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The present study uses the differential transformation method to solve the governing equations of the coronary artery system and
then analyzes the dynamic behavior of the system by means of phase portraits, power spectra, bifurcation diagrams, and Poincaré
maps. Also, a master-slave control system is proposed to suppress the nonlinear chaotic behavior of the coronary artery system.
The results show that the dynamic behavior of the coronary artery system is significantly dependent on the magnitude of the
vibrational amplitude. Specifically, the motion changes from T-periodic to 2T-periodic, then from 4T-periodic to 8T-periodic,
and finally to chaotic motion with windows of periodic motion as the vibrational amplitude is increased from 0.3 to 0.6 and from
4.5 to 5.9. In addition, it is shown that the proposed control scheme enables the coronary artery system to be synchronized to any
state asymptotically such that the risk of cardiopathy is reduced.

1. Introduction

Arrhythmias are heart-rhythm problems in which the heart
beats too fast, too slow, or irregularly. While many arrhyth-
mias are harmless and cause only relatively minor symptoms
such as shortness of breath, dizziness, and sudden weakness,
in severe cases arrhythmias can lead to cardiac arrest and even
death. There are many reasons for the rhythm change of the
coronary artery (CA) system, including thyroid disease, high
blood pressure, heart-valve problems, abnormalities of the
heart ectopic pacemaker, and irregular dynamic phenomena
such as the frequency of the conduction system. The predi-
agnosis of arrhythmia enables the selection of appropriate
antiarrhythmic drugs, thus improving the arrhythmia and
reducing the probability of sudden heart problems. Arrhyth-
mia is generally detected by means of electrocardiography
(ECG), in which the electrical activity of the heart is mea-
sured by means of electrodes attached to the arms, legs, and
chest and is then printed out on paper [1–3]. However, while
electrocardiograms are essential tools in diagnosing heart
disease, the ECG signal is highly nonlinear and is therefore
not easily analyzed using traditional methods. Thus, various

machine-assisted solutions for diagnosing and monitoring
arrhythmia have been proposed in recent decades, includ-
ing Bayesian methods, heuristic methods, expert systems,
Markov models, and artificial neural networks (ANNs) [4].

A typical electrocardiogram includes three basic wave-
forms, namely, a P wave, a QRS wave, and a T wave, where a
P wave represents the wave of depolarization, a QRS complex
wave represents ventricular depolarization, and a T wave
represents ventricular repolarization [5]. These waves are
the main factors affecting the movement of the heart, and
thus their dynamic behaviors must be properly understood
if the mechanisms of the HBV system are to become clear
[6]. Furthermore, if the cardiac motion can be precisely
controlled, the chances of both diagnosing and curing heart
disease and abnormalities can be significantly enhanced [7].

This paper applies the differential transformationmethod
to solve the governing equations for the coronary artery (CA)
system. The non-linear dynamic behavior of the system is
then investigated by means of phase portraits, power spectra,
bifurcation diagrams, and Poincaré maps. In addition, a
master-slave control system is proposed to suppress the
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Table 1: System parameters [9].

Parameter b C 𝜆 𝜔

Value 0.15 −1.7 −0.65 1

non-linear chaotic behavior of the CA system. The sim-
ulation results show that the proposed controller enables
the abnormal slave CA system to be synchronized with the
normal master CA system despite the presence of system
uncertainties.

2. Nonlinear Dynamic Analysis

2.1. Mathematical Modeling. The governing equations of the
CA system were originally derived by Guan [8] in 2002 and
were subsequently converted to the following form by Gong
et al. [9] a few years later:

�̇� + 𝑏𝑥 + 𝑐𝑦 = 0,

̇𝑦 + (𝜆 + 𝑏𝜆) 𝑥 + (𝜆 + 𝑐𝜆) 𝑦 − 𝜆𝑥
3

− 𝐸 cos𝜔𝑡 = 0,

(1)

where 𝑥 is the variation of the blood vessel diameter, 𝑦 is
the change in the blood pressure, 𝐸 cos𝜔𝑡 is the external
disturbance factor acting on the blood vessels, and 𝑏, 𝑐, and 𝜆

are the system parameters.
A nonlinear chaotic behavior of the CA systemmay result

in various cardiovascular problems, including myocardial
infarction, angina, and even death. Therefore, the present
study proposes a master-slave CA synchronization control
system based on the following state equations:

�̇� = −𝑏𝑥 − 𝑐𝑦,

̇𝑦 = − (𝜆 + 𝑏𝜆) 𝑥 − (𝜆 + 𝑐𝜆) 𝑦 + 𝜆𝑥
3

+ 𝐸 cos𝜔𝑡,

(2)

In designing the proposed controller, the CA system
parameters are assigned the values shown in Table 1.

2.2. Differential TransformationMethod. Applying the differ-
ential transformation method [10–12] to (2) with respect to
the time domain 𝑡, the two state equations of the coronary
artery system become

𝑘 + 1

𝐻
𝑋 (𝑘 + 1) = −𝑏𝑋 (𝑘) − 𝑐𝑌 (𝑘) ,

𝑘 + 1

𝐻
𝑌 (𝑘 + 1) = − (𝜆 + 𝑏𝜆) 𝑋 (𝑘) − (𝜆 + 𝑐𝜆) 𝑌 (𝑘)

+ 𝜆𝑋 ⊗ 𝑋 ⊗ 𝑋 + 𝐸
(𝜔𝐻)

𝑘!
cos(

𝜋𝑘

2
) ,

(3)

respectively (note that the fundamental properties of the
Taylor transformation are provided in the appendix).

In the present study, the dynamic behavior of the CA
system is characterized by means of the phase portraits,
power spectra, bifurcation diagrams, and Poincaré maps
produced using the time-series data for parameters𝑥 and𝑦 of

the CA system. Note that, sin producing the various plots, the
time-series data corresponding to the first 1000 revolutions
are deliberately excluded in order to ensure that the results
relate to steady-state conditions.

2.3. Numerical Results for Nonlinear Dynamic Behavior

2.3.1. Phase Portraits and Power Spectra. Figure 1 shows the
phase portraits of𝑋 and𝑌 for various values of the vibrational
amplitude, 𝐸. Figures 1(a) and 1(c) show that the orbit is
regular at 𝐸 = 0.1 and 4.3 but is irregular and nonperiodic
at 𝐸 = 0.3 and 4.5 as shown in Figures 1(b) and 1(d).
Furthermore, at higher values of the vibrational amplitude,
that is, 𝐸 = 5.9 and 16.3, respectively, the orbit exhibits
regular, periodic motion (see Figures 1(e) and 1(f)).

Figures 2(a)–2(f) present the power spectra for the
variation of the blood vessel diameter and the change in blood
pressure of the CA system. It is seen that, for vibrational
amplitudes of 𝐸 = 0.1 and 4.3, the CA system performs 𝑇-
periodic and 8𝑇-periodic motion. However, for vibrational
amplitudes of 𝐸 = 0.3 and 4.5, the system exhibits chaotic
motion. Finally, for vibrational amplitudes of 𝐸 = 5.9 and
16.3, the system exhibits multiperiodic behavior.

2.3.2. Bifurcation Analysis. Figures 3(a) and 3(b) show the
bifurcation diagrams for the variation of the blood vessel
diameter and change in blood pressure, respectively. In
addition, Figures 4(a)–4(f) present the Poincaré maps of the
system trajectory given vibrational amplitudes of 𝐸 = 0.1, 0.3,
0.6, 2.1, 3.8, 4.3, 4.4, 4.5, 5.9, 6.0, 6.2, and 16.3, respectively.
Figures 3(a) and 3(b) show that, at lower values of the
vibrational amplitude, that is, 𝐸 < 0.3, the variation of the
bloodvessel diameter (𝑋) and the change in blood pressure
(𝑌) both exhibit a dynamic periodic response. Figure 4(a)
presents the Poincaré map corresponding to 𝐸 = 0.1. It is
seen that the orbit behaves periodic motion as shown and
proven in Figure 1(a) and corresponding to a single point on
Poincaré map. As the value of the vibrational amplitude is
increased from 𝐸 = 0.3 to 𝐸 = 0.59, the system performs
chaotic motion, as shown in Figure 4(b). At 𝐸 = 0.6, the
chaotic motion is replaced by 𝑇-periodic motion. Figure 3
shows that this𝑇-periodicmotion ismaintained for all values
of the vibrational amplitude in the range of 0.6 ≤ 𝐸 < 2.1.
However, as the vibrational amplitude is increased to 𝐸 = 3.8,
the 𝑇-periodic motion loses its stability and is replaced by
2𝑇-periodic (subharmonic)motion. As𝐸 is further increased
over the interval 3.8 ≤ 𝐸 < 4.5, the system exhibits
multiperiodic motion comprising both 4𝑇- and 8𝑇-periodic
motions, as shown in Figures 4(c) and 4(d). However, at
𝐸 = 4.5, the multiperiodic motion is replaced by chaotic
motion [13, 14]. For values of the vibrational amplitude in the
range of 4.5 ≤ 𝐸 < 5.9, the system performs chaotic motion
(see Figure 4(e)). However, as 𝐸 is increased over the interval
5.9 ≤ 𝐸 ≤ 20.0, the system exhibits multiperiodic motion
once again, including 8𝑇-periodic, 6𝑇-periodic, 3𝑇-periodic,
and 4𝑇-periodic, as shown in Figure 4(f), corresponding to
𝐸 = 16.3.
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Figure 1: Phase portraits of coronary artery system at 𝐸 = (a) 0.1, (b) 0.3, (c) 4.3, (d) 4.5, (e) 5.9, and (f) 16.3.

From the above discussions, it is clear that the dynamic
response of the CA system depends heavily on themagnitude
of the vibrational amplitude.The various motions performed
by the system as the vibrational amplitude is increased from
𝐸 = 0.1 to𝐸 = 20.0 are summarized in Table 2. In general, the
results show that, depending on the value of the vibrational
amplitude, the CA systemmay exhibit periodic behavior, that
is,𝑇-, 2𝑇-, 4𝑇-, or 8𝑇-periodic motion, or a chaotic response.
In addition, it is noted that an explosive bifurcation occurs at

a vibrational amplitude of 𝐸 = 0.3; the system has a chaotic
state with windows of periodic motion.

3. Chaos Synchronization Control

From the above analysis, it can be seen that the coronary
artery system have very complex behaviour. In this section,
it will be studied to design a controller to synchronize the
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Figure 2: Continued.
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Figure 2: Power spectra of coronary artery system at 𝐸 = (a) 0.1, (b) 0.3, (c) 4.3, (d) 4.5, (e) 5.9, and (f) 16.3.
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Figure 3: Bifurcation diagrams for variation of blood vessel diameter (𝑋) and change in blood pressure (𝑌) using vibrational amplitude (𝐸)

as bifurcation parameter: (a) 𝑋(𝑛𝑇) and (b) 𝑌(𝑛𝑇).

Table 2: Variation of coronary artery system response with vibra-
tional amplitude over interval 0.1 ≦ 𝐸 ≦ 20.0.

𝐸 Dynamic behavior
[0.1, 0.3) T
[0.3, 0.6) Chaos
[0.6, 2.1) T
[2.1, 3.8) 2T
[3.8, 4.3) 4T
[4.3, 4.5) 8T
[4.5, 5.9) Chaos
[5.9, 6.0) 8T
[6.0, 6.2) 6T
[6.2, 16.3) 3T
[16.3, 20.0] 4T

abnormal coronary artery system to a normal coronary artery
system.

3.1. Control System Description. Consider the following
master-slave coronary artery systems.

Master system is

�̇�
1

= −𝑏𝑥
1

− 𝑐𝑥
2
,

�̇�
2

= − (𝑏 + 1) 𝜆𝑥
1

− (𝑐 + 1) 𝜆𝑥
2

+ 𝜆𝑥
3

1
+ 𝐸
1
cos𝜔𝑡

(4)

and Slave system:

̇𝑦
1

= −𝑏𝑦
1

− 𝑐𝑦
2
,

̇𝑦
2

= − (𝑏 + 1) 𝜆𝑦
1

− (𝑐 + 1) 𝜆𝑦
2

+ 𝜆𝑦
3

1
+ 𝐸
2
cos𝜔𝑡 + Δ𝑓 + 𝑢,

(5)

where𝑥
𝑖
, and𝑦

𝑖
(𝑖 = 1, 2) are state variables. It is assumed that

the master system (4) is a normal coronary artery system and
demonstrates chaotic motion in the region of 𝐸

1
∈ [0.3, 0.6).

The slave system (5) is an abnormal coronary artery system
and also demonstrates chaotic motion in the region of 𝐸

2
∈

[4.5, 5.9). 𝑢(𝑡) in (5) is a control input and Δ𝑓 is a bounded
unmodelled system structure; that is, |Δ𝑓| ≤ 𝛼 (𝛼 is positive).
Now define the error states as

𝑒
1

= 𝑦
1

− 𝑥
1
; 𝑒

2
= 𝑦
2

− 𝑥
2
. (6)

The dynamics of the error system is determined directly from
(4)-(5) as follows:

̇𝑒
1

= −𝑏𝑒
1

− 𝑐𝑒
2
, (7a)

̇𝑒
2

= − (𝑏 + 1) 𝜆𝑒
1

− (𝑐 + 1) 𝜆𝑒
2

+ 𝜆𝑦
3

1

− 𝜆𝑥
3

1
+ (𝐸
2

− 𝐸
1
) cos (𝜔𝑡) + Δ𝑓 + 𝑢.

(7b)

From [15], it can be seen that, if (7a) and (7b) are asymp-
totically stable, then the error states 𝑒

1
and 𝑒
2
will approach

zero and the systems (4) and (5) will be synchronized.
Therefore, the abnormal chaotic coronary artery system will
be controlled to the normal chaotic coronary artery system.
The considered goal is that, for any given chaotic coronary
artery systems as (4) and (5), a controller is designed such
that the resulting tracking error can be driven to zero; that is,

lim
𝑡→∞

𝑒𝑖
 → 0, 𝑖 = 1, 2. (8)

In this study, a fuzzy logic controller (FLC) by Yau and
Shieh [15] is used to achieve the control goal. It means that
the fuzzy logic control input 𝑢 (e.g., nitroglycerin) is quickly
absorbed; blood vessels dilate and increase blood supply
to the heart muscle, which effectively relieves or eliminates
angina symptoms.

In consequence, to achieve this control goal for chaotic
coronary artery systems with uncertainties, there exist two
major phases. First, we let the control input 𝑢(𝑡) = 𝑢eq + 𝑢

𝐿

and 𝑢eq = −𝜆𝑦
3

1
+ 𝜆𝑥
3

1
+ (𝐸
1

− 𝐸
2
) cos(𝜔𝑡); then the error

dynamics becomes

̇𝑒
1

= −𝑏𝑒
1

− 𝑐𝑒
2
, (9a)

̇𝑒
2

= − (𝑏 + 1) 𝜆𝑒
1

− (𝑐 + 1) 𝜆𝑒
2

+ Δ𝑓 + 𝑢
𝐿
. (9b)
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Figure 4: Poincaré maps of coronary artery system at different values of vibrational amplitude (𝐸): (a) 0.1, (b) 0.3, (c) 3.8, (d) 4.3, (e) 4.5, and
(f) 16.3.
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Figure 5: Time responses of chaos synchronization of coronary artery systems: master and slave system outputs are 𝑥
1
, 𝑥
2
(solid) and 𝑦

1
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2

(dashed), respectively. The control 𝑢(𝑡) is activated at 𝑡 = 50 sec.

According to the state transformation by Yau and Shieh [15],
the state transformation is defined as

[
𝑒
1

𝑒
2

] =
[
[

[

−
1

𝑐
0

𝑏

𝑐
1

]
]

]

[
𝑒
1

𝑒
2

] . (10)

Substituting (10) into (9a) and (9b) yields

̇𝑒
1

= 𝑒
2
,

̇𝑒
2

= 𝑝
1
𝑒
1

− 𝑝𝑒
2

+ Δ𝑓 + 𝑢
𝐿
,

(11)

where 𝑝
1

= (𝑏 − 𝑐)𝜆 and 𝑝 = 𝑏 + (𝑐 + 1)𝜆. Second, it needs
to determine a FLC such that the error dynamic system (11)
is asymptotically stable and the error states 𝑒

1
and 𝑒

2
will

approach zero.Therefore, the FLC design process is the same
as Duffing-Holmes system studied in [15]. The consequent
part in Table 1 is shown in the following:

𝑢
𝐿1

= 𝑢
𝐿4

= 𝑢
𝐿7

= (𝑝
1

− 1) 𝑒
1

+ 𝑝𝑒
2

− 𝛼,

𝑢
𝐿3

= 𝑢
𝐿6

= 𝑢
𝐿9

= (𝑝
1

− 1) 𝑒
1

+ 𝑝𝑒
2

+ 𝛼,

𝑢
𝐿2

= − sgn (𝑒
2
) + 𝑝
1
𝑒
1

+ 𝑝𝑒
2

− 𝛼,

𝑢
𝐿8

= − sgn (𝑒
2
) + 𝑝
1
𝑒
1

+ 𝑝𝑒
2

+ 𝛼,

𝑢
𝐿5

= 0.

(12)

Similarly, we also can show that all the rules in Table 3 also
satisfy �̇� < 0 and the proof is omitted. Hence, all of the rules
in the FLC can lead to Lyapunov stable subsystems under the
same Lyapunov function. Furthermore, the closed-loop rule-
based systems (11) are asymptotically stable for each derivate
of the Lyapunov function that satisfies �̇� < 0. That is, the
error states 𝑒

1
and 𝑒
2
guarantee convergence to zero, and the

chaotic coronary artery systems (4) and (5) are synchronized.

3.2. Numerical Results of Synchronization Control. For the
overall control systems (4) and (5), the parameters are 𝑏 =

Table 3: Rule table of FLC.

Rule Antecedent Consequent
𝑒
1

𝑒
2

𝑢
𝐿𝑖

1 P P 𝑢
𝐿1

2 P Z 𝑢
𝐿2

3 P N 𝑢
𝐿3

4 Z P 𝑢
𝐿4

5 Z Z 𝑢
𝐿5

6 Z N 𝑢
𝐿6

7 N P 𝑢
𝐿7

8 N Z 𝑢
𝐿8

9 N N 𝑢
𝐿9

0.15, 𝑐 = −1.7, 𝜆 = −0.65, 𝐸
1

= 0.3, 𝐸
2

= 4.5, and
𝜔 = 1; the master system (4) displaces chaotic behavior. It
is supposed that the uncertainty Δ𝑓 = 0.2 ⋅ cos(𝜋𝑦

1
); that is

|Δ𝑓| ≤ 𝛼 = 0.2. The simulation results with initial conditions
𝑥
1
(0) = 0.4, 𝑥

2
(0) = −0.1, 𝑦

1
(0) = 0.2, and 𝑦

2
(0) =

0.2 are shown in Figures 5–7. Figure 5 shows that the slave
system and themaster system can reach synchronizationwith
control operation. In addition, the time responses of error
states and control input are shown in Figures 6 and 7. It
can be seen that the system error states are regulated to zero
asymptotically even when the overall system is undergoing
system uncertainty.

4. Conclusion

This study has applied the differential transformationmethod
to investigate the dynamic behavior of a CA system. Phase
trajectories, Poincaré maps, and bifurcation diagrams have
been used to characterize the dynamic response of the system
as a function of the vibrational amplitude and to detect the
onset of chaotic motion. In general, the results have shown
that, as the vibrational amplitude is increased from 0.1 to
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Figure 6: The time response of error states with control 𝑢(𝑡)

activated at 𝑡 = 50 sec.
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at 𝑡 = 50 sec.

20.0, the system motion changes initially from 𝑇-periodic
to chaotic, 𝑇-periodic, 2𝑇-periodic, and multiperiodic and
then from 8𝑇-periodic to chaos and is finally transferred to
multiperiodic motion with windows of periodic motion.

In this paper, nonlinear FLC theory has been exploited
to design a controller for chaos synchronization with system
uncertainties. It can synchronize the abnormal CA system
to a normal CA system. It shows that the FLC in this
paper is realizable for implementation and it can reduce the
actuator saturation phenomenon in real physics system. The
other types of CA synchronization control could also be
synchronized by using the same control scheme proposed in
this study.

Appendix

Let 𝑥(𝑡) be analytic in the time domain 𝑇. Further, let:

𝜙 (𝑡, 𝑘) =
𝑑
𝑘
𝑥 (𝑡)

𝑑𝑡𝑘
, ∀𝑡 ∈ 𝑇. (A.1)

At 𝑡 = 𝑡
𝑖
, 𝜙(𝑡, 𝑘) = 𝜙(𝑡

𝑖
, 𝑘), where 𝑘 belongs to a set of

nonnegative integers, denoted by the 𝐾 domain. Therefore,
(A.1) can be rewritten as

𝑋
𝑖
(𝑘) = 𝜙 (𝑡

𝑖
, 𝑘) = [

𝑑
𝑘
𝑥 (𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡𝑖

, ∀𝑘 ∈ 𝐾, (A.2)

where 𝑋(𝑘) represents the spectrum of 𝑥(𝑡) at 𝑡 = 𝑡
𝑖
in the 𝐾

domain.
If 𝑥(𝑡) is analytic, then 𝑥(𝑡) can be represented as

𝑥 (𝑡) =

∞

∑

𝑘=0

(𝑡 − 𝑡
𝑖
)
𝑘

𝑘!
𝑋 (𝑘) . (A.3)

Note that this equation represents the inverse transformation
of 𝑋(𝑘).

If 𝑋(𝑘) is defined as

𝑋 (𝑘) = 𝑀 (𝑘) [
𝑑
𝑘
𝑞 (𝑡) 𝑥 (𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

,

where 𝑘 = 0, 1, 2, . . . , ∞,

(A.4)

then the function 𝑥(𝑡) can be described as

𝑥 (𝑡) =
1

𝑞 (𝑡)

∞

∑

𝑘=0

(𝑡 − 𝑡
𝑖
)
𝑘

𝑘!

𝑋 (𝑘)

𝑀 (𝑘)
, (A.5)

where 𝑀(𝑘) ̸= 0 and 𝑞(𝑡) ̸= 0. 𝑀(𝑘) is the weighting factor
and 𝑞(𝑡) is regarded as a kernel corresponding to 𝑥(𝑡). If
𝑀(𝑘) = 1 and 𝑞(𝑡) = 1, then (A.2), (A.4), (A.3), and (A.5)
are equivalent. In this paper, transformation is applied with
𝑀(𝑘) = �̃�

𝑘
/𝑘! and 𝑞(𝑡) = 1, where �̃� is the time horizon of

interest. 𝑋(𝑘) is given by

𝑋 (𝑘) =
�̃�
𝑘

𝑘!
[

𝑑
𝑘
𝑥 (𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

, where 𝑘 = 0, 1, 2, . . . , ∞.

(A.6)

Using the differential transformation method, a differen-
tial equation in the domain of interest can be transformed
to an algebraic equation in the 𝐾 domain and 𝑥(𝑡) can be
obtained by the finite-term Taylor series plus a remainder;
that is,

𝑥 (𝑡) =
1

𝑞 (𝑡)

𝑛

∑

𝑘=0

(𝑡 − 𝑡
0
)
𝑘

𝑘!

𝑋 (𝑘)

𝑀 (𝑘)
+ 𝑅
𝑛+1

=

𝑛

∑

𝑘=0

(
𝑡 − 𝑡
0

�̃�
)

𝑘

𝑋 (𝑘) + 𝑅
𝑛+1

.

(A.7)

In order to accelerate the rate of convergence and improve
the accuracy of the calculations, the overall 𝑡 domain can be
split into a number of subdomains. The differential equation
can then be solved in each domain.

The approach described above is used to split the time
domain into a total of 𝑛 subdomains, as shown in Figure 8.
Considering function 𝑥(𝑡) in the first subdomain (0 ≤ 𝑡 ≤

𝑡
1
, 𝑡
0

= 0), the one-dimensional differential transformation
is given by

𝑥 (𝑡) =

𝑛

∑

𝑘=0

(
𝑡 − 𝑡
0

𝐻
0

)

𝑘

𝑋
0 (𝑘) , (A.8)

where 𝑋
0
(0) = 𝑥

0
. The differential transformation and sys-

tem dynamic equations can be solved for the first subdomain
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x(t)

x0 = X0(k)

x1 = X1(k) x2 = X2(k)
x3 = X3(k)

x4 = X4(k)
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Figure 8: Time step diagram.

and 𝑋
0
(𝑘) can be solved entirely in the first subdomain. The

end point of function𝑥(𝑡) in the first subdomain is𝑥
1
, and the

value of 𝑡 is𝐻
0
.Therefore, 𝑥

1
(𝑡) is obtained by the differential

transformation method as

𝑥
1

= 𝑥 (𝐻
0
) =

∞

∑

𝑘=0

𝑋
0 (𝑘) . (A.9)

Note that 𝑥
1
represents the initial condition in the second

subdomain and therefore 𝑋
1
(0) = 𝑥

1
. The function 𝑥(𝑡) can

be expressed in the second subdomain as

𝑥
2

= 𝑥 (𝐻
1
) =

∞

∑

𝑘=0

𝑋
1 (𝑘) . (A.10)

In general, the function 𝑥(𝑡) can be expressed in the (I-1)
subdomain as

𝑥
𝑖
= 𝑥
𝑖−1

+

∞

∑

𝑘=1

𝑋
𝑖−1 (𝑘)

= 𝑋
𝑖−1 (0) +

∞

∑

𝑘=1

𝑋
𝑖−1 (𝑘) = 1, 2, 3, . . . , 𝑛.

(A.11)

Using the 𝑇 spectra method described above, function
𝑥(𝑡) can be solved throughout the entire domain.

Table 4 shows differential transformation. The symbol
“̂” denotes the differential operator, and “⊗” denotes the
convolution operation in the 𝐾 domain.

If 𝑓(𝑡) and 𝑔(𝑡) are two uncorrelated functions of 𝑡, and
𝐹(𝑘) and 𝐺(𝑘) are the corresponding transformation func-
tions, respectively, then the basic properties of the differential
transformation are as follows.

(1) Linearity. If 𝐹(𝑘) = 𝐷[𝑓(𝑡)], 𝐺(𝑘) = 𝐷[𝑔(𝑡)], and 𝐶
1
and

𝐶
2
are independent of 𝑡 and 𝑘, then

𝐷 [𝐶
1
𝑓 (𝑡) + 𝐶

2
𝑔 (𝑡)] = 𝐶

1
𝐹 (𝑘) + 𝐶

2
𝐺 (𝑘) . (A.12)

Table 4: Operation in the 𝐾 domain with 𝑀(𝑘) = �̃�
𝑘
/𝑘!, 𝑞(𝑡) = 1.

Operator

Spectrum 𝑋(𝑘) 𝑋 (𝑘) =
�̃�
𝑘

𝑘!
(

𝜕
𝑘
𝑥 (𝑡)

𝜕𝑡𝑘
)

𝑡=0

Function 𝑥(𝑡) 𝑥 (𝑡) =

𝑘

∑

𝑙=0

[𝑋 (𝑘) (
𝑡

�̃�
)

𝑘

]

Convolution 𝑋 (𝑘) ⊗ 𝑌 (𝑘) =

𝑘

∑

𝑙=0

𝑋 (𝑙) 𝑌 (𝑘 − 𝑙)

Derivative ∧ (𝑘) =
𝑘 + 1

�̃�
𝑋 (𝑘 + 1)

(2) Convolution. If 𝑧(𝑡) = 𝑓(𝑡)𝑔(𝑡), 𝑓(𝑡) = 𝐷
−1

[𝐹(𝑘)], and
𝑔(𝑡) = 𝐷

−1
[𝐺(𝑘)], then

𝐷 [𝑧 (𝑡)] = 𝐷 [𝑓 (𝑡) 𝑔 (𝑡)] = 𝐹 (𝑘) ⊗ 𝐺 (𝑘)

=

𝑘

∑

𝑙=0

𝐹 (𝑙) 𝐺 (𝑘 − 𝑙) =

𝑘

∑

𝑙=0

𝐹 (𝑘 − 𝑙) 𝐺 (𝑙) .

(A.13)

Therefore, the differential transform of 𝑓
𝑚

(𝑡), where 𝑚 is
a positive integer, can be obtained as

𝐷 [𝑓
𝑚

(𝑡)] = 𝐹
𝑚

(𝑘) = 𝐹
𝑚−1

(𝑘) ⊗ 𝐹 (𝑘)

=

𝑘

∑

𝑙=0

𝐹
𝑚−1

(𝑙) 𝐹 (𝑘 − 𝑙) .

(A.14)

(3) Derivative. If 𝑓(𝑡) and its derivatives 𝑓

(𝑡), 𝑓


(𝑡), . . . ,

𝑓
(𝑛)

(𝑡) are continuous functions for the interval [0, �̃�], then

𝐷 [
𝑑
𝑛
𝑓 (𝑡)

𝑑𝑡𝑛
] =

(𝑘 + 1) (𝑘 + 2) , . . . , (𝑘 + 𝑛)

�̃�𝑛
𝐹 (𝑘 + 𝑛) .

(A.15)
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