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The association of lightning flashes with mean cloud ice size over continental and oceanic region in the tropical areas has been
analyzed using the observations from various satellite platforms (MODIS, TRMM, and LIS) for the period 2000–2011. We found
that frequency of lightning in general is higher over the continental region compared to oceanic region, whereas larger size of cloud
ice is observed over the oceanic regions compared to the continental regions. Relationship between lighting and cloud ice size shows
similar features over both continental and oceanic regions. For the first time, we show that total lighting increases with increase in
the cloud ice size; attends maximum at certain cloud ice size and then decreases with increase in cloud ice size. Maximum lightning
occurred for the mean cloud ice size of around 23–25 𝜇m over the continental region and mean cloud ice size of around 24–28 𝜇m
over the oceanic region. Based on our observation we argue that the relation between lightning and mean cloud ice size follow the
curve linear pattern, and not linear.

1. Introduction

Generation of lightning in atmosphere is still a matter of
debate. It is a commonly established fact that ice is a key
element to generate and separate the positive and negative
charges inside the cloud which assists formation of lightning
in the atmosphere [1]. During the occurrence of deep con-
vection, water vapors are uplifted and condensed to form the
deferent sizes of noninductive hydrometers (ice crystal, hail,
drops, etc.); afterwards they are evaporated/sublimated and
dispersed zonally and meridionally in the upper troposphere
[2]. During upward motion, hydrometers collide with each
other generating the charge on ice crystals, graupel, and
liquid water [3, 4]. Some of the earlier studies [3, 5] have
shown that approximately 5×10−4 e.s.u. (0.17 pC) charges are
transferred per collision between the crystals and graupels of
radius approximately 50 𝜇m. This activity mostly takes place
at the height where the temperature is colder than −10∘C [6].
Similarly, in other studies based on field measurement the
charge density around 1 to 10 C/km3 at the levels between
the isotherms of −10 to −25∘C have been reported [7]. Carey

and Rutledge [8], Petersen et al. [9, 10], and Dye et al. [11]
have found that strong updraft and production of significant
lightning occurs at the height where the temperature is
in between 0∘C to −40∘C. It is also believed that most of
the noninductive charges inside the thunderstorm (due to
rebounding collisions between graupel and ice crystals in the
presence of super-cooled liquid water) are generated in this
temperature region [4, 12–18]. The separation of the charge
among the particles inside a cloud depends on the relative
motion of hydrometers, whereas the rate of charge transfer
and polarity depends on the size of particle, temperature and
the liquid water content [19–21]. In addition, charges are also
generated on crystal during condensation, evaporation, and
sublimation/melting of ice.The rapid growth of electrification
has been reported when cloud particles are frozen and form
the ice during updraft [22, 23]. Laboratory experiment [3]
showed that graupel pellets gain much more charges if
graupels are growing by riming and collide with ice. Some
laboratory experiment also showed that during freezing of
distilled water very small negative charges are generated,
whereas during melting much larger negative charges are
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generated [24, 25], but this effect could not be observed when
water is contaminated.

Aerosol also affects the cloud ice concentration and its
size by reducing the mean droplet size, which enhances the
ice concentration in the region where temperature is less
than zero [26]. Takahashi [27] found that increasing tendency
of lightning flashes is positively correlated with increasing
concentration of cloud ice as well as its size. Sherwood et
al. [28] reported that occurrence of maximum lightning is
associated with small size of cloud ice. In another study,
decreasing size of cloud ice with increasing the aerosol
concentration has also been reported [29].

In recent study over central India [30] a positive corre-
lation has been found between ice concentration and light-
ning during premonsoon and monsoon seasons, whereas
Deierling et al. [1] reported significant correlation between
both precipitation and nonprecipitation ice mass with total
lightning over Northern Alabama and Colorado/Kansas.
Similar relation between lightning and cloud ice masses has
also been reported in other field observations [1, 10, 17, 31–
34]. The combined effect of aerosol with thermodynamic
effect over India [35] and threefold enhancement of cloud-
to-ground lightning flash density over Houston, Texas [36],
raises the issue of pollution or heat island effect as a cause.
As ice is a form of frozen cloud drops above the freezing
level during deep convection, some results reported positive
relation of lightning with strong updraft [11, 37–39].

Sizes of cloud ice represent the meteorological condition,
aerosol effect, atmospheric dynamics, and are closely related
to the cloud electrification and lightning discharge. It is
still not clear whether small or large ice sizes increase the
lightning flashes. Sherwood et al. [28] reported that small
ice generatemore lightning, whereas less cloud electrification
in small cloud ice area is also reported [18, 40]. In this
study we have presented the relationship between size of
cloud ice and lightning flashes on global scale (over tropical
regions). Lightning flashes and effective radius of cloud ice are
considered over both continental as well as oceanic region.

2. Data

In this studymonthlymean cloud effective radius of ice phase
(cloud particle size) (QA-W) from Moderate Resolution
Imaging Spectroradiometer (MODIS) Level-3, cloud ice con-
centration from 3A12 version 6, and area averaged lightning
from Lightning Imaging Sensor (LIS) on board of Tropical
Rainfall Measurement Mission’s (TRMM) satellite for the
period of 2000–2011 data sets have been used for analysis.
MODIS Level-3 was first launched on 18 December, 1999, on
board theTerra platformand subsequently on 4May, 2002, on
board the Aqua platform, which is uniquely designed (high
spatial resolution, wide spectral range, and near daily global
coverage) to observe and monitor cloud effective radius
and other Earth changes. We have used MODIS 1∘ × 1∘
gridded level-3 monthly averaged cloud particle size from
Terra platform (2000–2011) over continental region shown
in Figure 1(d) as L1 [lat. (−35)–(−22), long. (−67)–(−47)],
L2 [lat. (−12)–(−8), long. 9–29], and L3 [lat. 24–34, long.

68–83] in our analysis. Similarly, we used MODIS 1∘ × 1∘
gridded level-3 monthly average cloud particle size data set
from Aqua (2002–2011) over the oceanic region shown in
Figure 1(d) as O1 [lat. (−32)–(−20), long. (−146)–(−126)],
O2 [lat. 12–22, long. 49–73], and O3 [lat. 0–18, long. 124–
149]. We have also used MODIS, Terra platform data set, for
the period of 2000-2001 for oceanic region. The agreement
between MODIS monthly average cloud particle size data
product from Terra and Aqua is observed to be 90% (𝑅 =
0.95) suggesting that both data sets are quite consistent.
TRMM Microwave Instrument (TMI) profiling gives global
vertical hydrometer profiles and surface rainfall mean on
0.5
∘

× 0.5
∘ grid resolution.This data set is available at TRMM

Online Visualization and Analysis System (TOVAS) web-
based interface (http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/
gui.cgi?instanceid=TRMM Monthly). We have used area
average monthly vertical profile of cloud ice concentration
retrieved by 3A12 algorithm over the continental region (L1,
L2, andL3) andoceanic region (O1,O2, andO3).Wehave also
used lightning data from LIS which is a science instrument
on board the TRMM observatory launched on 28 November,
1997.The detection efficiency of LIS is more than 80% in both
daytime andnighttimewith resolution (4 to 7 km) over a large
region (600×600 km) of the Earth’s surface for total lightning
(i.e., intracloud + cloud-to-ground) [41].

2.1. Selection of Study Area. Figures 1(a) and 1(b) show the
example of spatial distribution of size of cloud ice and
lightning, respectively, for the year 2005. Year 2005 is neither
drought year nor very heavy rainfall year. It is considered as
normal rainfall year [42]. In order to study the association
between size of cloud ice and lightning, we have selected three
regions over the continental region as L1, L2, and L3 and
over the ocean as O1, O2, and O3 shown in Figure 1(d). We
have used 12 years (2000–2011) of monthly cloud ice size and
lightning data over the study area (L1, L2, L3 and O1, O2, O3)
for analysis.

3. Results

3.1. Spatial Distribution of Cloud Ice Size and Lightning.
Figure 1 shows the spatial and seasonal pattern of lightning
and cloud effective radius (cloud particle/ice size) over the
tropical regions for the year 2005. A clear spatial change
in lightning and cloud ice can be seen in Figure 1. It is
interesting to note from Figure 1 that frequency of lightning
in general is higher over the continental region compared
to oceanic region. The annual average lightning flashes
over the areas L1, L2, and L3 are generally greater than
500 flashes/km2/month, whereas over the areas O1, O2, and
O3 are less than 25 flashes/km2/months. On the other hand,
larger size of cloud ice is observed over oceanic region
compared to continental regions.The average cloud ice size is
greater than 30 𝜇m (some places more than 40 𝜇m) over the
oceanic region (O1, O2, and O3) and less than 25𝜇mover the
selected areas (L1, L2, and L3) on continental region. During
spring months (March, April, and May; MAM), intense
lightning can be seen (Figure 1(d)) over the continental
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Figure 1: Spatial distribution of (a) size of cloud ice and (b) lightning for the annual average and four seasons during 2005.

regions such as Uruguay and surrounding regions (East part
of Argentina and south Brazil), central part of United State,
Colombia, Central African Republican and surrounding
region,Democratic Republican of Congo (DRC), eastern part
of South Africa, India (Indo Gangetic plain and in some
other parts), South-East part of China,Thailand, and Indone-
sia. Lightning frequency greater than 150 flashes/km2/month
(Figure 1(d)) and the average effective cloud ice diameters
between 22 and 25 𝜇m (Figure 1(c)) have been observed
over these regions. The lightning frequency over Mexico,
Guatemala, Nicaragua, Angola, Namibia, and the entire part
of Brazil during spring months has been observed to be less
than 25 flashes/km2/month (effective cloud ice diameter 28–
31 𝜇m). In comparison with continental regions (discussed
above) the low lightning frequency (<5 flashes/km2/month)
and large ice particle size (31–40 𝜇m) has been observed over
the oceanic region. In Figure 1, the similar features are also
evident during summer monsoon (June, July, and August;

JJS), winter (December, January, and February; DJF), and fall
months (September, October, and November; SON).

3.2. Relationship between Cloud Ice Size and Lightning. In
order study the relationship between cloud ice size and
lightning in detail we have analyzed the monthly mean cloud
effective radius and total lightning (for the period 2000–
2011) averaged over the continental (L1, L2, and L3) and
oceanic (O1, O2, and O3) areas shown in Figure 1(d). Months
corresponding to the cloud ice size between 19 and 34 𝜇m are
grouped in the bin size of 1 𝜇m (we have considered all the
months (12×12 = 144months) for frequency count).Wehave
noticed that there were hardly any months in which monthly
mean cloud ice size was less that 19 𝜇m or greater than 34 𝜇m
during the study period. Lightning corresponding to each bin
(of 1 𝜇m) is then added to obtain total lightning for every
1 𝜇m bin between 19 and 34 𝜇m. Figure 2 shows relationship
between cloud ice size and lighting over the three different
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Figure 2: Relationship between mean cloud ice size and lightning over continental region (a) L1 (A), L2 (B), and L3 (C) and over oceanic
region (b) O1 (A), O2 (B), and O3 (C).
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Figure 3: Distribution of cloud ice concentration as a function of
altitude averaged during 2000–2011 period (a) over the continental
region L1 and (b) oceanic region O2.

continental (Figure 2(a)) and oceanic regions (Figure 2(b)). It
can be seen that relationship between lighting and cloud ice
size shows similar pattern over both continental and oceanic
regions. Maximum lightning occurred for the mean ice cloud
sizes of 24, 25, and 23 𝜇m over the continental regions L1,
L2, and L3, respectively. Similarly, over the oceanic regions
O1, O2, and O3 maximum lightning occurred for the slightly
greater mean cloud ice size of 26, 24, and 28 𝜇m, respectively.
It is interesting to note from Figure 2 that total lighting
increases with increase in the cloud ice size, attainsmaximum
at certain cloud ice size, and after that starts decreasing with
increasing cloud ice size.

In order to understand this relationship we have analyzed
vertical distribution of cloud ice concentration and rela-
tionship between cloud size with ice concentration over the
continental and oceanic region. Figures 3(a) and 3(b) show
the cloud ice concentration at different altitude averaged
during 2000–2011 period over the continental region L1 and
oceanic region O2, respectively. It can be seen that ice con-
centration increases from altitude of 6 km, attends maximum
concentration around 8–11 km over L1 and 10–14 km over O2
region, and decreases nearly to zero concentration at 18 km.
Figure 4 shows the distribution of cloud ice concentration as
a function of mean cloud size at an altitude of 12 km (near
to same height) over L1 and O2 regions, respectively. It can
be seen from Figure 4 that ice concentration over L1 and O2
regions increases with respect to ice size up to 24 𝜇m, attends
maximum concentration at 24𝜇m, and ice concentration
decreases with ice size above 24𝜇m. Similar relationship
between ice concentration and ice size is also seen for the
altitudes ranged between 8 and 14 km (not shown here). The
charge is generated due to growth of ice size by condensation
(deposition, combination of collection, etc.) and collision
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Figure 4: Relation between mean cloud ice size and cloud ice
concentration averaged during 2000–2011 period at 12 km altitude
(a) over the continental region L1 and (b) oceanic region O2.

among them during upward motion [41, 43]. This process
enhances the electric filed inside the cloud and generate
lightning. During convection, cloud ice grows its size by
combination of collection and condensation or deposition.
The increasing ice concentrationwith respect tomean ice size
from 19 to 24𝜇m in Figure 4 can be attributed to the growth
of ice size. Therefore, generated charge (due to collision and
condensation) increaseswith increasing the ice concentration
and attends the maximum charge with the maximum ice
concentration at 24𝜇m inside the cloud. Hence, increasing
lightning frequency with increasing the ice concentration
with respect to ice size from 19 to 24𝜇m with maximum
lightning at 24𝜇mcan be seen in Figure 2. Takahashi [27] has
also found increase in lightning with increase in the ice con-
centration and ice size, compliments to our results.The latent
heat is generated during condensation or deposition increases
the updraft velocity of the hydrometers, which enhances the
hydrometers concentration at high altitude (Figure 3) as well
as electric filed inside the cloud. Ziegler and MacGorman
[44] and Dey et al. [11] found that altitude range of about 7–
10 km is favorable for electrification of clouds for generating
lightning discharge.This is consistent with Figure 3 where we
observed maximum ice concentration between 8 and 14 km
altitude ranges. It can also be seen fromFigure 3 that although
maximum ice concentration over both land and oceanic
regions are found approximately in same altitude range (8–
14 km), yet less lightning occurs over oceanic region. It might
be due to weak updraft velocity in mix-phase region over
ocean as compared to continental region.

On the other hand, increased size of cloud ice increases
its terminal velocity and thereby reduces the uplift velocity.
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Therefore, larger particle descends isothermally towards the
ground and begins tomelt [45]. In this case chargewith oppo-
site polarity is also generated on hydrometer [43], however,
unable to generate the charge to produce the lightning due to
slow sublimation and low concentration of ice. Takahashi [4]
also showed that the charge transfers per collision slow down
with increase in ice diameter size. Therefore, the negative
relationship between total lightning and mean cloud ice size
which is greater than 26–28𝜇m instead of positive correlation
for the size less than 19–25𝜇m can be seen in Figure 2.
It is reasonable to conclude from Figures 2, 3, and 4 that
the highest mean ice size of around 24𝜇m contributes to
maximum ice concentration in the altitude range between 8
and 14 km and therefore results in the maximum lightning
(over land and oceanic regions) for ice size of around 23–
26 𝜇m (seen in Figure 2). These imply that the relationship
between mean ice size and lightning is curve linear.

4. Conclusions

In this work, we have analyzed 12 years (2000–2011) of
monthly mean satellite observations of lightning from LIS,
ice concentration from TRMM (3A12, V6), and effective
diameter of cloud ice form MODIS over the Tropical Ocean
and continental regions. We have examined the association
of lightning flashes with mean ice size over these regions.
A clear spatial change in lighting and cloud ice size from
spring to winter season is seen. In general, total lightning is
observed higher over the continental regions as compared to
the lightning observed over oceanic region, whereas mean
cloud ice size is observed higher over the oceanic region
compared to the continental region during all the seasons.
It is observed that the relationship between lightning and
mean cloud ice size is same over both continental and oceanic
regions. It is also observed that maximum lightning occurred
for the mean cloud ice size of around 23–25 𝜇m over the
continental region and mean cloud ice size of around 24–
28𝜇m over the oceanic region. However, for the first time,
we found that relationship between lightning andmean cloud
ice size follows the curve linear pattern and is not linear.
We found that total lighting increases with increase in the
cloud ice size and attends maximum at certain cloud ice
size, then lightning decreases with increasing cloud ice size.
The altitude profile show increase in ice concentration from
6 km, attends maximum concentration around 8–11 km over
continent and 10–14 km over oceanic region, and decreases to
zero concentration at around 18 km. Ice concentration within
this region shows maximum around 24𝜇m. This concludes
that maximum lightning observed around 23–25𝜇mover the
continental region and 24–28𝜇m over the oceanic region is
associated with the large ice concentration at around 24 𝜇m.
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