) ≤ 𝜏 < 1, where 𝜏 and 𝜏 are constants.
Given a probability space (Ω,F, and 𝑃), {𝑟(𝑡), 𝑡 ≥ 0}

is a homogeneous finite-state Markovian process with right
continuous trajectories and taking values in finite set 𝑆 =

{1, 2, . . . , 𝑁} with the initial model 𝑟(0) = 𝑟0. Let generator
Γ = (𝛾𝑖𝑗)𝑁×𝑁, 𝑖, 𝑗 ∈ 𝑆, be the transition rate matrix with
transition probability

𝑃 {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾𝑖𝑗𝛿 + 𝑜 (𝛿) if 𝑖 ̸= 𝑗,

1 + 𝛾𝑖𝑖𝛿 + 𝑜 (𝛿) if 𝑖 = 𝑗,

(2)

where 𝛿 > 0 and 𝛾𝑖𝑗 ≥ 0 is the transition rate from 𝑖 to 𝑗 if
𝑖 ̸= 𝑗, while

𝛾𝑖𝑖 = −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝛾𝑖𝑗. (3)

Let 𝑥(𝑡) = [𝑥
𝑇

1
(𝑡), 𝑥
𝑇

2
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡)]
𝑇

∈ R𝑁×𝑁, 𝑓(𝑥(𝑡)) =

[𝑓
𝑇
(𝑥1(𝑡)), 𝑓

𝑇
(𝑥2(𝑡)), . . . , 𝑓

𝑇
(𝑥𝑁(𝑡))]

𝑇; the drive complex
network (1) with Markovian switching can be rewritten as

𝑑𝑥 (𝑡) = [𝑓 (𝑥 (𝑡)) + 𝐴 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑡,

(4)

where, for the purpose of simplicity, we denote 𝑟(𝑡) = 𝑖,
𝐴(𝑟(𝑡)) = 𝐴

𝑖, 𝐵(𝑟(𝑡)) = 𝐵
𝑖, and 𝑥(𝑡 − 𝜏(𝑡)) = 𝑥𝜏(𝑡), resp-

ectively.
For the drive complex network (4), a response complex

network is constructed in the following form:

𝑑𝑦 (𝑡) = [𝑓 (𝑦 (𝑡)) + 𝐴 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑦 (𝑡)

+𝐵 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑦𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑦 (𝑡) − 𝑥 (𝑡) , 𝑦𝜏 (𝑡) − 𝑥𝜏 (𝑡)) 𝑑𝑤 (𝑡) ,

(5)

where𝑦(𝑡) is the state vector of the response complex network
(5). 𝑈(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑁(𝑡))

𝑇
∈ 𝑅
𝑁 is a control input

vector with the form of
𝑈 (𝑡) = 𝐾 (𝑡) (𝑦 (𝑡) − 𝑥 (𝑡))

= diag {𝑘1 (𝑡) , 𝑘2 (𝑡) , . . . , 𝑘𝑛 (𝑡)} (𝑦 (𝑡) − 𝑥 (𝑡)) ,

(6)

𝜔(𝑡) = (𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑁(𝑡))
𝑇 is an𝑁-dimensional Brown

moment defined on a complete probability space
(Ω,F, and 𝑃) with a natural filtration {F𝑡}𝑡≥0 (i.e.,
F𝑡 = 𝜎{𝜔(𝑠) : 0 ≤ 𝑠 ≤ 𝑡} is a 𝜎-algebra) and is independent of
the Markovian process {𝑟(𝑡)}𝑡≥0, and 𝜎 is the noise intensity
matrix and can be regarded as a result from the occurrence
of eternal random fluctuation and other probabilistic causes.

Let 𝑒𝑙(𝑡) = 𝑦𝑙(𝑡) − 𝑥𝑙(𝑡) and 𝑒(𝑡) = [𝑒
𝑇

1
(𝑡),

𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡)]
𝑇

∈ R𝑛×𝑁. As a matter of convenience, we
mark 𝑒(𝑡 − 𝜏(𝑡)) = 𝑒𝜏(𝑡) and 𝜙(𝑒(𝑡)) = 𝑓(𝑦(𝑡)) − 𝑓(𝑥(𝑡)).
From the complex networks (4) and (5), the error system is
arranged as

𝑑𝑒 (𝑡) = [𝜙 (𝑒 (𝑡)) + 𝐴 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑒 (𝑡)

+𝐵 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑒𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒𝜏 (𝑡)) 𝑑𝑤 (𝑡) .

(7)

The main purpose of the rest of this paper is to set up
a criterion of adaptive asymptotical synchronization for the
system (4)–(7) via employing adaptive control and𝑀-matrix
methods. Next, we firstly introduce assumptions, definitions,
and lemmas which will be used in the proofs of main results.

Assumption 1. The activation function 𝑓(𝑥(𝑡)) satisfies the
Lipschitz condition. That is to say, there exists a constant
𝐿 > 0 such that

𝑓 (𝑢) − 𝑓 (V) ≤ 𝐿 |𝑢 − V| , ∀𝑢, V ∈ 𝑅
𝑛
. (8)
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Assumption 2. The noise intensity matrix 𝜎(⋅, ⋅, ⋅) satisfies the
linear growth condition.That is to say, there exist positives𝐻1
and𝐻2, such that

trace(𝜎 (𝑡, 𝑒, 𝑒𝜏))
𝑇
(𝜎 (𝑡, 𝑒, 𝑒𝜏)) ≤ 𝐻1|𝑒|

2
+ 𝐻2

𝑒𝜏


2
. (9)

Definition 3 (see [17]). The trivial solution 𝑒(𝑡, 𝜁) of the error
system (7) is said to be almost surely asymptotically stable if

𝑃( lim
𝑡→∞

𝑒 (𝑡; 𝑖, 𝜁)
 = 0) = 1 (10)

for any 𝜁 ∈ 𝐿
2

L0
([−𝜏, 0]; 𝑅

𝑛
).

The response system (5) and the drive system (4) are said
to be asymptotically synchronized if the error system (7) is
asymptotically stable.

Definition 4 (see [18]). Consider an 𝑛-dimensional stochastic
delayed differential equation (SDDE, for short) with Marko-
vian switching:

𝑑𝑥 (𝑡) = f (𝑡, 𝑟 (𝑡) , 𝑥 (𝑡) , 𝑥𝜏 (𝑡)) 𝑑𝑡

+ g (𝑡, 𝑟 (𝑡) , 𝑥 (𝑡) , 𝑥𝜏 (𝑡)) 𝑑𝜔 (𝑡)

(11)

on 𝑡 ∈ [0,∞) with the initial data given by

{𝑥 (𝜃) : −𝜏 ≤ 𝜃 ≤ 0} = 𝜉 ∈ 𝐿
2

L0
([−𝜏, 0] ; 𝑅

𝑛
) . (12)

For𝑉 ∈ 𝐶
2,1

(𝑅+ × 𝑆×𝑅
𝑛
; 𝑅+), define an operatorL from

𝑅+ × 𝑆 × 𝑅
𝑛 to 𝑅 by

L𝑉 (𝑡, 𝑖, 𝑥 (𝑡) , 𝑥𝜏 (𝑡))

= 𝑉𝑡 (𝑡, 𝑖, 𝑥 (𝑡)) + 𝑉𝑥 (𝑡, 𝑖, 𝑥 (𝑡)) f (𝑡, 𝑖, 𝑥 (𝑡) , 𝑥𝜏 (𝑡))

+ (
1

2
) trace (g𝑇 (𝑡, 𝑖, 𝑥 (𝑡) , 𝑥𝜏 (𝑡)) 𝑉𝑥𝑥 (𝑡, 𝑖, 𝑥 (𝑡))

⋅ g (𝑡, 𝑖, 𝑥 (𝑡) , 𝑥𝜏) (𝑡))

+

𝑁

∑

𝑗=1

𝛾𝑖𝑗𝑉 (𝑡, 𝑗, 𝑥 (𝑡)) ,

(13)

where

𝑉𝑡 (𝑡, 𝑖, 𝑥 (𝑡)) =
𝜕𝑉 (𝑡, 𝑖, 𝑥 (𝑡))

𝜕𝑡
,

𝑉𝑥 (𝑡, 𝑖, 𝑥 (𝑡))

= (
𝜕𝑉 (𝑡, 𝑖, 𝑥 (𝑡))

𝜕𝑥1

,
𝜕𝑉 (𝑡, 𝑖, 𝑥 (𝑡))

𝜕𝑥2

, . . . ,
𝜕𝑉 (𝑡, 𝑖, 𝑥 (𝑡))

𝜕𝑥𝑛

) ,

𝑉𝑥𝑥 (𝑡, 𝑖, 𝑥 (𝑡)) = (
𝜕
2
𝑉 (𝑡, 𝑖, 𝑥 (𝑡))

𝜕𝑥𝑗𝜕𝑥𝑘

)

𝑛×𝑛

.

(14)

Lemma5 (see [18]). Let𝑥 ∈ R𝑛 and𝑦 ∈ R𝑛; then𝑥
𝑇
𝑦+𝑦
𝑇
𝑥 ≤

𝜖𝑥
𝑇
𝑥 + 𝜖
−1
𝑦
𝑇
𝑦, for any 𝜖 > 0.

Lemma 6 (see [18]). If 𝑀 = (𝑚𝑖𝑗)𝑛×𝑛 ∈ 𝑅
𝑛×𝑛 with 𝑚𝑖𝑗 <

0 (𝑖 ̸= 𝑗), then the following statements are equivalent.

(i) 𝑀 is a nonsingular𝑀-matrix.
(ii) Every real eigenvalue of𝑀 is positive.
(iii) 𝑀 is positive stable. That is, 𝑀−1 exists and 𝑀

−1
>

0 (i.e., 𝑀−1 ≥ 0 and at least one element of 𝑀−1 is
positive).

Lemma 7 (see [17]). Assume that there are functions 𝑉 ∈

𝐶
2,1

(𝑅+ ×𝑆×𝑅
𝑛
; 𝑅+), 𝜓 ∈ 𝐿

1
(𝑅+; 𝑅+), and𝑤1, 𝑤2 ∈ 𝐶(𝑅

𝑛
; 𝑅+)

such that

L𝑉 (𝑡, 𝑖, 𝑥, 𝑦) ≤ 𝜓 (𝑡) − 𝑤1 (𝑥) + 𝑤2 (𝑦) ,

∀ (𝑡, 𝑖, 𝑥, 𝑦) ∈ 𝑅+ × 𝑆 × 𝑅
𝑛
× 𝑅
𝑛
,

(15)

𝑤1 (0) = 𝑤2 (0) = 0, 𝑤1 (𝑥) > 𝑤2 (𝑥) ∀𝑥 ̸= 0, 𝑦 ̸= 0,

(16)

lim
|𝑥|→∞

inf
0≤𝑡<∞,𝑖∈𝑆

𝑉 (𝑡, 𝑖, 𝑥) = ∞. (17)

Then the solution of (11) is almost surely asymptotically stable.

3. Main Results

In this section, some criteria of adaptive asymptotical syn-
chronization will be obtained for the system (4), (5), and (7).

Theorem 8. Assume that 𝑀 := − diag{𝜃, 𝜃, . . . , 𝜃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

} − Γ is a

nonsingular𝑀-matrix, where

𝜃 = 1 + 𝐿
2
+ 𝛼 + 𝛽 + 𝐻1,

𝛼 = 𝜆max (𝐴
𝑖
⊗ 𝐼𝑛) ,

𝛽 = 𝜆max (
1

2
(𝐵
𝑖
⊗ 𝐼𝑛) (𝐵

𝑖
⊗ 𝐼𝑛)
𝑇

) .

(18)

Let 𝑚 > 0 and �⃗� = (𝑚,𝑚, . . . , 𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

)
𝑇. That is to say,

all elements of 𝑀
−1
�⃗� are positive. According to Lemma 6,

(𝑞1, 𝑞2, . . . , 𝑞𝑁)
𝑇
:= 𝑀
−1
�⃗� ≫ 0. In addition, assume also that

(1 + 𝐻2) 𝑞 < −(𝜃𝑞𝑖 +

𝑁

∑

V=1
𝛾𝑖V𝑞V) , ∀𝑖 ∈ 𝑆, (19)

where 𝑞 = max𝑖∈𝑆𝑞𝑖.
Under Assumptions 1 and 2, the response complex network

(5) can be adaptively synchronized with the drive complex
network (4), if the feedback gain 𝐾(𝑡) with the update law is
chosen as

�̇�𝑗 = −]𝑗𝑞𝑖𝑒
2

𝑗
. (20)

Proof. Choose a nonnegative function candidate as

𝑉 (𝑡, 𝑒) = 𝑞𝑖|𝑒|
2
+

𝑛

∑

𝑗=1

1

]𝑗
𝑘
2

𝑗
. (21)
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The computation of L𝑉(𝑡, 𝑒) along with the solution of
error system (7) and using (20) is
L𝑉 (𝑡, 𝑒)

= 𝑉𝑡 (𝑡, 𝑒) + 𝑉𝑒 (𝑡, 𝑒)

× [𝜙 (𝑒 (𝑡)) + 𝐴
𝑖
⊗ 𝐼𝑛𝑒 (𝑡) + 𝐵

𝑖
⊗ 𝐼𝑛𝑒𝜏 (𝑡) + 𝑈 (𝑡)]

+
1

2
trace (𝜎𝑇 (𝑡, 𝑒, 𝑒𝜏) 𝑉𝑒𝑒 (𝑡, 𝑒) 𝜎 (𝑡, 𝑒, 𝑒𝜏))

+

𝑁

∑

V=1
𝛾𝑖V𝑉 (𝑡, V, 𝑒)

= 2

𝑛

∑

𝑗=1

1

]𝑗
𝑘𝑗�̇�𝑗 + 2𝑞𝑖𝑒

𝑇

× [𝜙 (𝑒 (𝑡)) + 𝐴
𝑖
⊗ 𝐼𝑛𝑒 (𝑡) + 𝐵

𝑖
⊗ 𝐼𝑛𝑒𝜏 (𝑡) + 𝐾𝑒 (𝑡)]

+
1

2
trace (𝜎𝑇 (𝑡, 𝑒, 𝑒𝜏) 𝑉𝑒𝑒 (𝑡, 𝑒) 𝜎 (𝑡, 𝑒, 𝑒𝜏))

+

𝑁

∑

V=1
𝛾𝑖V𝑞V|𝑒|

2

= 2𝑞𝑖𝑒
𝑇
[𝜙 (𝑒 (𝑡)) + 𝐴

𝑖
⊗ 𝐼𝑛𝑒 (𝑡) + 𝐵

𝑖
⊗ 𝐼𝑛𝑒𝜏 (𝑡)]

+ 𝑞𝑖trace (𝜎
𝑇
(𝑡, 𝑒, 𝑒𝜏) 𝜎 (𝑡, 𝑒, 𝑒𝜏)) +

𝑁

∑

V=1
𝛾𝑖V𝑞V|𝑒|

2
.

(22)
Now, according to Assumptions 1 and 2 together with

Lemma 5, one obtains

𝑒
𝑇
𝜙 (𝑒 (𝑡)) ≤

1

2
𝑒
𝑇
𝑒 +

1

2
𝜙
𝑇
(𝑒) 𝜙 (𝑒) ≤

1

2
(1 + 𝐿

2
) |𝑒|
2
,

𝑒
𝑇
𝐴
𝑖
⊗ 𝐼𝑛𝑒 ≤ 𝛼|𝑒|

2
,

𝑒
𝑇
𝐵
𝑖
⊗ 𝐼𝑛𝑒𝜏 ≤

1

2
𝑒
𝑇
(𝐵
𝑖
⊗ 𝐼𝑛) (𝐵

𝑖
⊗ 𝐼𝑛)
𝑇

𝑒 +
1

2
𝑒
𝑇

𝜏
𝑒𝜏

≤ 𝛽|𝑒|
2
+

1

2

𝑒𝜏


2
,

trace (𝜎𝑇 (𝑡, 𝑒, 𝑒𝜏) 𝜎 (𝑡, 𝑒, 𝑒𝜏)) ≤ 𝐻1|𝑒|
2
+ 𝐻2

𝑒𝜏


2
.

(23)

Substituting (23) into (22), one gets
L𝑉 (𝑡, 𝑒)

≤ 2𝑞𝑖 [
1

2
(1 + 𝐿

2
) |𝑒|
2
+ 𝛼|𝑒|

2
+ (𝛽|𝑒|

2
+

1

2

𝑒𝜏


2
)]

+ 𝑞𝑖 (𝐻1|𝑒|
2
+ 𝐻2

𝑒𝜏


2
) +

𝑁

∑

V=1
𝛾𝑖V𝑞V|𝑒|

2

= (𝜃𝑞𝑖 +

𝑁

∑

V=1
𝛾𝑖V𝑞V) |𝑒|

2
+ (1 + 𝐻2) 𝑞𝑖

𝑒𝜏


2

≤ −𝑚|𝑒|
2
+ (1 + 𝐻2) 𝑞

𝑒𝜏


2
,

(24)

where𝑚 = −(𝜃𝑞𝑖 + ∑
𝑁

V=1 𝛾𝑖V𝑞V) by [𝑞1, 𝑞2, . . . , 𝑞𝑁]
𝑇
= 𝑀
−1
�⃗�.

Let 𝜓(𝑡) = 0, 𝜔1(𝑒) = 𝑚|𝑒|
2, and 𝜔2(𝑒𝜏) = (1 + 𝐻2)𝑞|𝑒𝜏|

2.
Then inequality (24) holds such that inequality (15) holds.
Consider 𝜔1(0) = 0 and 𝜔2(0) = 0 when 𝑒 = 0 and
𝑒𝜏 = 0, and inequality (19) implies 𝜔1(𝑒) > 𝜔2(𝑒𝜏). So (16)
holds. Moreover, (17) holds when |𝑒| → ∞ and |𝑒𝜏| →

∞. By Lemma 7, the error system (7) is adaptive almost
surely asymptotically stable, and hence the noise-perturbed
response complex network (5) can be adaptively almost surely
asymptotically synchronized with the drive complex network
(4). This completes the proof.

Remark 9. For complex networks (1), themethod in the paper
can be used in some systems, such as multiagent systems [19–
21] and wireless sensor networks [22], which are the next
research topic for us.

Now, we are in a position to consider two cases of
the complex networks (4)-(5), which have the following
corollaries.

The Markovian switching is removed from the complex
networks. That is to say, the drive complex network, the
response complex network, and the error system can be
represented, respectively, as follows:

𝑑𝑥 (𝑡) = [𝑓 (𝑥 (𝑡)) + 𝐴 ⊗ 𝐼𝑛𝑥 (𝑡) + 𝐵 ⊗ 𝐼𝑛𝑥𝜏 (𝑡)] 𝑑𝑡,

𝑑𝑦 (𝑡) = [𝑓 (𝑦 (𝑡)) + 𝐴 ⊗ 𝐼𝑛𝑦 (𝑡)

+ 𝐵 ⊗ 𝐼𝑛𝑦𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑦 (𝑡) − 𝑥 (𝑡) , 𝑦𝜏 (𝑡) − 𝑥𝜏 (𝑡)) 𝑑𝑤 (𝑡) ,

𝑑𝑒 (𝑡)

= [𝜙 (𝑒 (𝑡)) + 𝐴 ⊗ 𝐼𝑛𝑒 (𝑡) + 𝐵 ⊗ 𝐼𝑛𝑒𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑒 (𝑡) , 𝑒𝜏 (𝑡)) 𝑑𝑤 (𝑡) .

(25)

For this case, one can get the following result analogous to
Theorem 8.

Corollary 10. Assume that 𝑀 := − diag{𝜃, 𝜃, . . . , 𝜃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

} − Γ is a

nonsingular𝑀-matrix, where 𝜃 < 0, 𝜃 = 1 + 𝐿
2
+ 𝛼 + 𝛽 +𝐻1,

and

1 + 𝐻2 < −𝜃. (26)

Under Assumptions 1 and 2, the noise-perturbed response
complex network can be adaptively asymptotically synchro-
nized with the drive complex network, if the feedback gain𝐾(𝑡)

of the controller (6) with the update law is chosen as

�̇�𝑗 = −]𝑗𝑒
2

𝑗
. (27)

Proof. Choose the following nonnegative function:

𝑉 (𝑡, 𝑒) = |𝑒|
2
+

𝑛

∑

𝑗=1

1

]𝑗
𝑘
2

𝑗
. (28)

The remaining proof is similar to that of Theorem 8 and
hence omitted.
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The noise-perturbation is removed from the response
complex network (5); then the response complex network
and the error system can be represented, respectively, as
follows:

𝑑𝑦 (𝑡) = [𝑓 (𝑦 (𝑡)) + 𝐴 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑦 (𝑡)

+𝐵 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑦𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡,

𝑑𝑒 (𝑡) = [𝜙 (𝑒 (𝑡)) + 𝐴 (𝑟 (𝑡)) ⊗ 𝐼𝑛𝑒 (𝑡)

+𝐵 ⊗ 𝐼𝑛𝑒𝜏 (𝑡) + 𝑈 (𝑡)] 𝑑𝑡,

(29)

which can lead to the following results.

Corollary 11. Assume that 𝑀 := − diag{𝜃, 𝜃, . . . , 𝜃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

} − Γ is a

nonsingular𝑀-matrix, where 𝜃 = 1 + 𝐿
2
+ 𝛼 + 𝛽 and

𝑞 < −(𝜃𝑞𝑖 +

𝑁

∑

V=1
𝛾𝑖V𝑞V) , ∀𝑖 ∈ 𝑆, (30)

where 𝑞 = max𝑖∈𝑆 𝑞𝑖.
Under Assumptions 1 and 2, the noiseless-perturbed

response complex network can be adaptively asymptotically
synchronized with the drive complex network, if the feedback
gain 𝐾(𝑡) of the controller (6) with the update law is chosen as
(20).

Proof. The proof is similar to that of Theorem 8 and hence
omitted.

4. Illustrative Example

In this section, an illustrative example will be given to dem-
onstrate the effectiveness of the proposed methods.

Example 1. The Lorenz system is described by

[
[

[

�̇�1 (𝑡)

�̇�2 (𝑡)

�̇�3 (𝑡)

]
]

]

=
[
[

[

𝑎 (𝑥2 (𝑡) − 𝑥1 (𝑡))

𝑏𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥1 (𝑡) 𝑥3 (𝑡)

𝑥1 (𝑡) 𝑥2 (𝑡) − 𝑐𝑥3 (𝑡)

]
]

]

, (31)

where 𝑎 = 10, 𝑏 = 28, and 𝑐 = 10/3.
According to Theorem 8, the complex networks (drive

complex network and response complex network) with four
nodes are described as follows:

�̇�𝑙1 = 𝑎𝑥𝑙2 (𝑡) − 𝑎𝑥𝑙1 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑥𝑝1 (𝑡) +

4

∑

𝑝=1

𝑏𝑙𝑝𝑥𝑝1 (𝑡 − 𝜏) ,

�̇�𝑙2 = 𝑏𝑥𝑙1 (𝑡) − 𝑥𝑙2 (𝑡) − 𝑥𝑙1 (𝑡) 𝑥𝑙3 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑥𝑝2 (𝑡)

+

4

∑

𝑝=1

𝑏𝑙𝑝𝑥𝑝2 (𝑡 − 𝜏) ,

�̇�𝑙3 = 𝑥𝑙1 (𝑡) 𝑥𝑙2 (𝑡) − 𝑐𝑥𝑙3 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑥𝑝3 (𝑡)

+

4

∑

𝑝=1

𝑏𝑙𝑝𝑥𝑝3 (𝑡 − 𝜏) ,

̇𝑦𝑙1 = 𝑎𝑦𝑙2 (𝑡) − 𝑎𝑦𝑙1 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑦𝑝1 (𝑡) +

4

∑

𝑝=1

𝑏𝑙𝑝𝑦𝑝1 (𝑡 − 𝜏)

+ 𝑘𝑙 [𝑦𝑙1 − 𝑥𝑙1 + tanh (𝑦𝑙1) − tanh (𝑥𝑙1)]

+ 0.4 [𝑦𝑙1 (𝑡) − 𝑥𝑙1 (𝑡)] ,

̇𝑦𝑙2 = 𝑏𝑦𝑙1 (𝑡) − 𝑦𝑙2 (𝑡) − 𝑦𝑙1 (𝑡) 𝑦𝑙3 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑦𝑝2 (𝑡)

+

4

∑

𝑝=1

𝑏𝑙𝑝𝑦𝑝2 (𝑡 − 𝜏)

+ 𝑘𝑙 [𝑦𝑙2 − 𝑥𝑙2 + tanh (𝑦𝑙2) − tanh (𝑥𝑙2)]

+ 0.3 [𝑦𝑙2 (𝑡) − 𝑥𝑙2 (𝑡)] ,

̇𝑦𝑙3 = 𝑦𝑙1 (𝑡) 𝑥𝑙2 (𝑡) − 𝑐𝑦𝑙3 (𝑡) +

4

∑

𝑝=1

𝑎𝑙𝑝𝑦𝑝3 (𝑡)

+

4

∑

𝑝=1

𝑏𝑙𝑝𝑦𝑝3 (𝑡 − 𝜏)

+ 𝑘𝑙 [𝑦𝑙3 − 𝑥𝑙3 + tanh (𝑦𝑙3) − tanh (𝑥𝑙3)]

+ 0.3 [𝑦𝑙3 (𝑡 − 𝜏) − 𝑥𝑙3 (𝑡 − 𝜏)] .

(32)

In the simulation, let

𝐴 =

[
[
[

[

−6 2 1 3

2 −5 2 1

0 1 −1 0

3 1 0 −4

]
]
]

]

, 𝐵1 =

[
[
[

[

−8 3 1 4

3 −5 0 2

1 0 −3 2

1 3 2 −6

]
]
]

]

,

𝐵2 =

[
[
[

[

−2 1 1 0

2 −3 0 1

1 0 −2 1

0 2 2 −4

]
]
]

]

, Γ = [
−1.2 1.2

0.5 −0.5
] ,

𝜏 = 0.1.

(33)

These parameters fully satisfy Assumptions 1 and 2 and
condition (19). Therefore, it will prove the main result to be
correct if the error system can be adaptively asymptotically
synchronized satisfyingTheorem 8.

To illustrate the effectiveness of the developed theory,
we employ the nonnegative function to solve the solu-
tions for stochastic complex networks and to simulate the
dynamics of error system and the adaptive feedback gain.
The simulation figures are shown in Figures 1, 2, 3, and 4.
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Figure 1: The error states of complex network 𝑒𝑙1.
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Figure 2: The error states of complex network 𝑒𝑙2.

Among them, Figures 1–3 plot the error states of complex
networks 𝑒𝑙1(𝑡), 𝑒𝑙2(𝑡), and 𝑒𝑙3(𝑡). Figure 4 depicts the adaptive
feedback gain. From all these figures, one can find that the
stochastic complex networks are adaptively asymptotically
synchronized.

5. Conclusions

In this paper, we have investigated the adaptive synchro-
nization problem for the stochastic complex networks with
time-delay and Markovian switching. By combining the
Lyapunov functional, stochastic analysis method, and 𝑀-
matrix approach, some sufficient conditions have derived the
above adaptive synchronization for the stochastic delayed
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Figure 3: The error states of complex network 𝑒𝑙3.

0 1 2 3 4
0

k1(t)
k2(t)

k3(t)
k4(t)

k
l
(t
)

0.2

0.4

0.6

0.8

1

1.2

1.4

t

Figure 4: The feedback gain.

complex networks. Through the adaptive control techniques,
some suitable parameters update laws are obtained. Finally,
an illustrative example has been used to demonstrate the
effectiveness of the main results which are obtained in this
paper.
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