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The need of barrier layer such as SiO
2
for carbon nanotubes (CNTs) growth limits their performance in electronic applications.

In this study, conductive carbon/metal (carbon/cobalt—C:Co) composite films with the same metal content, but different sp2/sp3
ratios, were deposited using dual-source filtered cathodic vacuum arc (FCVA) technique. Three different C:Co composite films
were deposited at different temperatures; visible Raman spectroscopy indicates that the sp2-rich C:Co composite film forms at
high temperature (500∘C), and high-resolution transmission electron microscopy (HRTEM) shows the formation of conducting
graphitic-like sp2 clusters and with Co nanoclusters embedded within them. Electrical measurement shows a significant decrease
in film resistivity as sp2/sp3 ratio increases. CNTs were successfully grown on the composite films by plasma-enhanced vapor
deposition (PECVD) approach. Scanning electron microscopy (SEM) shows minor effect on the density of CNTs by varying the
sp2/sp3 ratio. The dependence of defect level of the as-grown CNTs is found to reduce as sp2/sp3 ratio increases.

1. Introduction

Carbon nanotubes (CNTs) have attracted a lot of attention
in the fields of nanoscience and nanotechnology because
of their superior physical, electrical, and thermal properties
[1, 2]. A substantial amount of work has been done to
promote them in the industry, and one of the requirements
is growth of CNTs on conductive metal or substrates [3,
4]. The conventional way of growing CNTs is a multistep
process, the first of which is to deposit a barrier layer,
which can be an insulating material such as silicon oxide
(SiO
2
) or conductive material such as titanium nitride [5].

Secondly it requires the deposition of a catalyst layer such as
nickel (Ni), cobalt (Co), or iron (Fe). However, the effective
electrical conductivity of the CNTs is higher when CNTs are
grown directly on a conductive substrate [6]. An alternative
approach to eliminate the use of barrier layer during growth

is to deposit amorphous carbon a-C metal (C:Me) composite
film, such as C:Ni, C:Fe, and C:Co, as the catalyst layer.

Previous studies had shown that composite film serving
as catalyst layer results in better density control of CNTs
[7, 8] and also better performance in CNTs field emitter array
(FEA) applications [9, 10]. Other than serving as the catalyst
layer of CNTs growth, another advantage of incorporation
of metal within C film is to increase the conductivity of the
film. Takeno et al. found that the electrical conductivity is
proportional to the amount of metal incorporated into the
C:Me composite film [11–13]. However the focus was only on
tuning themetal content of the film.The relationship between
the CNTs growth and the intrinsic properties of C:Me com-
posite film, such as the sp2/sp3 ratio, is not well understood
yet. Recent work has shown that by in-situ thermal annealing
and ex situ laser annealing, sp2-rich high electrical conducing
nanostructured C film can be synthesized [14–17], which can
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Figure 1: (a) Raman spectra of C:Co composite film grown using different growth temperatures and (b) Raman features as a function of
growth temperature.

then be adopted in future electronic applications. Hence the
electrical properties of C:Me composite film can be varied by
only changing the sp2/sp3 ratio of the amorphous carbon.

In this work, C:Co composite film has been adopted as
the catalyst layer of CNTs growth. We reported the feasibility
of CNTs growth on conducting C:Co composite film, by only
varying the sp2/sp3 ratio of the film. It adequately shows that
CNTs can be grown on a conducting catalyst layer without
the use of a barrier layer.

2. Materials and Methods

C:Co composite films were deposited on n-doped (100)
silicon wafer, which was firstly cleaned using acetone, fol-
lowed by ultrasonic isopropanol (IPA) to remove the surface
particles. The films were deposited using dual-source FCVA
which consists of two off-plane double bend (OPDB) filtering
bends, each of them is connected to individual cathode source
as described in our past work [18]. In this work, 99.999% pure
graphite rod and 99.9% pure nickel rod were used to form
the C and Co ions. The composition was controlled by the
arc current of the cathode source which was fixed at 70A for
C and 120A for Co. Film depositions were carried out in the
vacuum (∼10−5 Torr), andno biaswas applied to the substrate.
The substrate heating temperature was varied from room
temperature to 500∘C to obtain the various sp2/sp3 ratios.The
thickness of different C:Co composite films was measured
to be 50 nm using the Tencor P-10 surface profilometer. The
resistance of different C:Co composite films was measured
using a cascade of 200 nm probe station with a Hewlett
Packard 4156A precision semiconductor parameter analyzer,
with a voltage step of 0.01 V.

The three C:Co composite films were then cut into a
dimension of 1 cmby 1 cmandplaced into a plasma-enhanced
chemical vapor deposition (PECVD) chamber where the
CNT growth would be carried out. The CNT growth was

performed at 600∘C with a plasma power of 85W for 30min.
The ramp rate was set at maximum.The heater stage reached
600∘C in less than 10 sec, and the carbon feedstock gas (C

2
H
2
)

was immediately introduced to reduce the influence of
annealing on the samples.Thepressure in the chamber during
CNTgrowthwasmaintained at 4.5 Torrwith aC

2
H
2
/NH
3
gas

ratio of 1 : 5.
The atomic fraction of Co within the films was estimated

using energy dispersive X-ray spectroscopy (EDX). In this
work, Co is detected to be ∼5% in atomic ratio for all three
films. Before CNT growth, the microstructure of different
C:Co composite films was characterized using WITec visible
Raman spectroscopy with a 532 nm diode-pumped solid
state laser. The obtained Raman spectra were fitted using a
Breit-Wigner-Fano (BWF) line shape for the G band and a
Lorentzian line shape for D band if the spectra cannot be
fitted by only the BWF line shape [19, 20]. To confirm the
formation of graphitic-like sp2 clusters, JEOL JEM 2100 high-
resolution transmission electron microscopy (HRTEM) was
used. The images of the grown CNTs were acquired using
scanning electron microscopy (SEM), and the CNT quality
was also characterized using visible Raman spectroscopy.

3. Results and Discussions

Figure 1(a) shows the Raman spectra of C:Co composite
films deposited using different substrate temperatures. The
main changes of the Raman spectra are the shift of G peak
position and the increase in D peak density. The G band
relates to both breathing and stretching modes of sp2 bonds,
and the D band only reflects the existence of the breathing
mode of sp2 bonds, which are normally in the form of
nanometer-size graphitic-like clusters [19, 20]. The spectra
of the C:Co composite film at room temperature show that
only one peak and a neighbor peak at around 1350 cm−1
started to emerge with increasing substrate temperature.
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Figure 2: Cross section view of HRTEM image of C:Co composite
film deposited at 500∘C.

The microstructure subjected to different growth tempera-
tures is shown in Figure 1(b)—the rightward shift of G peak
position is due to the conversion of sp3 bonding to sp2
bonding [14, 20, 21]. Based on the three-stage model [20], the
film grown under RT is estimated to be 30% in sp2 content,
and as the growth temperature increases, the sp2 content
in the film rises to more than 80%. Besides the rise in sp2
content, the six-ring graphitic-like sp2 bonds also become
dominant, which is shown by the increase in 𝐼(D)/𝐼(G) ratio
[20], in Figure 1(b).

To confirm the formation of the graphitic-like sp2 clus-
ters, HRTEM analysis has been performed on the C:Co
composite film deposited at 500∘C. Figure 2 shows the
HRTEM image of the film; due to higher density of Co
atoms (8.9 g/cm3) compared to the C atoms (3.515 g/cm3
for diamond, 2.267 g/cm3 for graphite, and 1.8∼2.1 g/cm3 for
amorphous carbon), fewer electrons are able to transmit
from Co region; hence the dark contrast on Co nanoclusters
is presented in the HRTEM image. It clearly shows that
the Co nanoclusters are embedded within the graphitic-
like clusters. The graphitic-like clusters form the electron-
conducting paths, and the free electrons contributed by the
Co also enhance the electrical conductivity of the film [22].

The changes in themicrostructure of C:Co composite film
influence the electrical properties of the filmas represented by
the 𝐼-𝑉 curve of these three films in Figure 3.The film grown
under RT has high resistance of ∼109 ohm, and the resistance
reduces with the growth temperature. The film grown under
500∘C has a much lower resistance of about 101 ohm. The
reduction of resistance is attributed to the increase in sp2
content, the formation of more graphitic-like sp2 clusters,
which has been reported in a previous study [14–16], and also
the incorporation of Co nanoclusters.

Figures 4(a), 4(b), and 4(c) show the CNTs grown on
different C:Co composite films. CNTs of the same length
(∼1 𝜇m) can be synthesized on all these three types of C:Co
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Figure 3: 𝐼-𝑉 characteristic of C:Co composite films grown using
different growth temperatures.

composite film. However, the density of CNTs does not
have a significant change among these three kinds of C:Co
composite film. Zhang et al. have reported that the density
of CNTs grown on C:Me film has a strong relation with the
content of metal [7]. In this work, it was demonstrated that
the initial sp2/sp3 ratio does not affect the density of CNTs
grown on the C:Co composite film.The quality of the CNTs is
characterized and shown in Figure 5.The two peaks detected
in the spectra areD peak andGpeakwhich fall in the range of
1370∼1400 cm−1 and 1580∼1600 cm−1. Unlike C film, D peak
for CNTs represents defects and G peak is an indication of
crystalline graphite [23].The inserted table lists the 𝐼(D)/𝐼(G)
ratios of these CNTs. CNTs 3 has the lowest ratio which
indicates the lowest defect level. Although the defect level is
desired to be zero, it is difficult to be eliminated in the PECVD
process [24].

4. Conclusions

C:Co composite films with the same Co content but different
initial sp2/sp3 ratios were deposited using dual-source FCVA
technique, with varying growth temperatures. The change in
microstructure of the film leads to the formation of the sp2-
rich C:Co composite film, with the presence of conducting
graphitic-like sp2 cluster. The electrical resistance is reduced
to approximately 101 ohm. CNTs can be successfully synthe-
sized on C:Co composite film regardless of the change of
initial sp2/sp3 ratio of the film. There is no clear evidence to
show the influence of initial sp2/sp3 ratio on the density of
CNTs grown on C:Co composite film; however the quality,
such as defect level, is shown to be dependent on the initial
sp2/sp3 ratio of the C:Co composite film, which can be
reduced by using film with higher initial sp2/sp3 ratio.
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Figure 4: SEM images of CNTs grown on different C:Co composite films: (a) RT, (b) 250∘C, and (c) 500∘C.
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Figure 5: Raman spectra of CNTs grown on different C:Co compos-
ite films (inserted table shows the 𝐼(D)/𝐼(G) ratios).
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