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Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In
this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the
equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this
particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In
addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are
compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011).
In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values
predicted in Einstein’s gravity alone.

1. Introduction

Magnetics fields are extensively studied in literature and their
influence on the galactic dynamics are currently subject of
active research, for example, on the understanding of the
galactic jets and inner process of “active” galaxy core, neut-
ron stars dynamics [1], and/ormovement of charged particles
in spacetimes [2–4] or neutral particles in charged galactic
halo [5–7]. In summary, they are present in almost every
celestial object from stars, pulsars, and nearby galaxies to
clusters of galaxies. An interesting review can be found in [8–
12]. To this matter, the Einstein-Maxwell equations have been
revealed to be an important tool to deal with this problem and
help us on the understanding of the dynamics of magnetic
fields in galaxies. Important approaches are the relativistic
models with disk like configurations and relativistic disk
accretion models as proposed in recent years [13–18] and
references therein. In a recent publication [15], we studied the
behavior of a test particle submitted to a magnetic field in a
relativistic galaxy diskmodel and how its influencemay affect

the dynamics. In a different approach, in this paper we inves-
tigate effective potentials using Einstein-Maxwell equations
motivated by the necessity to understand how the dynamics
of a galaxy respond to flattening and how the magnetic field
may be related to this process. This may be a basis for futures
advances in both galactic and stellar formations. We also
explore the possibility of an influence of magnetic field in the
apsidal precession in solar system scale, in otherwords, how it
might affect themovement of test particles embedded in solar
gravitational field. To this matter, we use data calibrated with
the ephemerides of the planets of the solar system and the
Moon (EPM2011) [19, 20].

Thepresent paper is divided into sections. In Section 2, we
study the basic framework of a conformastatic background
and investigate some applications using the isothermal-
sphere logarithm potential and Toomre-Kuzmin-like poten-
tial, which are compatible with axisymmetric systems. In Sec-
tion 3, we obtain an expression for the perihelion advance of
a charged test particle in a generic conformastatic spacetime
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in the presence of a magnetic field and perform a comparison
between our results, the results from Einstein’s gravity alone,
and the values observed for the secular perihelion precession
of some inner planets and minor objects of the solar system.
In the conclusion section, we make the final considerations.

2. The Conformastatic Background

General relativistic scenaries described by using a confor-
mally flat space of orbits are very alluring frommathematical
point of view and in physical applications. Using the defini-
tion proposed by Synge [21], we start our analysis with the
use of conformally flat space, which is the main character-
istic of a conformastatic spacetime (e.g., the Schwarzschild
metric). Considering the background of a conformastatic
gravitational source in presence of a magnetic field described
by the line element in standard cylindrical coordinates, one
can write [14]𝑑𝑆2 = −𝑒2𝜙𝑑𝑡2 + 𝑒−2𝜙 (𝑑𝑟2 + 𝑑𝑧2 + 𝑟2𝑑𝜑2) , (1)

where the metric potential 𝜙 depends only on the vari-
ables 𝑟 and 𝑧. The vacuum Einstein-Maxwell equations in
geometrized units, such that 𝑐 = 8𝜋𝐺 = 𝜇0 = 𝜖0 = 1, are
given by 𝐺𝛼,𝛽 = 𝐸𝛼𝛽, (2a)

𝐹𝛼𝛽;𝛽 = 0, (2b)

where 𝐹𝛼𝛽 = 𝐴𝛽,𝛼 − 𝐴𝛼,𝛽 and 𝐸𝛼𝛽 is the electromagnetic
energy-momentum tensor.

𝐸𝛼𝛽 = 14𝜋 {𝐹𝛼𝛾𝐹𝛾𝛽 − 14𝑔𝛼𝛽𝐹𝛾𝛿𝐹𝛾𝛿} . (3)

The Greek indices run from 1 to 4.
With the electromagnetic potential 𝐴𝛼 = (0, 0, 0, 𝐴𝜑(𝑟,𝑧)) and the line element in (1) the Einstein-Maxwell equations

in (2a) and (2b) are equivalent to the system of equations∇ ⋅ (𝑟−2𝑒2𝜙∇𝐴𝜑) = 0, (4a)

∇2𝜙 − ∇𝜙 ⋅ ∇𝜙 = 0, (4b)

𝜙2𝑟 − 12𝑟2 𝑒2𝜙𝐴2𝜑,𝑧 = 0, (4c)

𝜙2𝑧 − 12𝑟2 𝑒2𝜙𝐴2𝜑,𝑟 = 0, (4d)

𝜙𝑟𝜙𝑧 + 12𝑟2 𝑒2𝜙𝐴𝜑,𝑟𝐴𝜑,𝑧 = 0. (4e)

By using the procedure to obtain solutions of the Einstein-
Maxwell equations presented in [14], suitable solutions of the
system in (4a), (4b), (4c), (4d), and (4e) can be displayed as

𝑒𝜙 = 11 − 𝑈, (5a)

𝐴𝜑,𝑟 = √2𝑟𝑈,𝑧, (5b)

𝐴𝜑,𝑧 = −√2𝑟𝑈,𝑟, (5c)
where 𝑈(𝑟, 𝑧) is a solution of Laplace’s equation.

2.1. Motion of Test Charged Particles. The motion of a test
particle of charge 𝑞 and mass 𝑚 moving in a magnetized
background is described by the Lagrangian

L = 12𝑚𝑢𝛼𝑢𝛼 + 𝑞𝐴𝛼𝑢𝛼, (6)

where 𝑢𝜇 = 𝑑𝑥𝜇/𝑑𝑠, 𝑠 being an arbitrary parameter. The
corresponding Hamiltonian of the particle is

H = 12𝑚 (𝑝𝜇 − 𝑞𝐴𝜇) (𝑝𝜇 − 𝑞𝐴𝜇) , (7)

where the canonical momentum is given by 𝑝𝜇 = 𝑚𝑢𝜇 +𝑞𝐴𝜇.
The motion equations are given by

𝑢𝜇 = 𝜕H𝑔𝜇]𝜕𝑝] , (8a)

𝑑𝑝𝜇𝑑𝑠 = −𝜕H𝑔𝜇]𝜕𝑝] , (8b)

whereH𝑐 ≡ 𝑝𝜇𝑝𝜇/(2𝑚). Accordingly, by introducing (7) into
(8a) and (8b) we obtain

𝑑𝑝𝑡𝑑𝑠 = 0, (9a)

𝑑𝑝𝜑𝑑𝑠 = 0, (9b)

𝑑𝑝𝑟𝑑𝑠 = 𝑝𝜇𝑝𝜇2𝑚 𝜕𝑔𝑟𝑟𝜕𝑟 , (9c)

𝑑𝑝𝑧𝑑𝑠 = 𝑝𝜇𝑝𝜇2𝑚 𝜕𝑔𝑧𝑧𝜕𝑧 . (9d)

From (7) and the normalization condition 𝑢𝜇𝑢𝜇 = −𝜀 (with𝜀 = (1, 0, −1) for space-like, null, and time-like curves) we
have the condition

H = −12𝑚𝜀. (10)

On the another hand, from (9a) and (9b), we have

𝑝𝑡 = constant ≡ −𝐸 (11)

and also

𝑝𝜑 = constant ≡ 𝐿, (12)

respectively, whereas, from (9c) and (9d), we obtain

̈𝑟 = 𝑊𝜕𝑔𝑟𝑟𝜕𝑟 , (13a)

𝑧̈ = 𝑊𝜕𝑔𝑟𝑟𝜕𝑟 , (13b)

where

𝑊 ≡ 12 (𝜀 + 𝑞2𝑚2𝐴𝜑𝐴𝜑 − 2𝑞𝐿𝑚2 𝐴𝜑) . (14)
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We can write the last system in the form

̈𝑟 = −𝜕Φeff𝜕𝑟 , (15a)

𝑧̈ = −𝜕Φeff𝜕𝑟 , (15b)

where

𝑑Φeff = 𝑊𝜕𝑔𝑟𝑟𝜕𝑟 𝑑𝑟 + 𝑊𝜕𝑔𝑟𝑟𝜕𝑧 𝑑𝑧. (16)

Φeff is called the “effective potential” (see equations (3.68) pg.
160 in [16]). In terms of the solution in (5a), (5b), and (5c) one
obtains

̈𝑟 = −𝜕Φeff (𝑈)𝜕𝑟 , (17a)

𝑧̈ = −𝜕Φeff (𝑈)𝜕𝑧 , (17b)

where

𝑑Φeff (𝑈) = − ℎ (𝑟, 𝑧)(1 − 𝑈)3 𝑑𝑈, (18)

ℎ (𝑟, 𝑧) ≡ 𝜀 + 2𝑚2𝑟2 (1 − 𝑈)2 ( 𝜕𝜕𝑧 ∫𝑟
0
𝑈𝑟𝑑𝑟)2

− 2√2𝑞𝐿𝑚2 𝜕𝜕𝑧 ∫𝑟
0
𝑈𝑟𝑑𝑟. (19)

Thus the three-dimensional motion of the particle in an axis-
symmetric potential can be reduced to the two-dimensional
motion of the particle in a “Newtonian potential” 𝑈(𝑟, 𝑧).
2.2. Circular Motion in the Plane 𝑧 = 0. To study the
circular motion of the test charged particle we start with the
conditions ̇𝑟 = 0,𝜕Φeff𝜕𝑟 = 0. (20)

Then, from the first of these equations, (7) and (10), we have
the energy of the particle as follows:

𝐸2 = −𝑔𝑡𝑡 (𝜀𝑚2 + 𝑔𝜑𝜑 (𝐿 − 𝑞𝐴𝜑𝑔𝜑𝜑)2) . (21)

From the second condition in (20) we have

̈𝑟 = 𝑊𝜕𝑔𝑟𝑟𝜕𝑟 = −𝜕Φeff𝜕𝑟 = 0. (22)

Notice that if 𝑊 = 0, from (21) and (14), we obtain

𝐸2 = 𝑔𝜑𝜑𝑔𝑡𝑡 𝐿2. (23)

Thus, by introducing the correspondingmetric coefficients of
the line element in (1), such as𝐸2 = −𝑟2𝑒−4𝜙𝐿2, (24)

which lacks physical meaning, hence the condition 𝜕Φeff/𝜕𝑟 = 0 is equivalent to 𝜕𝑔𝑟𝑟𝜕𝑟 = 0,
𝑊 ̸= 0. (25)

Theminimumradius for stable circular orbit occurs in the
inflection points of the effective potential.Thuswemust solve
the equation

̈𝑟 = 𝜕2Φeff𝜕𝑟2 = 0 (26)

or, equivalently, solve the equation

𝜕2𝑔𝑟𝑟𝜕𝑟2 = 0. (27)

On the other hand, by calculating the derivative with respect
to 𝑧 in both sides of (21), we obtain for the angular moment

𝐿 = 𝑞𝐴𝜑𝑔𝜑𝜑 + 𝑙(𝑔𝑡𝑡𝑔𝜑𝜑),𝑧 , (28)

where𝑙 ≡ 𝑞𝐴𝜑𝑔𝑡𝑡𝑔𝜑𝜑𝑔𝜑𝜑,𝑧
± √(𝑞𝐴𝜑𝑔𝑡𝑡𝑔𝜑𝜑𝑔𝜑𝜑,𝑧)2 − 𝜀𝑚2𝑔𝑡𝑡,𝑧 (𝑔𝑡𝑡𝑔𝜑𝜑),𝑧, (29)

and we have used the Einstein-Maxwell equation 𝜙2𝑟 = (1/2𝑟2)𝑒2𝜙𝐴2𝜑,𝑧. By substituting this value for 𝐿 in (21) we obtain
the energy of the particle as follows:

𝐸2 = −𝑔𝑡𝑡(𝜀𝑚2 + 𝑔𝜑𝜑 𝑙2(𝑔𝑡𝑡𝑔𝜑𝜑)2,𝑧) . (30)

Since the Lagrangian in (6) does not depend explicitly on the
variables 𝑡 and 𝜑, one can obtain the following two conserved
quantities:

𝑝𝑡 = −𝑚𝑐𝑒2𝜙 ̇𝑡 ≡ −𝐸𝑐 (31)

and also

𝑝𝜑 = 𝑚𝑟2𝑒−2𝜙𝜑̇ + 𝑞𝑐𝐴𝜑 ≡ 𝐿, (32)

where 𝐸 and 𝐿 are, respectively, the energy and the angular
momentum of the particle as measured by an observer at rest
at infinity. Furthermore, themomentum𝑝𝛼 of the particle can
be normalized so that 𝑔𝛼𝛽𝑥̇𝛼𝑥̇𝛽 = −Σ. Accordingly, for the
metric in (1), we have

−𝑒2𝜙 ̇𝑡2 + 𝑒−2𝜙 ( ̇𝑟2 + 𝑧̇2 + 𝑟2𝜑̇2) = −Σ, (33)

where, with 𝑐 = 1, the notation Σ = 1, 0, −1 denotes space-
like, null, and time-like curves, respectively.
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As an application of (18), we use an axial bidimensional
isothermal potential, which has the form

𝑈 (𝑟) = 1 − V20 ln (𝑟2 + 𝑧2) , (34)

and straightforwardly we get the expression

𝑑Φeff = 4
V40

{𝜖 + 𝑎 (𝑧𝑟 )2 + 𝑏𝑧 ln (𝑧2 + 𝑟2)}
⋅ 𝑟𝑑𝑟 + 𝑧𝑑𝑧(𝑧2 + 𝑟2) ln (𝑧2 + 𝑟2)3 .

(35)

Hence, integrating the former expression, it is necessary to
obtain a convergence of the integral away from origin; we use
a Laurent expansion ∑∞𝑘=1 = 1/𝑘2 ∼ 𝜋2/6. Finally, after long
algebra, we can write the form of the effective potential felt by
charged particle with mass moving with velocity V0 and total
angular momentum 𝐿 as follows:

Φeff (𝑟, 𝑧) = 𝜖4V40 [ ln2 (𝑧2 + 𝑟2) − 4 ln2𝑧
ln2𝑧 ln2 (𝑧2 + 𝑟2) ]

+ 𝑏𝑧
V40

[ ln (𝑧2 + 𝑟2) − 2 ln 𝑧
ln 𝑧 ln (𝑧2 + 𝑟2) ]

− 𝑎𝑧2
V40𝑟2 ln2 (𝑧2 + 𝑟2)

+ 𝑎𝑧2𝜋224V40 ln2 (𝑧2 + 𝑟2) ,

(36)

where we denote 𝑎 = 2V20/𝑚2 and 𝑏 = (2√2/𝑚2)𝑞𝐿V20. In
Figure 1, we notice that a small value of the velocity V0 induces
outgoing lines from the center as expected, as noted in the
three panels. In (b), we notice that time-like curves suggest
that the magnetic lines distort the path of a test charged
particle away from the center of the galaxy.

In the same sense, we investigate a Toomre-Kuzmin-like
potential since we are dealing with an axisymmetric system,
which has the form

𝑈 (𝑟) = 1 − 𝛼√(𝑟2 + 𝑧2) , (37)

where 𝛼 is a unitary free parameter to guarantee the correct
units, and, straightforwardly, one can get the expression

𝑑Φeff = 2𝑟𝛼2 {{{{{𝜖 + 2𝛼𝑚2𝑟2 (𝑧 − √(𝑟2 + 𝑧2))2

+ 2√(2)𝑞𝛼𝐿𝑚 (𝑧 − √(𝑟2 + 𝑧2)
√(𝑟2 + 𝑧2) )}}}}}(𝑟2 + 𝑧2) (𝑟𝑑𝑟

+ 𝑧𝑑𝑧) .
(38)

And, after a long algebra, we canwrite the formof the effective
potential felt by charged particle with mass moving with total
angular momentum 𝐿 as follows:

Φeff (𝑟, 𝑧) = 𝑃 (𝑧) 𝑟3 + 𝑈𝑟5 − 𝐾 (𝑧) ln |𝑧|
+ 𝑉 (𝑟, 𝑧)√(𝑟2 + 𝑧2) + 𝐼 (𝑟, 𝑧)
+ 𝐶 (𝑧) ln 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟 + √(𝑟2 + 𝑧2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(39)

where we denote the following terms:

𝑃 (𝑧) = 2𝜖3𝛼2 𝑧2 + 4𝑚2𝛼3 𝑧2 + 3𝜖2𝛼2 + 3𝑚2𝛼3
− 3√(2)𝑚𝛼 𝑞𝐿 − 4√(2)3𝑚𝛼 𝑞𝐿𝑧2,

𝑈 = 15 (2𝜖𝛼2 + 4𝑚2𝛼3 ) − 45 √(2)𝑚𝛼 𝑞𝐿,
𝐾 (𝑧) = 3𝑚2𝛼3 𝑧5 + √(2)2𝑚𝛼 𝑞𝐿𝑧3,

𝑉 (𝑟, 𝑧) = 4𝑟𝑧𝑚2𝛼3 (𝑟2 + 𝑧2) + 3𝑚2𝛼3 𝑧3
+ √(2)2 𝑞𝐿𝑚𝛼𝑟𝑧 (2𝑟2 + 𝑧2) ,

𝐼 (𝑟, 𝑧) = 8𝑟𝛼3𝑚2 𝑧4,
𝐶 (𝑧) = 3𝑚2𝛼3 𝑧5 − √(2)2 𝑞𝐿𝑚𝛼𝑧3.

(40)

In Figure 2, we do not have any considerable difference
between the three figures and around the origin it is possible
to check the singularity and the lines away to the center.

On the other hand, we can express the effective potential
directly related to energy. In doing so, we use the relations in
(31), (32), and (33) that give three linear differential equations,
involving the four unknowns 𝑥̇𝛼. It is possible to study the
motion of test particles with only these relations, if we limit
ourselves to the particular case of equatorial trajectories; that
is, 𝑧 = 0. Indeed, since the gravitational configuration is
symmetric with respect to the equatorial plane, a particle
with initial state 𝑧 = 0 and 𝑧̇ = 0 will remain confined
to the equatorial plane which is, therefore, a geodesic plane.
Substituting the conserved quantities of (31) and (32) into
(33), we find

̇𝑟2 + Φeff = 𝐸2𝑚2𝑐2 , (41)

where

Φeff (𝑟) ≡ 𝐿2𝑚2𝑟2 (1 − 𝑞𝐴𝜑𝐿𝑐 )2 𝑒4𝜙 + Σ𝑒2𝜙 (42)

is an effective potential. We assume the convention that the
positive value of the energy corresponds to the positivity of
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Figure 1: The figures are made, respectively, with (𝜖 = 1, 0, −1) with fixed parameter V0 = 0.02 and unitary value for mass and charge with 50
contour lines in the ranges 𝑟[−90, 90] and 𝑧[0, 120].
the solution 𝐸± = ±𝑚𝑐Φ1/2eff . Consequently, 𝐸+ = −𝐸− =𝑚𝑐Φ1/2eff .

The motion of charged test particles is governed by the
behavior of the effective potential in (42). The radius of
circular orbits and the corresponding values of the energy 𝐸
and angular momentum 𝐿 are given by the extrema of the
functionΦeff. Therefore, the conditions for the occurrence of
circular orbits are 𝑑Φeff𝑑𝑟 = 0,

Φeff = 𝐸2𝑚2𝑐2 .
(43)

Thus, by calculating the condition in (43) for the effective
potential in (42), we find the angular momentum of the
particle in circular motion

𝐿𝑐± = 𝑞𝐴𝜑𝑐
+ 𝑞𝑟𝐴𝜑,𝑟𝑒𝜙 ± √(𝑞𝑟𝐴𝜑,𝑟𝑒𝜙)2 − 4Σ𝑐2𝑚2𝑟3𝜙,𝑟 (2𝑟𝜙,𝑟 − 1)2𝑐𝑒𝜙 (2𝑟𝜙,𝑟 − 1) .

(44)

Conventionally, we can associate the plus and minus signs in
the subscript of the notation 𝐿𝑐± to dextrorotation and levo-
rotation, respectively. Moreover, by inserting the value of the
angular momentum in (44) into the second equation of (43),
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Figure 2: The figures are made, respectively, with (𝜖 = 1, 0, −1) with fixed parameters 𝑚 = 1, 𝑞 = 1, 𝐿 = 1, and 𝛼 = 1, for 30 contour lines in
ranges 𝑟[−50, 50] and 𝑧[−1, 10].

we obtain the energy 𝐸(±)𝑐± of the particle in a circular orbit
as

𝐸(±)𝑐± = ±𝑚𝑐𝑒𝜙 (Σ + 𝜉(±)𝑐)1/2 , (45)

where

𝜉(±)𝑐
= [𝑞𝑟𝐴𝜑,𝑟𝑒𝜙 ± √(𝑞𝑟𝐴𝜑,𝑟𝑒𝜙)2 − 4Σ𝑐2𝑚2𝑟3𝜙,𝑟 (2𝑟𝜙,𝑟 − 1)]2

4𝑚2𝑐2𝑟2 (2𝑟𝜙,𝑟 − 1)2 . (46)

Therefore, each sign of the value of the energy corresponds
to two kinds of motions (dextrorotation and levorotation)
indicated in (45) and (46) by the superscripts (±).
3. Perihelion Advance in a Conformastatic

Magnetized Spacetime

One of the most important tests of general relativity and
modified theories of gravitation in astrophysical scale is
the perihelion advance of celestial objects. In this section,
we present the analytic expressions, which determine the
perihelion advance of charged test particle moving in a
conformastatic spacetime under the presence of a magnetic
field. Starting with the first integral in (33), we restrict the
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analysis to the motion of a particle on the plane with 𝑧 = 0,
since in solar scales the planets, comets, and asteroids revolve
essentially on the plane of the orbits. Then, we have

( 𝑑𝑟𝑑𝜑)2 = −𝑟2 [[1 + 𝑚2𝑟2(𝐿 − (𝑞/𝑐) 𝐴𝜑)2 (Σ (1 − 𝑈)2
− 𝐸2𝑚2𝑐2 (1 − 𝑈)4)]] ,

(47)

where all the quantities are evaluated at 𝑧 = 0 and we have
used the expressions for the energy and angular momentum
of the particle given by (31) and (32), respectively. With the
change of variable 𝑢 = 1/𝑟, (47) can be transformed into

𝑑2𝑢𝑑𝜑2 + 𝑢2 = 𝐹 (𝑢) , (48)

where

𝐹 (𝑢) ≡ 12 𝑑𝐺𝑑𝑢 , (49)

𝐺 (𝑢) ≡ 1(1 − 𝑞𝐴𝜑/𝑐𝐿)2 [ 𝐸2𝑐2𝐿2 (1 − 𝑈)4
− Σ𝑚2𝐿2 (1 − 𝑈)2] . (50)

Accordingly, by following the procedure proposed in [25], we
have for the resulting perihelion advance

𝛿𝜑 = 𝜋(𝑑𝐹𝑑𝑢)
𝑢=𝑢0

, (51)

where 𝑢0 is the radius of a nearly circular orbit, which
is given by the roots of the equation 𝐹(𝑢0) = 𝑢0. In
(51), we have shown the procedure to obtain an expression
for the perihelion advance of a charged test particle in a
generic conformastatic spacetime with a magnetic field. We
now illustrate the results by considering a particular confor-
mastatic spacetime generated from the harmonic potential of
a punctual mass

𝑈 (𝑟, 𝑧) = −𝐺𝑀𝑐2𝑅 ,
𝑅2 = 𝑟2 + 𝑧2. (52)

Thus, by inserting (52) into (49), we obtain for 𝐹(𝑢)
𝐹 (𝑢) = [(2𝐸2𝐺𝑀/𝑐4𝐿2) (1 + (𝐺𝑀/𝑐2) 𝑢)3 − (Σ𝑚2𝐺𝑀/𝑐2𝐿2) (1 + (𝐺𝑀/𝑐2) 𝑢)]

(1 − 𝑞√𝐺𝑀/𝑐𝐿)2 . (53)

Accordingly, the perihelion advance of a particle in this
spacetime is given by

𝛿𝜑 = 𝜋[(6𝐸2𝐺2𝑀2/𝑐6𝐿2) 𝑥20 − Σ𝑚2𝐺2𝑀2/𝑐4𝐿2](1 − 𝑞√𝐺𝑀/𝑐𝐿)2 , (54)

where the term

𝑥0 ≡ 1 + 𝐺𝑀𝑐2 𝑢0 (55)

satisfies the equation

2𝐸2𝐺2𝑀2𝑥30
− [Σ𝑚2𝐺2𝑀2𝑐2 + 𝑐6𝐿2 (1 − 𝑞√𝐺𝑀𝑐𝐿 )2]𝑥0
+ 𝑐6𝐿2 (1 − 𝑞√𝐺𝑀𝑐𝐿 )2 = 0.

(56)

Thus, by inserting the real solution of (56) into (53), we find
that the perihelion advance of the test particle orbit is given
by

𝛿𝜑 = 𝜋𝜓0 − 𝑘22𝑄2 , (57)

where

𝜓0 ≡ [6 (𝑄2 + 𝑘22) + [54𝑄2𝑘1 (−1 + √1 − 6 (𝑄2 + 𝑘22)3 /81𝑄4𝑘21)]2/3]2
6 [54𝑄2𝑘1 (−1 + √1 − 6 (𝑄2 + 𝑘22)3 /81𝑄4𝑘21)]2/3 , (58)
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with

𝑘21 = 𝐸2𝐺2𝑀2𝑐6𝐿2 ,
𝑘22 = Σ𝑚2𝐺2𝑀2𝑐4𝐿2

(59)

and also

𝑄2 = (1 − 𝑞√𝐺𝑀𝑐𝐿 )2 . (60)

Notice that when 𝑞 = 0 (and, consequently, 𝑄 = 1) we
get the case in which (54) describes the perihelion advance
of a neutral particle. Actually, we restrict ourselves to the
neutral case, since objects like planets, asteroids, and comets
are neutral on average and the consideration of a charge is
hardly significant. Moreover, this neutrality is essentially due
to the influence of the solar wind, but a global net charge, for
example, in stars, is still on discussion [26].

In order to get a real use of (57), we follow the procedure
presented in [25]. First, we rewrite both the angular momen-
tum (44) and the energy (45), which depend on the radial
distance 𝑟 in terms of the parameters that describe the orbit
of rotating test particles. For the radial distance, one can use
the ellipse formula in the Euclidean plane as

𝑟 = 𝑠 (1 − 𝜖2)1 + 𝜖 cos𝜑, (61)

where 𝑠 is the semimajor axis and 𝜖 the eccentricity of the
orbit. Moreover, we can rewrite (57) by using physical units
related to observations as

𝛿𝜑⋆ = 𝜋𝛾⋆ (𝜓0 − 𝑘22) 𝑠2𝑄2𝑀⊙𝑇2 , (62)

where we have introduced the solar mass 𝑀⊙ and the period𝑇 of the rotating body. The parameter 𝛾⋆ = ((180/𝜋)/3600)𝑇
allows us to transformunits from radians to (secular) degrees.
Moreover, in order to obtain a real effective advance 𝛿𝜑eff
and to alleviate the error propagation, we define a deviation
formulae away from general relativity standard result 𝛿𝜑eins
induced by the coupled Einstein-Maxwell fields as

𝛿𝜑eff = 𝛿𝜑eins ± 𝛽0𝛿𝜑⋆, (63)

where a dimensionless parameter 𝛽0 measures the small
variation of the orbits through time. As we have checked in
the studied cases in Table 1, a variation of 𝛽0 must not exceed10% of the ratio between the Einstein-Maxwell contribution𝛿𝜑⋆ and observations 𝛿𝜑obs.

When applied to the observational data [23], plus supple-
mentary precession corrections from EPM2011 [19, 20], one
can test (63). Thus, we obtain the results presented in Table 1
for the perihelion precession of inner planets of the solar
system, two NEO’s asteroids named 433 Eros and 3200

Phaethon and NEO 2p/Encke comet. The data for the astro-
physics parameters of planets, like semimajor axis, eccentri-
city, period, andmass, can be found in JPL solar system dyna-
mics (http://ssd.jpl.nasa.gov/?planets) and for asteroids and
comets, in JPL small body database (http://ssd.jpl.nasa.gov/
sbdb.cgi). The orbital periods are in units of years.

As shown in Table 1, the theoretical results match the
observations, and a slight improvement is obtained as com-
pared to the standard Einstein gravity which turns our model
closer to the observations. We conclude that the gravitational
interaction generated by the magnetic field of the central
body can play an important role in astrophysical observa-
tions. It is worth saying that the values of 𝛼 seem to be
sensitive to the variation of the eccentricity of the orbits and
the mass of the object as seen in the studied cases and the
values have a close resemblance to PPN parameters that have
a bound |2𝛾 − 𝛽 − 1| < 3 × 10−3 [27].

In addition, some other considerations must be noted.
The constant Σ enters explicitly the expression for the peri-
helion advance in (33), and it represents null, time-like, and
space-like curves. For Σ = 0, we do not have a solution
since (63) diverges. For time-like trajectories, Σ = −𝑐2 no
physical results are obtained, because in the corresponding
Newtonian limit a differential equation is obtained, whose
solution implies that 𝑟 is negative. Moreover, no significant
differences were found for different values of the charge of
the order 𝑞/𝑚 ∼ 10−3, which is the value where the behavior
of the energy and angular momentum becomes affected by
the presence of the effective charge. In the same sense, no
differences could be found when using both solutions for the
angular momentum 𝐿𝑐± and energy 𝐸𝑐±.
4. Conclusion

In this work we have shortly shown the characteristics of the
motion of a charged particle along circular orbits in spacetime
described by a conformastatic solution of the Einstein-
Maxwell equations. As a particular example we have consid-
ered the case of a charged particle moving in the gravitational
field of a punctual source placed at the origin of coordinates.
Our analysis is based on the study of the behavior of an
effective potential that determines the position and stability
properties of circular orbits. We also have investigated the
behavior of effective potentials. Interestingly, we have noticed
time-like curves in a particular axial bidimensional isother-
mal potential, where the effective magnetic field does exert
influence on the movement of a particle. On the other hand,
a larger sample of effective potentialsmust be studied in order
to verify if this pattern occurs more frequently, which can be
fundamental to understand how galaxies form and evolve.

In addition, we have also calculated an expression for the
perihelion advance of a test particle in general magnetized
conformastatic spacetime obtaining a good agreement with
the observed values for the perihelion of inner solar planets
and some selected NEO asteroids. It is worth noting that all
results presented were obtained with the initial assumption
of a neutral particle, in accordance with the fact that planets
are largely neutral. Specifically, in the perihelion drift, we find
that the differences between a neutral particle and a charged
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Table 1: Comparison between the values of secular precession of inner planets in units of arcsec/century ( 󸀠󸀠 ⋅ cy−1) of the standard (Einstein)
perihelion precession 𝛿𝜑eins [22] for neutral test particles (planets, asteroids/comets) in the conformastaticmagnetized spacetime of a punctual
mass 𝛿𝜙eff . The data for 𝛿𝜑obs stands for the secular observed perihelion precession in units of arcsec/century adapted from [23] by adding a
supplementary precession correction from EPM2011 [19, 20]. In addition, the results for the NEOS 433 Eros, 3200 Phaethon, and 2p/Encke
comet are also presented. The mass of the 2p/Encle comet as 𝑚 = 3.85 × 1013 kg was estimated with a bulk density 𝜌 = 0.5 g ⋅ cm3 as shown
in [24].

Object 𝛿𝜑obs 𝛿𝜑eins 𝛿𝜑eff 𝛽0
Mercury 43.098 ± 0.503 42.97817 42.9782 0.7605 × 10−4
Venus 8.026 ± 5.016 8.62409 8.62425 0.1426 × 10−2
Earth 5.00019 ± 1.00038 3.83848 3.83944 0.4375 × 10−2
Mars 1.36238 ± 0.000537 1.35086 1.36980 0.3729 × 10−1
433 Eros 1.60 1.57317 1.58668 0.2906 × 10−1
3200 Phaethon 10.1 10.1201 10.1213 0.3499 × 10−2
2p/Encke 1.9079 1.868 1.92833 0.5623 × 10−1

particle are slightly small, when realistic values for the
effective charge are used.Thismeans that the electromagnetic
interaction between the charge and the central magnetized
body does not seriously affect the value of the perihelion
advance. Nevertheless, the magnetic field enters explicitly the
metric components and, consequently, affects the motion of
neutral test particles through the gravitational interaction.
This explains why the numerical predictions of the perihelion
advance generated by a punctual magnetized mass are in
better agreement with observations than the predictions of
Einstein’s theory alone. As a future prospect, we will apply
the Poincaré surface-of-section method for analyzing weakly
perturbed Hamiltonian conformastatic systems.
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[25] T. Harko, Z. Kovács, F. S. N. Lobo, and R. Soc, “Solar System
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