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A CrosFDH-GA algorithm is proposed for the task scheduling problem on the NoC-based MPSoC regarding the multicriterion
optimization. First of all, four common criterions, namely, makespan, data routing energy, average link load, and workload balance,
are extracted from the task scheduling problem on NoC and are used to construct the DEA DMU model. Then the FDH analysis
is applied to the problem, and a FDH cross efficiency formulation is derived for evaluating the relative advantage among schedule
solutions. Finally, we introduce the DEA approach to the genetic algorithm and propose a CrosFDH-GA scheduling algorithm to
find the most efficient schedule solution for a given scheduling problem.The simulation results show that our FDH cross efficiency
formulation effectively evaluates the performance of schedule solutions. By conducting comparative simulations, our CrosFDH-GA
proposal produces more metrics-balanced schedule solution than other multicriterion algorithms.

1. Introduction

The scheduling problem has long been a research hotspot
since its proposal in the 1950s, as the Job-shop scheduling
problem [1]. After the computer technology emerged in the
1940s, the scheduling problem also found its position in the
computer science region, as the task scheduling problem on
the uniprocessor in the 1960s [2], the multiprocessor in the
1970s [3], the distributed computing in the 1980s [4], and
the grid computing in the early 21st century [5]. Now the
chip fabrication technology has brought us to the single-
chip multicore era [6]. The presence of chip multiprocessor
(CMP), especially theNoC (network-on-chip)-basedMPSoC
[7], brings new challenges to the task scheduling algorithm
design.

In NoC solution, the idea of introducing the network
infrastructure to the chip design, along with the newly arisen
concept of green communication [8], makes the goal of
scheduling algorithm change from single-objective optimiza-
tion on makespan to performing optimization simultane-
ously onmultiple metrics, not only the traditional makespan,
but also energy [9] and NoC criterions [10], and some of
the optimizations of these metrics are even in conflict with

each other. So the goal of scheduling algorithm design leans
forward to balancing these multiple metrics.

On the other hand, DEA is a nonparametric technique
that is used to measure the relative efficiency of multi-
input multioutput DMUs (decisionmaking units). It was first
presented byCharnes, Cooper, andRhodes as theCCRmodel
in 1976 [11], then developed into several variations based on
different RTS (return-to-scale) assumptions. The concept of
efficiency in DEA gives us a reasonable standard to make
trade-off between multiple metrics.

In this paper, a FDH DEAmodel of NoC task scheduling
is constructed, and a FDH cross efficiency formulation is
proposed based on peer appraisal for further assessment
of the relative advantages of DMUs. Then the proposed
DEA approach is introduced to the genetic algorithm, and a
CrosFDH-GA scheduling algorithm is proposed for the task
scheduling problem on NoC to find the most efficient and
balanced schedule solution.

The rest of this paper is organized as follows. Section 2
summarizes the related work of this paper; Section 3 for-
mulates the task scheduling problem on NoC; the FDH
and cross efficiency FDH formulation is given in Section 4;
Section 5 presents our CrosFDH-GA scheduling algorithms;
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Figure 1: Architecture of NoC-based MPSoC.

simulations results and discussion are given in Section 6;
Section 7 concludes the paper.

2. Related Works

The multicriterion scheduling algorithms for CMPs have
been widely researched in recent years. In [12], a scheduling
algorithm is proposed for multicore processors to avoid
resource contention, aswell as to reduce energy consumption.
A modified genetic algorithm which incorporates bacterio-
logical algorithm is proposed in [13] to maximize the system
reliability and reduce makespan. In [14], the optimization of
makespan and workload balance is addressed, and a NSGA-
II based schedule algorithm is proposed for multicore-based
grid. Amultiobjective evolutionary algorithm (MOEA) based
schedule heuristic is proposed for the joint optimization of
performance, energy, and temperature on multicore proces-
sors in [15].

As for the DEA’s application in the field of task scheduling
onmulticore, a FDH-based evaluationmethod for the assess-
ment of schedule heuristics is proposed in [16]. Although
both [16] and ourwork adoptDEAFDHmodel as the analytic
tool, ourwork introduces the concept of cross efficiency to the
FDHmodel and uses FDH cross efficiency to rank schedules.
Moreover, the incorporation of DEA evaluation method into
metaheuristic also distinguishes itself from the work in [16].

3. Problem Formulation

3.1. Task Model. In this paper, tasks are modeled using
directed acyclic graphs (DAGs). A DAG 𝐺 = (𝑉, 𝐸) is an
acyclic graph where 𝑉 is the set of nodes which represent the
tasks and 𝐸 is the set of edges in which an element 𝑒

𝑖𝑗
denotes

the communication from task 𝑖 to task 𝑗. The edge indicates
the precedent relation between two tasks.

Each node V
𝑖
and edge 𝑒

𝑖𝑗
are associated with a weight,

denoted by𝐶
𝑖
and𝑇
𝑖𝑗
, respectively.Weight𝐶

𝑖
is the computa-

tional load required by a processing Element (PE) to execute
task 𝑖; and𝑇

𝑖𝑗
is the data transmission load between task 𝑖 and

task 𝑗. In our work, both 𝐶
𝑖
and 𝑇

𝑖𝑗
are presented using time

unit (cycles).

3.2. Network-on-Chip Hardware. The target hardware is a 2D
mesh NoC-based MPSoC, as illustrated in Figure 1(a). Each
PE is connected to a router, and routers are interconnected
with each other through bidirection links. Data is transferred
through NoC in the form of packets.

PEs are homogenous processor cores with local data
cache. If two consequential tasks are scheduled to the same
PE, the successor task reads the predecessor’s data directly
from the data cache of the PE without routing in NoC.

The microstructure of a NoC router is shown in Fig-
ure 1(b). The router has five Inports and Outports corre-
sponding to five directions of East, West, North, South, and
Local. The decoder in the Inport scans the first flit of the
FIFO for any incoming packet. If the decoder detects the
head flit of a packet, it performs XY routing algorithm and
sends request signal to the arbiter of the corresponding
Outport. If the arbiter receives multiple request signals, the
contention is solved using Round-Robin arbitration. The
granted Inport then forwards the packet to the downstream
router. Wormhole routing is adopted to minimize the buffer
requirement as well as the packet latency [17]. The back
pressure mechanism is also employed to further reduce end-
to-end delay [18].

The energy model of a NoC is presented by the Bit
Energy proposed in [19]. Analytically, the average energy
consumption of transmitting one bit from node 𝑖 to node 𝑗
is calculated by

𝐸
𝑖,𝑗

bit = 𝑛hops ⋅ 𝐸𝑁bit + (𝑛hops − 1) ⋅ 𝐸𝐿bit , (1)
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where 𝐸
𝑁bit

and 𝐸
𝐿bit

represent the energy consumed on the
node and on the link, respectively, and 𝑛hops is the number of
nodes the bit passes on its way from node 𝑖 to node 𝑗.

3.3. Monitored Metrics. In this paper, four common metrics
of NoC are extracted and monitored for the assessment
of schedule solution, and they are makespan, data routing
energy, average link load [20], and workload balance [21].

Makespan (the 𝑀 metric), which is the amount of time
required by a NoC to finish entire tasks in a DAG following
the instruction of a schedule, is the timemetric of a schedule,
while the data routing Energy (the 𝐸 metric) is the total
amount of energy dissipated in each NoC component during
the execution of the DAG.

The average Link load (the 𝐿 metric) is calculated by
adding up all the data transmission time (in cycles) on each
link and then dividing it by the number of links (for the NoC
in Figure 1(a), there are 48 links). The 𝐿 metric represents
how busy the NoC is during the execution, and a higher
average link load metric implies a higher possibility of link
contentions. A good schedule is supposed to reduce the 𝐿
metric.

Finally, the workload Balance (the 𝐵metric) is defined to
be the inverse coefficient of variant of the total workload on
each processor, as shown in (2). The loadprc(𝑛) is the actual
load on processor 𝑛, and the loadave is the average load. The
𝐵metric reflects the load balance of the processors

workload balance =
loadave

(∑
𝑛
(loadave − loadprc (𝑛))

2

)

1/2
.

(2)

4. DEA Evaluation of Schedules

4.1. A Brief Review of DEA. Data envelopment analysis
(DEA) is a nonparametric technique that is widely used to
measure the relative efficiency among many-input, many-
output decision-making units (DMUs), which in our context
are the schedules. The efficiency of a DMU is defined as the
weighted sum of its output divided by the weighted sum of
its input. The essence of DEA is that it allows each DMU to
choose a particular set of weight coefficients which favors its
own efficiency, under the constraint that the efficiencies of all
DMUs calculated by this set of coefficients do not exceed 1.
A DMU is “efficient” if the efficiency calculated by DEA is 1;
otherwise the DMU is marked as “inefficient.” The following
Linear Programing (LP) problem is the CCR model of DEA:
(CCR multiplier form)

max 𝑍 = 𝑢
𝑇

⋅ 𝑦
𝑖

s.t
{

{

{

V ⋅ 𝑥
𝑖
= 1,

V ⋅ 𝑥
𝑙
− 𝑢 ⋅ 𝑦

𝑙
≥ 0, 𝑙 = 1, 2, . . . , 𝑛,

V, 𝑢 ≥ 0,

(3)

where 𝑥
𝑖
= (𝑥

𝑖,1
𝑥
𝑖,2

⋅ ⋅ ⋅ 𝑥
𝑖,𝑚
)
𝑇

∈ 𝑅
𝑚 and 𝑦

𝑖
=

(𝑦
𝑖,1

𝑦
𝑖,2

⋅ ⋅ ⋅ 𝑦
𝑖,𝑠
)
𝑇

∈ 𝑅
𝑠 are the input and out-

put vectors of DMU 𝑖; V = (V
1

V
2

⋅ ⋅ ⋅ V
𝑚
) and

𝑢 = (𝑢
1
𝑢
2

⋅ ⋅ ⋅ 𝑢
𝑠
) are the coefficient (multiplier)

vectors of the inputs and outputs; 𝑛 is the number of DMUs;
and the objective function 𝑍 is the efficiency of DMU 𝑖.

The result of applying DEA is a classification among
DMUs as efficient group or inefficient group. The efficient
DMUs forman efficient frontier on themulti-input,multiout-
put space that envelops all inefficient DMUs. The projection
of inefficient DMUon the efficient frontier is the hypothetical
efficient unit, which is a linear combination of the efficient
DMUs. An inefficient DMU can also be converted to an effi-
cient DMU by proportionally scaling down by the value of its
efficiency in the inputs and maintaining its original outputs.
This interpretation of DEA efficiency is corresponding to the
envelop form of DEA, which is the dual problem of (3) (CCR
envelop form)

min
𝜃,𝜆

𝑍 = 𝜃

s.t
{

{

{

𝜃𝑥
𝑖
− 𝑋 ⋅ 𝜆 ≥ 0,

𝑦
𝑖
− 𝑌 ⋅ 𝜆 ≤ 0,

𝜆 ≥ 0,

(4)

where 𝑋 = (𝑥
1
𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛
) and 𝑌 =

(𝑦
1
𝑦
2

⋅ ⋅ ⋅ 𝑦
𝑛
) are the input and output matrices;

𝜆 = (𝜆
1
𝜆
2

⋅ ⋅ ⋅ 𝜆
𝑛
)
𝑇

∈ 𝑅
𝑛 is a nonnegative vector; and

𝜃 is the efficiency of DMU 𝑖.
The way that the efficient frontier is generated differen-

tiates between DEA models which imply different returns
to scale assumptions. There are four basic returns to scale
assumption: constant returns to scale (CRS), corresponding
to the CCR model [11]; variable returns to scale (VRS),
corresponding to the BCC model [22]; increasing returns to
scale; and decreasing returns to scale.

In this paper, we focus on a special case of DEA, namely,
the free disposal hull (FDH) [23]. In VRS FDH formulation
of DEA, each DMU is evaluated by comparing itself to other
DMUs on a one-on-one basis, and a DMU is considered
efficient only when no other DMU dominates it.

In most cases, the idea of DEA that let DMU specify
its own weight coefficients to show its maximum advantage
is desirable. However, in some extreme scenes, a DMU can
“cheat” a high efficiency score by weighting a single input or
a single output and setting the rest weight coefficients close
to 0. This can happen when some DMUs have a particularly
small input or particularly large output; in our words, these
DMUs have unbalanced metrics, and these “mavericks”
need to be depreciated. Moreover, although DEA effectively
discriminates between efficient and inefficient DMUs, it does
not further assess the relative advantages among the efficient
ones.

One solution to the above questions is to introduce cross
efficiency in the efficiencymeasurement.The concept of cross
efficiency, corresponding to the simple efficiency implied by
original DEA, is the peer-appraisal equivalent of DEA’s self-
appraisal process. The cross efficiency of a certain DMU is
the efficiency value calculated by using weight coefficients
derived by other DMUs. If a DMU is a maverick or has
unbalanced metrics, then its cross efficiency value derived
from other DMU’s coefficients is not likely to be high.
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Two widely accepted crossefficiency formulations, the
aggressive and benevolent formulations, were proposed
in [24] based on CCR Model. Both formulations add a
secondary goal to the normal DEA efficiency calculation
(maximizing reference DMU’s efficiency): the aggressive
formulation minimizes target DMU’s crossefficiency, while
the benevolent formulation maximizes its efficiency. Given
that the simple DEA efficiency of DMU 𝑖 is 𝐸

𝑖𝑖
, then the

crossefficiency of DMU 𝑗 evaluated by DMU 𝑖 is defined by
(CCR crossefficiency, benevolent formulation)

max 𝐸
𝑗𝑖
= 𝑢
𝑇

⋅ 𝑦
𝑗

s.t
{{{

{{{

{

V ⋅ 𝑥
𝑗
= 1,

V ⋅ 𝑥
𝑙
− 𝑢 ⋅ 𝑦

𝑙
≥ 0, 𝑙 = 1, 2, . . . , 𝑛,

𝐸
𝑖𝑖
⋅ V ⋅ 𝑥
𝑖
− 𝑢 ⋅ 𝑦

𝑖
= 0,

V, 𝑢 ≥ 0.

(5)

4.2. FDHDEA Evaluation of Schedules. In order to apply data
envelopment analysis to the schedule evaluation, the multi-
input multioutput DMUmodel needs to be defined using the
schedule metrics, namely,makespan (𝑀), routing energy (𝐸),
average link load (𝐿) and workload balance (𝐵), proposed in
Section 3.

The classification of metrics as inputs and outputs follows
a simple “rule of thumb” [16]. If the value of a metric is
larger-is-better, then it is an output; otherwise the metric is
an input. As a result of this classification, the DMUmodel of
our schedule evaluation is as follows: 𝑥 = (𝑀 𝐸 𝐿)

𝑇 are
the inputs, and 𝑦 = 𝐵 is the output.

Moreover, in the rest of this paper the term “schedule” is
referring to a schedule that is discriminable using the four-
metric classification. If two schedules have identical metrics,
they are regarded as the same schedule; at least they are not
discriminable under current metrics.

With the schedulingDMUmodel, the observed schedules
are defined as follows.

Definition 1 (schedule set). The observed schedules or the
schedule setΓ = {𝛾

1
, . . . , 𝛾

𝑖
, . . . , 𝛾

𝑛
} = {(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑖
, 𝑦
𝑖
), . . .,

(𝑥
𝑛
, 𝑦
𝑛
)} is the set of 𝑛 observed schedules, where each

schedule 𝛾
𝑖
is defined by the input vector 𝑥

𝑖
= (𝑀
𝑖
𝐸
𝑖
𝐿
𝑖
)
𝑇

and output scalar 𝑦
𝑖
= 𝐵
𝑖
.

Another concept that is relevant to DEA is the possi-
ble production set. The possible production set is the space
enveloped by the efficient frontier on the multi-input mul-
tioutput space. Normally, the possible production set is
unknown in the DEA and needs to be constructed using the
observed DMUs. The FDH possible production set postulates
were proposed in [23]. Here, under our context, we restate
these postulates as the following axiom.

Axiom 1 (possible schedule set). The possible schedule set
(PSS) of a schedule set Γ satisfies the following.

Postulate I. PSS contains all schedules in Γ.

Postulate II. PSS contains unobserved schedule 𝛾
𝑖
if

(i) 𝛾
𝑗
= (𝑥
𝑗
, 𝑦
𝑗
) ∈ Γ, and 𝑥

𝑖
= (𝑀
𝑖
𝐸
𝑖
𝐿
𝑖
) ≥ 𝑥
𝑗
or

(ii) 𝑦
𝑖
= 𝐵
𝑖
≤ 𝑦
𝑗
.

Postulate II is the free disposal postulate, which suggests
a free disposal hull of Γ [25]. Together with the determinist
Postulate I, they define the FDH possible schedule set of
our schedule efficiency analysis. Now, we formally introduce
FDH DEA to the schedule evaluation and define the efficient
schedule as follows.

Definition 2 (efficient schedule and efficient schedule set).
In a schedule set Γ, a schedule 𝛾

𝑖
is called efficient if the

optimization problem (6) has an optimal solution of 𝑍∗ = 1;
otherwise 𝛾

𝑖
is inefficient.The set of all efficient schedules in Γ

is called the efficient schedule set, denoted by Γ
𝑒
, and likewise,

the inefficient schedule set is denoted by Γ
𝑖
:

min
𝜃,𝜆,𝑠
+
,𝑠
−

𝑍 = 𝜃 − 𝜀 ⋅ (1 ⋅ 𝑠+ + 𝑠−)

s.t
{{{

{{{

{

𝜃𝑥
𝑖
− 𝑋 ⋅ 𝜆 − 𝑠

+

= 0,
𝑦
𝑖
− 𝑌 ⋅ 𝜆 + 𝑠

−

= 0,

1 ⋅ 𝜆 = 1, 𝜆
𝑙
∈ {0, 1} , 𝑙 = 1, 2, . . . , 𝑛,

𝑠
+

, 𝑠
−

≥ 0,

(6)

where 𝑥
𝑖
= (𝑀

𝑖
𝐸
𝑖
𝐿
𝑖
)
𝑇 and 𝑦

𝑖
= 𝐵
𝑖
are the input vector

and output scalar of 𝛾
𝑖
; 𝑛 is the number of schedules in Γ;

𝑋 = (𝑥
1
𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛
) and 𝑌 = (𝑦

1
𝑦
2

⋅ ⋅ ⋅ 𝑦
𝑛
) are

the input and output matrices of Γ; 𝜆 = (𝜆
1
𝜆
2

⋅ ⋅ ⋅ 𝜆
𝑛
)
𝑇

is a binary vector in 𝑅𝑛; 𝑠+ and 𝑠− are the nonnegative slack
variables, representing input excess and output shortfall; 𝜀
is a non-Archimedean infinitesimal constant; and 𝜃 is the
efficiency of 𝛾

𝑖
.

Optimization problem (6) is aMixed-Integer Programing
(MIP).The binary vector 𝜆 and the constraint 1⋅𝜆 = 1 enforce
a one-on-one comparison between target schedule 𝛾

𝑖
and all

the schedules in Γ to search for a reference schedule 𝛾
𝑟
that

minimizes 𝜃.
The first two constraints of problem (6) can be simplified

to (7) by removing the slack variables. Obviously, the problem
has feasible solutions when 𝑙 = 𝑖 and 𝜃 = 1 in this situation.
From this point on, if a reference schedule 𝛾

𝑟
is found with

𝜃 < 1, that means that 𝛾
𝑟
produces output 𝑦

𝑟
at least as same

as 𝛾
𝑖
, with the inputs nomore than 𝜃𝑥

𝑖
, which is a scale-down

from 𝑥
𝑖
. Then this makes 𝛾

𝑖
inefficient:

𝜃𝑥
𝑖
≥ 𝑥
𝑙
,

𝑦
𝑖
≤ 𝑦
𝑙
, 𝑙 = 1, 2, . . . , 𝑛.

(7)

However, only 𝜃 = 1 is not enough for a schedule to be
efficient. Consider an efficient schedule 𝛾 = (𝑀 𝐸 𝐿 𝐵)

and an inefficient schedule 𝛾 = (𝑀 + Δ
𝑚

𝐸 𝐿 𝐵) which
is distinguished from 𝛾 by a small input excess Δ

𝑚
in the

makespan; the constraint (7) holding for 𝛾 also holds for
𝛾; thus 𝜃 = 1 for 𝛾. The slacks variables 𝑠+ and 𝑠− are
introduced to remove these schedules with input excess and
output shortfall. The nonzero 𝑠+ and 𝑠− force the objective
function in (6) to be less than 1.
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Definition 1 implies the dominance/Pareto optimality of
an efficient schedule. A dominant schedule is defined as
follows.

Definition 3 (dominant schedule). A schedule 𝛾
𝑎
is said to

dominate 𝛾
𝑏
if

(I) each component of 𝑥
𝑎
= (𝑀

𝑎
𝐸
𝑎
𝐿
𝑎
)
𝑇 is not

greater than that of 𝑥
𝑏
;

(II) 𝑦
𝑎
= 𝐵
𝑎
is not less than 𝑦

𝑏
;

(III.a) at least of component of 𝑥
𝑎
is less than the corre-

sponding one of 𝑥
𝑏
(dominates in input); or

(III.b) 𝑦
𝑎
is greater than 𝑦

𝑏
(dominates in output).

Then the relationship between efficient schedule and
dominant schedule is given inTheorem 4.

Theorem 4 (dominance and efficiency). In a schedule set Γ,
a schedule 𝛾

𝑖
is called efficient if and only if no other schedule

dominates it.

Proof. If Part. Suppose there is a schedule 𝛾
𝑗
that dominates

𝛾
𝑖
.
The efficiency of 𝛾

𝑖
is calculated by solving the following

optimization problem:

min
𝜃,𝜆,𝑠
+
,𝑠
−

𝑍 = 𝜃 − 𝜀 ⋅ (𝑠
+

𝑀
+ 𝑠
+

𝐸
+ 𝑠
+

𝐿
+ 𝑠
−

𝐵
)

s.t

{{{{{

{{{{{

{

𝜃 ⋅ 𝑀
𝑖
− (𝑀
1
𝑀
2
⋅ ⋅ ⋅ 𝑀

𝑛
) ⋅ 𝜆 − 𝑠

+

𝑀
= 0,

𝜃 ⋅ 𝐸
𝑖
− (𝐸
1
𝐸
2
⋅ ⋅ ⋅ 𝐸
𝑛
) ⋅ 𝜆 − 𝑠

+

𝐸
= 0,

𝜃 ⋅ 𝐿
𝑖
− (𝐿
1
𝐿
2
⋅ ⋅ ⋅ 𝐿

𝑛
) ⋅ 𝜆 − 𝑠

+

𝐿
= 0,

𝐵
𝑖
− (𝐵
1
𝐵
2
⋅ ⋅ ⋅ 𝐵
𝑛
) ⋅ 𝜆 + 𝑠

−

𝐵
= 0,

∑𝜆
𝑙
= 1, 𝜆

𝑙
∈ {0, 1} , 𝑙 = 1, 2, . . . , 𝑛.

(8)

Let𝜆
𝑗
= 1 and 𝜃 = 1; then constraints of (8) are converted

to

𝑀
𝑖
−𝑀
𝑗
− 𝑠
+

𝑀
= 0,

𝐸
𝑖
− 𝐸
𝑗
− 𝑠
+

𝐸
= 0,

𝐿
𝑖
− 𝐿
𝑗
− 𝑠
+

𝐿
= 0,

𝐵
𝑖
− 𝐵
𝑗
+ 𝑠
−

𝐵
= 0.

(9)

From the domination relation, we have 𝑀
𝑖
≥ 𝑀

𝑗
,

𝐸
𝑖
≥ 𝐸
𝑗
, 𝐿
𝑖
≥ 𝐿
𝑗
, and 𝐵

𝑖
≤ 𝐵
𝑗
, and at least one of above

inequations holds strictly. This means at least one of 𝑠+
𝑀
, 𝑠+
𝐸
,

𝑠
+

𝐿
, and 𝑠−

𝐵
in (4) is not zero. So the objective function𝑍 in (8)

has a feasible solution of 𝑍󸀠 = 1 − 𝜀 ⋅ (𝑠+
𝑀
+ 𝑠
+

𝐸
+ 𝑠
+

𝐿
+ 𝑠
−

𝐵
) < 1,

and schedule solution 𝛾
𝑖
is not efficient.

Only If Part. Suppose schedule 𝛾
𝑖
is not efficient then there

must exist a set of 𝜃∗, 𝜆∗, 𝑠+∗, and 𝑠−∗ that makes the optimal

value of (8) be 𝑍∗ < 1. Assuming 𝜆
𝑗
= 1 in 𝜆∗, from (8) we

have

𝜃
∗

⋅ 𝑀
𝑖
= 𝑀
𝑗
+ 𝑠
+∗

𝑀
,

𝜃
∗

⋅ 𝐸
𝑖
= 𝐸
𝑗
+ 𝑠
+∗

𝐸
,

𝜃
∗

⋅ 𝐿
𝑖
= 𝐿
𝑗
+ 𝑠
+∗

𝐿
,

𝐵
𝑖
= 𝐵
𝑗
− 𝑠
−∗

𝐵
.

(10)

The optimal value of 𝑍∗ = 𝜃∗ − 𝜀 ⋅ (𝑠+∗
𝑀
+ 𝑠
+∗

𝐸
+ 𝑠
+∗

𝐿
+ 𝑠
−∗

𝐵
) < 1

suggests that (I) 𝜃∗ = 1, and at least one of the 𝑠+∗ and 𝑠−∗ is
not zero or (II) 𝜃∗ < 1. Either of the above situations implies
that schedule 𝛾

𝑖
is dominated by 𝛾

𝑗
.

Theorem 4 relates the relatively abstract concept of
FDH efficiency to the concept of dominance. Moreover, the
following two corollaries are deduced fromTheorem 4.

Corollary 5. In a schedule set Γ, if a schedule 𝛾
𝑖
satisfies

(1) 𝑀
𝑖
< 𝑀
𝑙
, or

(2) 𝐸
𝑖
< 𝐸
𝑙
, or

(3) 𝐿
𝑖
< 𝐿
𝑙
, or

(4) 𝐵
𝑖
> 𝐵
𝑙
, (𝑙 = 1, 2, . . . , 𝑛, 𝑙 ̸= 𝑖),

then it is in the efficient schedule set Γ
𝑒
.

Proof. If 𝛾
𝑖
satisfies one of the above conditions, then there is

no schedule dominating 𝛾
𝑖
. From Theorem 4, 𝛾

𝑖
is efficient.

Corollary 5 points out that the schedule with the smallest
makespan or the smallest energy consumption or the smallest
queuing time or the best workload balance is an efficient
schedule.

Corollary 6. In a schedule set Γ, removing any inefficient
schedule from Γ does not change the elements in Γ

𝑒
.

Proof. The schedules in Γ
𝑒
are dominant ones, and removing

any inefficient schedule will not change the dominant posi-
tion of the elements in Γ

𝑒
. Thus, Γ

𝑒
remains unchanged.

4.3. FDH Cross Evaluation of Schedules. In this section, a
cross evaluation process is proposed based on peer-appraisal
FDH DEA for further assessment of schedules. DEA calcu-
lates the efficiency of a DMU by allowing the DMU to choose
a scenario that is best for itself. Although this basis is plausible
in most situations, some “maverick” DMUs, especially the
DMUs with a single small input or a single large output, may
“cheat” DEA to achieve high score by valuing its only strength
and depreciating other metrics. These unbalanced DMUs
must be devaluated during further assessment. Moreover, an
assessment of relative advantages among efficient DMUs is
also required.

FDHmodel is aMIP problem in nature. In order to derive
its peer-appraisal variation, the dual problem of the FDH
DEA in (6) is needed to construct the formulation. Normally,
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it is difficult to write the dual problem of a MIP; however, by
exploring the particularity of the vector 𝜆, Agrell has proven
in [26] that theMIP problem in FDHmodel can be simplified
to a LP problem. Using his result, the FDH envelop form in
(6) is reduced to the LP problem given in

min
𝜃
𝑙
,𝜆,𝑠
+
,𝑠
−

𝑍 = ∑

𝑙

𝜃
𝑙
+ 𝜀 ⋅ ∑

𝑙

(1 ⋅ 𝑠+
𝑙
+ 𝑠
−

𝑙
)

s.t

{{{{{

{{{{{

{

𝜃
𝑙
𝑥
𝑖
− 𝑥
𝑙
⋅ 𝜆
𝑙
− 𝑠
+

𝑙
= 0, 𝑙 = 0, 1, . . . , 𝑛,

(𝑦
𝑖
− 𝑦
𝑙
) ⋅ 𝜆
𝑙
+ 𝑠
−

𝑙
= 0, 𝑙 = 0, 1, . . . , 𝑛,

1 ⋅ 𝜆 = 1,
𝜆, 𝑠
+

𝑙
, 𝑠
−

𝑙
≥ 0.

(11)

The dual problem of (11) is (FDH multiplier form equiv-
alent)

max
𝑢
𝑙
,V
𝑙
,𝑧

𝑧

s.t
{{

{{

{

V
𝑙
⋅ 𝑥
𝑖
= 1, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧 ≤ 0, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(12)

LP problem (12) is the multiplier form equivalent of
FDH model. It also reveals the economic meaning of FDH.
Coefficients (𝑢, V) are the prices for output 𝑦 and input 𝑥.The
profit of DMU i under the price system (𝑢

𝑙
, V
𝑙
) is calculated by

𝑢
𝑙
⋅ 𝑦
𝑖
− V
𝑙
⋅ 𝑥
𝑖
, and the input cost of target DMU is normalized

V
𝑙
⋅ 𝑥
𝑖
= 1. The second constraint of (11) is equivalent to

(𝑢
𝑙
⋅ 𝑦
𝑖
− 𝑧 ⋅ V

𝑙
⋅ 𝑥
𝑖
) − (𝑢

𝑙
⋅ 𝑦
𝑙
− V
𝑙
⋅ 𝑥
𝑙
) ≥ 0, (13)

which suggests a nonnegative profit difference between the
input-scaled DMU 𝑖 and DMU 𝑙. The upper bound of scale
factor 𝑧, calculated by letting 𝑖 = 𝑙, is 𝑧 = 1, which indicates
a scaling down of DMU 𝑖’s input. FDH scans all the DMUs
to find a reference DMU and a price system with the largest
scale-down factor 𝑧.

Based on the FDH multiplier form equivalent given in
(12), we now define the peer-appraisal FDH cross efficiency
as follows.

Definition 7 (FDH cross efficiency, benevolent formulation).
Given that the FDH efficiency of schedule 𝛾

𝑖
is 𝐸
𝑖𝑖
, the FDH

cross efficiency 𝐸
𝑗𝑖
of 𝛾
𝑗
evaluated by 𝛾

𝑖
is the optimal value

of 𝑧 in

max
𝑢
𝑙
,V
𝑙
,𝑧

𝑧

s.t

{{{{{{{{

{{{{{{{{

{

V
𝑙
⋅ 𝑥
𝑗
= 1, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑗
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧 ≤ 0, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ (𝑥
𝑙
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖
) ≤ 0,

𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(14)

Definition 7 is the FDH correspondence of the peer-
appraisal CCR (benevolent formulation) in [24], which is
reviewed in Section 4.1. The third constraint LP in (14)
ensures that the efficiency of DMU i calculated by coefficients
(𝑢
𝑙
, V
𝑙
) is the FDH efficiency 𝐸

𝑖𝑖
(primary goal), and under

this constraint, (14) searches for the best efficiency value of
𝐸
𝑗𝑖
(secondary goal).
The following two theorems reveal the relation between

FDH efficiency and FDH cross efficiency.

Theorem 8. The cross efficiency of schedule 𝛾
𝑖
evaluated by

itself is its FDH efficiency.

Proof. Assume that the cross efficiency of schedule 𝛾
𝑖
evalu-

ated by itself is 𝐸
𝑖𝑖
and the FDH efficiency (simple efficiency)

is 𝐸.
The calculation of 𝐸

𝑖𝑖
is solving the following LP:

max
𝑢
𝑙
,V
𝑙
,𝑧

𝑧

s.t

{{{{{{{{

{{{{{{{{

{

V
𝑙
⋅ 𝑥
𝑖
= 1, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧 ≤ 0, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ (𝑥
𝑙
− 𝐸 ⋅ 𝑥

𝑖
) ≤ 0,

𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(15)

Compared with the FDH multiplier form equivalent in
(12), the LP in (15) has extra constraints of

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ (𝑥
𝑙
− 𝐸 ⋅ 𝑥

𝑖
)

= 𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝐸 ≤ 0, 𝑙 = 1, 2, . . . , 𝑛,

(16)

where 𝐸 is the optimal value of (12). Since 𝑧 = 𝐸 satisfies (12),
the extra constraints of (16) always hold true. That means 𝐸
is also the optimal value of (15); thus 𝐸 = 𝐸

𝑖𝑖
.

Theorem 9. The cross efficiency 𝐸
𝑗𝑖
of schedule 𝛾j evaluated by

schedule 𝛾
𝑖
does not exceed the value of its simple efficiency 𝐸

𝑗𝑗
.

Proof. It is obvious that the optimal solution in (14) is a
feasible solution of calculating schedule 𝛾

𝑗
’s FDH efficiency

using (12)

max
𝑢
𝑙
,V
𝑙
,𝑧

𝑧

s.t
{{{

{{{

{

V
𝑙
⋅ 𝑥
𝑗
= 1, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑗
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧 ≤ 0, 𝑙 = 1, 2, . . . , 𝑛,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(17)

Thus the optimal value of 𝑧 in (14) is not greater than the
optimal value of 𝑧 in (17).



Mathematical Problems in Engineering 7

Using the peer-appraisal FDH proposed in (14), the cross
efficiency of a DMU is defined as follows.

Definition 10 (cross efficiencymatrix, average cross efficiency,
and the most efficient schedule). In a schedule set Γ with 𝑛
schedules, the cross efficiency matrix is defined by

𝐸cross =(

𝐸
11
𝐸
12
. . . 𝐸
1𝑛

𝐸
21
𝐸
22
. . . 𝐸
2𝑛

...
...

...
...

𝐸
𝑛1
𝐸
𝑛2
. . . 𝐸
𝑛𝑛

), (18)

where 𝐸
𝑗𝑖

is the FDH cross efficiency of 𝛾
𝑗
evaluated by

𝛾
𝑖
using (14). The average cross efficiency of DMU 𝑖 is

the average value of its cross efficiencies evaluated by all
DMUs in Γ, defined by 𝐸

𝑖
= ∑
𝑛

𝑙=1
𝐸
𝑖𝑙
/𝑛. The most efficient

schedule (𝛾MES) is the schedule with the largest average cross
efficiency.

The cross efficiency matrix 𝐸cross is constructed to calcu-
late the cross efficiency of each DMU.The diagonal elements
in 𝐸cross are the self-appraisal FDH efficiencies, and the rest
of the elements are the peer-appraisal FDH efficiencies. The
elements in 𝑖th rowof𝐸cross are the efficiencies ofDMU 𝑖 rated
by peers, and the elements in 𝑖th column are the efficiencies
of peers rated by DMU 𝑖. The cross efficiency of DMU 𝑖 is
the average value of the 𝑖th row. And 𝛾MES is the best (both
efficient and well metrics balanced) schedule in Γ under our
evaluation system.

Corollary 11. The average cross efficiency 𝐸
𝑗
of a schedule 𝛾

𝑗
,

which is defined in Definition 10, is not greater than its simple
efficiency 𝐸

𝑗𝑗
.

Proof. Using the result of previous theorem, the cross effi-
ciency 𝐸

𝑗𝑖
of schedule 𝛾

𝑗
evaluated by arbitrary schedule 𝛾

𝑖
is

not greater than the 𝐸
𝑗𝑗
. Thus 𝐸

𝑗
, which is the average value

of 𝐸
𝑗𝑖
, is not greater than the 𝐸

𝑗𝑗
.

Then the relation between the FDH efficiency and the
most efficient schedule is given in the following theorem.

Theorem 12. The most efficient schedule of a schedule set Γ is
an efficient schedule.

Proof. Suppose the most efficient schedule is an inefficient
schedule, and then there exits an efficient schedule that
dominates it. Formally, let 𝛾

𝛼
= (𝑥

𝛼
, 𝑦
𝛼
) be the most

efficient schedule of Γ, where 𝑥
𝛼
= (𝑀 𝐸 𝐿)

𝑇 is the
input vector and 𝑦

𝛼
= 𝐵 is the output scalar. Let 𝑧∗

𝛼
be

the cross efficiency of schedule 𝛾
𝛼
evaluated by schedule 𝛾

𝑖
,

and 𝑢∗
𝑙
= 𝑢
∗

𝑙𝑏
, V∗
𝑙
= (V∗
𝑙𝑀

V∗
𝑙𝐸

V∗
𝑙𝐿
), 𝑙 = 1, 2, . . . , 𝑛, are

the optimal coefficients. Let 𝛾
𝛽
be a dominant schedule of

𝛾
𝛼
.
First assume that 𝛾

𝛽
dominates 𝛾

𝛼
in output (balance), and

𝛾
𝛽
= (𝑥
𝛽
, 𝑦
𝛽
), where 𝑥

𝛽
= 𝑥
𝛼
= (𝑀 𝐸 𝐿)

𝑇 and 𝑦
𝛽
=

𝐵 + Δ𝐵 has a small increment in balance. Now we calculate

the cross efficiency of schedule 𝛾
𝛽
evaluated by schedule 𝛾

𝑖
as

follows:
max
𝑢
𝑙
,V
𝑙
,𝑧
𝛽

𝑧
𝛽

s.t

{{{{{{{{

{{{{{{{{

{

V
𝑙
⋅ 𝑥
𝛽
= V
𝑙
⋅ 𝑥
𝛼
= 1,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝛽
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧
𝛽

= 𝑢
𝑙𝐵
⋅ [𝑦
𝑙
− (𝐵 + Δ𝐵)] − V

𝑙
⋅ 𝑥
𝑙
+ 𝑧
𝛽

= 𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝛼
) − V
𝑙
⋅ 𝑥
𝑙
+ (𝑧
𝛽
− 𝑢
𝑙𝐵
⋅ Δ𝐵) ≤ 0,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ (𝑥
𝑙
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖
) ≤ 0,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(19)

Compared with the calculation of the cross efficiency of
schedule 𝛾

𝛼
evaluated by schedule 𝛾

𝑖
, it is easy to verify that

�̂�
𝛽
= 𝑧
∗

𝛼
+ max

𝑙
(𝑢
∗

𝑙𝐵
⋅ Δ𝐵), 𝑢∗

𝑙
, V∗
𝑙
, 𝑙 = 1, 2, . . . , 𝑛, is a feasible

solution of the above LP. Then the optimal value of 𝑧
𝛽
is not

less than 𝑧∗
𝛼
+ 𝑢
∗

𝑙𝐵
⋅ max
𝑙
(Δ𝐵), which is greater than 𝑧∗

𝛼
. That

means the cross efficiency of schedule 𝛾
𝛽
evaluated by an

arbitrary schedule 𝛾
𝑖
is greater than the 𝛾

𝛼
, which contradicts

the assumption of 𝛾
𝛼
being the most efficient schedule.

Then assume that 𝛾
𝛽
dominates 𝛾

𝛼
in input. Without

loss of generality, we assume that 𝛾
𝛽

dominates 𝛾
𝛼

in
makespan, and 𝛾

𝛽
= (𝑥
𝛽
, 𝑦
𝛽
), where 𝑦

𝛽
= 𝐵 and 𝑥

𝛽
=

(𝑀 − Δ𝑀 𝐸 𝐿)
𝑇 has a small decrement in makespan.

Then the cross efficiency of schedule 𝛾
𝛽
evaluated by schedule

𝛾
𝑖
is calculated by solving the following LP:

max
𝑢
𝑙
,V
𝑙
,𝑧
𝛽

𝑧
𝛽

s.t

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

V
𝑙
⋅ 𝑥
𝛽
= V
𝑙𝑀
⋅ (𝑀 − Δ𝑀) + V

𝑙𝐸
⋅ 𝐸 + V

𝑙𝐿
⋅ 𝐿 = 1,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝛽
) − V
𝑙
⋅ 𝑥
𝑙
+ 𝑧
𝛽

= 𝑢
𝑙𝐵
⋅ (𝑦
𝑙
− 𝑦
𝛽
)

− (V
𝑙𝑀
⋅ 𝑥
𝑙𝑀
+ V
𝑙𝐸
⋅ 𝑥
𝑙𝐸
+ V
𝑙𝐿
⋅ 𝑥
𝑙𝐿
) + 𝑧
𝛽
≤ 0,

𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
) − V
𝑙
⋅ (𝑥
𝑙
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖
)

= 𝑢
𝑙
⋅ (𝑦
𝑙
− 𝑦
𝑖
)

− [V
𝑙𝑀
⋅ (𝑥
𝑙𝑀
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖𝑀
)

+V
𝑙𝐸
⋅ (𝑥
𝑙𝐸
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖𝐸
)

+V
𝑙𝐿
⋅ (𝑥
𝑙𝐿
− 𝐸
𝑖𝑖
⋅ 𝑥
𝑖𝐿
)] ≤ 0,

𝑢
𝑙
≥ 𝜀, V

𝑙
≥ 𝜀 ⋅ 1, 𝑙 = 1, 2, . . . , 𝑛.

(20)

Let V󸀠
𝑙

= (V󸀠
𝑙𝑀

V󸀠
𝑙𝐸

V󸀠
𝑙𝐿
) = (V∗

𝑙𝑀
/(1 + Δ𝑀 ⋅

V∗
𝑙𝑀
))(V∗
𝑙𝑀

V∗
𝑙𝐸

V∗
𝑙𝐿
), 𝑢󸀠
𝑙
= (V∗
𝑙𝑀
/(1 + Δ𝑀 ⋅ V∗

𝑙𝑀
))𝑢
∗

𝑙
, and

𝑧
󸀠

𝛽
= 𝑧
∗

𝛼
⋅ (1 + Δ𝑀 ⋅ max

𝑙
(V∗
𝑙𝑀
)). By substituting V󸀠

𝑙
, 𝑢󸀠
𝑙
, and

𝑧
󸀠

𝛽
in (20), it is easy to verify that they are a feasible solution

of (20). Then the optimal solution of the optimal value of 𝑧
𝛽

is not less than 𝑧∗
𝛼
⋅ (1 + Δ𝑀 ⋅max

𝑙
(V∗
𝑙𝑀
)), which contradicts

the assumption of 𝛾
𝛼
being the most efficient schedule.

Finally, if 𝛾
𝛽
dominates 𝛾

𝛼
in multiple metrics, say 𝛾

𝛽
=

(𝑀 − Δ𝑀 𝐸 𝐿 𝐵 + Δ𝐵), intermediary schedules of 𝛾
𝑖
=

(𝑀 − Δ𝑀 𝐸 𝐿 𝐵) and 𝛾
𝑖
= (𝑀 − Δ𝑀 𝐸 𝐿 𝐵 + Δ𝐵)

can be constructed to prove that 𝛾
𝛼
is not the most efficient

schedule using the previous results.

Now we will prove the unit invariance property of our
peer-appraisal FDH proposal as well as the original FDH
model.
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Theorem 13 (unit invariance property). The values of optimal
goal in (5) and (12) are independent of the units that inputs and
outputs are measured in.

Proof. First we prove that FDH efficiency (5) is unit invariant.
The FDHmodel in (5) is equivalent to the LP in (11). So if (11)
is unit invariant, then (5) is too.

In a schedule set Γ = {𝛾
𝑙
= (𝑥
𝑙
, 𝑦
𝑙
) | 𝑙 = 1, 2, . . . , 𝑛}, let

𝑥
𝑙
= (𝑀

𝑙
𝐸
𝑙
𝐿
𝑙
)
𝑇 and 𝑦

𝑙
= 𝐵
𝑙
be the input vector and

output scalar, and let 𝑧∗, 𝑢∗
𝑙
= (𝑢
∗

𝑙𝑀
𝑢
∗

𝑙𝐸
𝑢
∗

𝑙𝐿
) and V∗

𝑙
be the

optimal value for (12).
Under the new unit system, the inputs and outputs now

are the original values multiplied by conversion coefficients,
denoted by 𝑥󸀠

𝑙
= (𝑀

󸀠

𝑙
𝐸
󸀠

𝑙
𝐿
󸀠

𝑙
)
𝑇

= (𝛼
𝑀
𝑀
𝑙
𝛼
𝐸
𝐸
𝑙
𝛼
𝐿
𝐿
𝑙
)
𝑇

and 𝑦󸀠
𝑙
= 𝛽𝑦
𝑙
. Then applying (11) to the new schedule set Γ󸀠 =

{𝛾
󸀠

𝑙
= (𝑥
󸀠

𝑙
, 𝑦
󸀠

𝑙
) | 𝑙 = 1, 2, . . . , 𝑛}, obviously we have a feasible

solution of �̂�󸀠 = 𝑧∗, �̂�󸀠
𝑙
= (𝑢
∗

𝑙𝑀
/𝛼
𝑀

𝑢
∗

𝑙𝐸
/𝛼
𝐸
𝑢
∗

𝑙𝐿
/𝛼
𝐿
) and

V̂󸀠
𝑙
= V∗
𝑙
/𝛽, which is transformed from the original problem.

Therefore, we have the optimal value of new problem 𝑧
󸀠∗

≥

�̂�
󸀠. Suppose 𝑧󸀠∗ > �̂�

󸀠, and the weight coefficients are
𝑢
󸀠∗

𝑙
= (𝑢
󸀠∗

𝑙𝑀
𝑢
󸀠∗

𝑙𝐸
𝑢
󸀠∗

𝑙𝐿
) and V󸀠∗

𝑙
under this circumstance.

Converting theweight coefficients to the original unit system,
we have �̂�

𝑙
= (𝛼
𝑀
𝑢
󸀠∗

𝑙𝑀
𝛼
𝐸
𝑢
󸀠∗

𝑙𝐸
𝛼
𝐿
𝑢
󸀠∗

𝑙𝐿
) and V̂

𝑙
= 𝛽V󸀠
𝑙
, which

also satisfy the constraints of original problem in (12). This
suggests that 𝑧󸀠∗, �̂�

𝑙
, and V̂

𝑙
are also a feasible solution of

original problem, and 𝑧󸀠∗ > �̂�󸀠 = 𝑧∗ contradicts the optimal
assumption of 𝑧∗. So 𝑧󸀠∗ = �̂�

󸀠 is the only possibility. This
proves that the FDH efficiency is not affected by the units that
inputs and outputs are measured in.

Using this result, the unit invariance of peer-appraisal
FDH can be proved in the same manner.

5. Efficient Scheduling Using CrosFDH-GA

5.1. Basic Design. Themost straightforward way to introduce
our FDH cross evaluation method to the genetic algorithm
(GA) is to calculate the average cross efficiency of all indi-
viduals in the pool and use the efficiency value as the fitness
of each individual. The problem of this simple solution is the
high computational requirement of DEA calculation.

For a genetic algorithmwith 1000 population, the calcula-
tion of FDH simple efficiency of a single individual is to solve
a LP with 4001 variables (𝑢

𝑙𝐵
, V
𝑙𝑀
, V
𝑙𝐸
, v
𝑙𝐿
, 𝑙 = 1, 2, . . . , 1000,

and 𝑧) and 2000 constraints using (12), and the calculation of
FDH simple efficiency of all individuals is to solve 1000 such
LPs.

Then the calculation of FDH cross efficiency of an indi-
vidual evaluated by another individual is to solve a LP with
4001 variables and 3000 constraints using (14). To calculate
the average cross efficiency of an individual, solving 999 such
LPs is required. And to calculate the average cross efficiency
of all individuals, it requires repeating the process for 1000
times.

In our computing configuration (Intel i5-3210M, 4Gb
RAM, 32 bit Win7, VS2010, and GLPK 4.47), the calculation
of a single FDH simple efficiency and a single FDH cross
efficiency in the above DEA-GA implementation takes about
3.6 seconds and 6.2 seconds on average. The calculation of

Bottom Bottom Bottom Bottom
Metapopulation

Subpopulation M
Goal: makespan

Subpopulation E
Goal: energy

Subpopulation L
Goal: link

Subpopulation B
Goal: balance

Top 10%Top 10%Top 10%Top 10%

DEA-ready pool

Top 10% cross efficiency

Figure 2: The Subpopulation updating process.

an average cross efficiency requires over 10 minutes. The
DEA solving time of 1000 individuals in a single generation
is estimated to be about 7 days. If the GA runs for 50
generations, the whole solving time is near a year, which is
beyond acceptable level.

In this paper, we propose a solution to this problem
using a “divide-and-conquer” method.The whole population
(Metapopulation) is divided in to 4 subpopulations: Subpop-
ulationM, Subpopulation E, Subpopulation L, and Subpopula-
tion B, each of which experiences its own evolution towards
a single optimization goal (Makespan, Energy, average Link
load, andworkload Balance, correspondingly). In each gener-
ation, after the algorithm evaluates the performance of every
individual, the elites of each subpopulation are selected and
regrouped as the DEA-ready pool for the DEA evaluation
process. The basic idea is that, according to Theorem 4,
the more preeminent a schedule is in one metric, the less
likely it is dominated by another schedule. Then the top
performers in the DEA-ready pool are duplicated to each
subpopulation and replace the bottom individuals, and the
subpopulations continue to evolve. The process is shown in
Figure 2.

5.2. Genetic Operations. In our proposal, a chromosome or
an individual represents one schedule solution.The structure
of a chromosome is an array with the size of processors
number, and the value of its element, 𝑐ℎ𝑟[𝑖] = 𝑗, represents
that task 𝑖 is assigned to processor 𝑗.

The evolution of the four subpopulations is independent,
each of which goes through a complete series of genetic
operations.Thebasic framework of genetic algorithm is based
on the proposal in [27] as follows.

Step 1 (initialization). The chromosome is randomly created
and added to the subpopulation. When the number of
population reaches subpopulation size, algorithm goes to the
next step.

Step 2 (evaluation). Performance of each individual in the
pool is evaluated.
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Table 1: Two randomly generated chromosomes.

Chromosome Index
1 2 3 4 5 6 7 8 9

chr1 3 1 3 2 2 3 1 2 3
chr2 2 2 1 3 1 1 1 1 3

Step 3 (selection). Chromosomes are ordered according to
their subpopulation’s optimization goal, and the top sel ratio
chromosomes directly enter the next generation’s pool.

Step 4 (crossover). Two randomchromosomes, chr1 and chr2,
are selected from current pool, and two new chromosomes,
nchr1 and nchr2, are generated by swapping middle part of
the chromosome array. This step produces population of
cros ratio∗ subpopulation size.

Step 5 (mutation). A random chromosome is picked, and
values of two random positions of the chromosome are
swapped to produce a new chromosome. The population
generated in the mutation step accounts for mut ratio of
subpopulation size.

Step 6 (termination). GA is terminated after certain number
of generations. If GAdoes notmeet its terminal condition, the
algorithm iterates to Step 2 and repeats the whole process.

For example, consider a scheduling problem of 9 tasks
(task 1∼task 9) scheduling to 3 processors (processor 1∼
processor 3). Two randomly generated chromosomes, chr1
and chr2, are listed in Table 1. Following the previous
definition, chr1 represents that task 2 and task 7 are scheduled
to processor 1; tasks 4, 5, and 8 are scheduled to processor
2; and tasks 1, 3, 6, and 9 are scheduled to processor 3.
Chromosome chr2 represents that tasks 3, 5, 6, 7, and 8 are
scheduled to processor 1; task 1 and task 2 are scheduled to
processor 2; and task 4 and task 9 are scheduled to processor
3.

In the crossover operation, two randomly selected chro-
mosomes, chr1 and chr2, swap their middle part of chromo-
some to form two new chromosomes nchr1 and nchr2, as
shown in Figure 3.

In the mutation operation, a new chromosome nchr1
is generated by randomly picking a chromosome chr1, and
swapping two arbitrary positions in chr1 as shown in Figure 4.

5.3. Cross Evaluation of Individuals. The elites of each sub-
population are selected to form a DEA-ready pool. Then the
DEA approach is applied to the individuals in this pool.

First, the FDH simple efficiency of every individual in
the pool is calculated, and the inefficient individuals are
removed. According to Corollary 5, the removal of inefficient
DMUs does not change the dominant position of the efficient
ones. Then the average cross efficiencies of the remaining
individuals are calculated, and the individual with the largest
value of average cross efficiency is marked as the most
efficient schedule.

chr1

chr2

nchr1

nchr2

1 1

11 11 1

2 2 2

22

3 3 3 3

33

1 1 12 2 2

2

2 3 3

1111 3333

Crossover

Swap

Figure 3: The crossover operation.

chr1

nchr1

1 12 2 223

1 1 2 2 23 3 3 3

33

Swap
Arbitrary
position 1

Arbitrary
position 2

Mutation

Figure 4: The mutation operation.

The reason for the removal of inefficient DMUs is three-
fold: first of all, as proven in Theorem 12, we know that
the most efficient schedule which we are pursuing is not
an inefficient schedule; secondly, the removal of inefficient
schedules eliminates the influence of these obviously defected
schedules on the coefficients of the following calculation of
FDH cross efficiency (otherwise, an inefficiency schedule
would become a constraint in the calculation of FDH cross
efficiency according to (14)); finally, it further reduces the
computational demand of our algorithm.

Pseudocode 1 shows cross evaluation process in our
algorithm.

6. Computational Experiments and Discussion

6.1. Simulation Results of FDH Cross Evaluation Formulation.
In this section, we extract 40 actual schedule solutions from
our simulation, and use our proposed FDH cross evaluation,
as well as other DEA methods, to analyze the performance
of these DMUs. The chosen schedules are from the 5th
generation of our CrosFDH-GA for a schedule problem
of scheduling 100 tasks onto a 4 × 4 mesh NoC. Top 10
best schedules in each subpopulation are grouped as our
schedule set.The schedules are listed in Table 2, and for more
intuitive observation, all the metrics shown are preprocessed
by dividing the value by the average value of each metric in
the set. As we have proved inTheorem 13, this normalization
process will not affect the value of the DMU’s efficiency.

CCR efficiency (CCR), BCC efficiency (BCC), FDH
efficiency (FDH), CCR super efficiency (Super CCR), CCR
average Cross efficiency (Cros CCR), and FDH average Cross
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BEGIN SCHEDULE-EVALUATION
(1) FOR each schedule 𝛾

𝑙
in the DEA-ready pool Γ DO:

(1.1) Calculate 𝐸
𝑙𝑙
using FDH DEA;

(2) END FOR
(3) Regroup efficient schedule (𝐸

𝑙𝑙
= 1) as Γ

𝑒
;

(4) FOR each schedule 𝛾
𝑗
in Γ
𝑒
;

(4.1) FOR each schedule 𝛾
𝑖
̸= 𝛾
𝑗
in Γ
𝑒
DO:

(4.1.1) Calculate the peer-appraisal FDH 𝐸
𝑗𝑖
;

(4.2) END FOR;
(4.3) Calculate the average cross efficiency 𝐸

𝑗
of 𝛾
𝑗
;

(5) END FOR
(6) Sorting the cross efficiency of schedules in Γ

𝑒
;

(7) Mark the schedule with the largest average cross efficiency as 𝛾MES;
END SCHEDULE-EVALUATION

Pseudocode 1: Pseudocode of cross evaluation of DEA-ready pool.

efficiency (Cros FDH) of each DMU are also calculated and
listed in Table 2. All the DEA formulations are solved using
GLPK [28].

Two kinds of FDH cross efficiencies, Cros FDH (All)
and Cros FDH (Eff), are presented in Table 2. The difference
between these two is as follows. Cros FDH (All) calculates the
FDH cross efficiency using all 40 schedules while Cros FDH
(Eff) only takes into account the FDH efficient ones, which
is suggested in Section 5.3. The value of CrosFDH (Eff) for
inefficient schedules is not calculated and marked with “—.”

Moreover, a maverick index (MI), which is suggested in
[24], is calculated for each FDH cross efficiency. MI for DMU
𝑖 is calculated by MI

𝑖
= (𝐸
𝑖𝑖
− 𝐸
𝑖
)/𝐸
𝑖𝑖
.

MI measures the difference between a DMU’s simple
efficiency and its cross efficiency. The larger MI value implies
that the DMU is more likely to be a maverick that “cheats”
a high simple efficiency by choosing a particular set of
coefficients that favors its only strength and depreciating
other metrics, in our words, a metric-unbalanced DMU.

From Table 2 we observe that, among the 3 simple effi-
ciency formulations, CCR has the smallest efficient schedule
number of 2, while BCC has 9 efficient schedules, and FDH
has 13. Both efficient schedules in CCR are efficient in BCC
and FDH; all 9 efficient schedules in BCC are also FDH
efficient, and FDH has 4 extra schedules: schedule 4, schedule
15, schedule 18, and schedule 19, than BCC. The difference
between the efficient schedule numbers of these three DEA
models is caused by the different shapes of efficient frontier,
which is generated by different constraints in the model
formulations. The convex-shaped efficient frontier of BCC
in the multi-input multioutput space contains more DMUs
than the CCR efficient frontier, while the staircase-like FDH
efficient frontier has the largest number of efficient DMUs
on it. Moreover, the value of CCR efficiency of a schedule
is generally the smallest one among the three models, and
BCC is generally smaller than the FDH efficiency. In fact, as
pointed out in [29], the FDH efficiencies are generally higher
than CCR and BCC efficiencies.

ThreeDMUrankingmethods, CCR super efficiency, CCR
cross efficiency, and FDH cross efficiency, are also compared

in Table 2. As observed in the table, CCR super efficiency
and CCR cross efficiency are consistent with the CCR simple
efficiency, and both CCR ranking methods mark schedule 32
as the best schedule. For the FDH average cross efficiency, it
is easy to tell that CrosFDH (all) is more discriminating than
the previous methods. The FDH average cross efficiencies of
13 FDH efficient schedules vary from 0.9934 (schedule 20,
ranks 1 in 40 schedules) to 0.905 (schedule 4, ranks 35 in 40
schedules). The reason for an efficient schedule 4 achieving
such a low average cross efficiency score is explained by itsMI
value. schedule 4 has a high MI of 0.105, which suggests that
it “cheats” in the FDH simple efficiency calculation. A close
look on its metrics reveals that it compromises too much on
the 𝐸 and 𝐿metric.The same situation happens with schedule
31 (ranks 25 in 40) and schedule 32 (ranks 24 in 40), in which
both are classified as CCR efficient schedules and schedule 32
even being marked as the “best” schedule under CCR super
efficiency and CCR cross efficiency analysis. MIs of schedule
31 and 32 are 0.0568 and 0.0553; the relevantly highMIs imply
that they aremore likely to bemavericks. And after examining
theirmetrics, it is shown that they are bothmetric unbalanced
because they trade too much performance on the 𝐸 and 𝐿
metric for the 𝐵metric.

As to the two different implementations of the FDH
average cross efficiency, the Cros FDH (All) and Cros FDH
(Eff), deliver very similar results on the DMU ranking. Top 3
schedules under Cros FDH (All) are schedules 20, 17, and 18.
Comparing to the top 3 ranking of Cros FDH (Eff), schedules
17, 20, and 18, only a slight change of order exists, which
validates the process of inefficient DMU removal in the cross
evaluation of individuals proposed in Section 5.3.

Moreover, the average values of four metrics andMI (All)
in each subpopulation are calculated and listed in Table 3.
The most interesting results are in the Subpopulation B. The
average workload balance of Subpopulation B is almost as
twice as the average value of the rest three subpopulations.
However, the performance of other metrics is not so good
in the Subpopulation B and is 1.2%, 15.4%, and 16% larger
than the average value of the rest three subpopulations in
makespan, energy, and average link load, respectively. This
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Table 3: The average value of metrics of each subpopulation.

Subpopulation Average
makespan

Average
energy

Average
link
load

Average
balance

Average
MI (All)

M 0.9618 0.9473 0.9399 0.8465 0.0455
E 0.9885 0.9138 0.9298 0.8077 0.0217
L 1.0491 0.9398 0.9177 0.8029 0.0279
B 1.0121 1.0773 1.0779 1.6042 0.0727

phenomenon indicates that the optimization on the𝐵metrics
is in conflict with other metrics, especially with 𝐸 and 𝐿
metrics. The assertion is also supported by the MI (All).
The average MI in Subpopulation B is 129.3% larger than
the average value of the rest three subpopulations, which
suggests that the schedules in Subpopulation B are extremely
metric unbalanced, compared with the schedules in other
subpopulations. Thus, in order to achieve a highly metric-
balanced schedule solution, compromise must be made on
the 𝐵metric.

6.2. Simulation Results of CrosFDH-GA Scheduling Algorithm

6.2.1. Simulation Setup. In this section, comparative simula-
tions are made to evaluate the performance of our CrosFDH-
GA scheduling algorithm. Twenty DAGs, tg1∼tg20, are gener-
ated usingTask Graph For Free (TGFF) [30].The task number
of generated DAGs varies from 50 to 100. Along with two
real-world application, solving laplace equation using Gauss-
Seidel algorithm [31] and molecular dynamic coding [32], a
total of 22 task sets are simulated.

The control groups of our simulation are four GAs with
different global objective functions, and they are multipli-
cation and division (MD), weighted sum (WS), weighted
exponential sum (WES), and exponential weighted criterion
(EWC) based on global criterion method [33]. The fitness
functions are presented as follows:

fitnessMD = 𝑀
−1

⋅ 𝐸
−1

⋅ 𝐿
−1

⋅ 𝐵,

fitnessWS = 𝑤𝑀𝑀
−1

+ 𝑤
𝐸
𝐸
−1

+ 𝑤
𝐿
𝐿
−1

+ 𝑤
𝐵
𝐵,

fitnessWES = 𝑤𝑀𝑀
−2

+ 𝑤
𝐸
𝐸
−2

+ 𝑤
𝐿
𝐿
−2

+ 𝑤
𝐵
𝐵
2

,

fitnessEWC = (𝑒
𝑤
𝑀 − 1) ⋅ 𝑒

𝑀
−1

+ (𝑒
𝑤
𝐸 − 1) ⋅ 𝑒

𝐸
−1

+ (𝑒
𝑤
𝐿 − 1) ⋅ 𝑒

𝐿
−1

+ (𝑒
𝑤
𝐵 − 1) ⋅ 𝑒

𝐵

,

(21)

where 𝑤
𝑀
, 𝑤
𝐸
, 𝑤
𝐿
, and 𝑤

𝐵
are the weight coefficients of the

corresponding metric. In our implementation, 𝑤
𝑀
, 𝑤
𝐸
, 𝑤
𝐿
,

and𝑤
𝐵
are all set to 0.25, which means there is no preference

between four metrics.
Moreover, the sel ratio, cros ratio, and mut ratio of GA

are 0.2, 0.4, and 0.4, and GA terminates its iteration after 50
generations.Thepopulation of four global objective function-
based GAs is 1000.The subpopulation size of CrosFDH-GA is
250, which ensures that total population is 1000 individuals.

All the output schedules are simulated under a System C
based cycle-accurate NoC simulator, which is a wormhole-
routing modified version of [34]. The implemented NoC
simulator is a 4 × 4 mesh NoC with the router structure
illustrated in Figure 3. The link width is 16 bit, and the FIFO
depth is one flit. 𝑋𝑌 routing is used to forward packets and
RR arbitration is adopted to solve contentions. The NoC
simulator also integrates Orion 2.0 [35] to measure the actual
routing energy during execution of a DAG.

6.2.2. Results and Discussion. The simulation results of 22
task sets, which consist of 20 DAGs generated by TGFF and
two real-world applications of solving Laplace equation (LE)
using Gauss-Seidel algorithm andmolecular dynamic coding
(MDC), under four global criterion GAs and our CrosFDH
GA, are illustrated in Figure 5. All the shown makespan and
energy metrics are the actual results measured in our NoC
simulator.

As shown in Figure 5, it is observed that the four global
criterion GAs render similar performance on the 𝑀, 𝐸, 𝐿,
and 𝐵 metrics, while the proposed CrosFDH GA exhibits its
different tendency on the optimization of metrics. As shown
in Figure 5(a), all five scheduling algorithms demonstrate
same level of performance on the makespan. The main
performance difference exists in the optimization of the
energy (Figure 5(b)), average link load (Figure 5(c)), and
workload balance metrics (Figure 5(d)). The four global
criterion GAs always output the schedule solution with
the best workload balance (in tg10, MD-GA and WS-GA
do not find the schedule solution with the best 𝐵 metric
within 50 generations as the WES-GA and EWC-GA do),
as shown in Figure 5(d). On the other hand, our proposal
always compromises on the 𝐵 metrics and trades for better
optimization on the 𝐸 and 𝐿metrics.

To be more specific, we normalize the 𝑀, 𝐸, 𝐿, and 𝐵
metrics of the five scheduling algorithms to the CrosFDH
correspondence in 22 task sets and calculate the average value
of thesemetrics for each scheduling algorithm.The results are
shown in Table 4.

From the table, the four global criterion GAs have
eight times as much 𝐵 metric as CrosFDH-GA on average.
However, our proposal has better performance on both𝐸 and
𝐿metrics. The average energy of our algorithm is about 36%
smaller, and the average link load is about 29% smaller than
the rest algorithms on average.This tendency of optimization
in the CrosFDH-GA is explained by the previous analysis of
schedule’s FDH cross efficiency, which suggests that a better
metric-balanced schedule should trade the 𝐵metric for the 𝐸
and 𝐿metrics.

Moreover, in our observation, schedule solutions that
show similar performance to the output schedule of the
four global criterion GAs exists in the Subpopulation B of
the CrosFDH-GA. However, these schedule solutions are
depreciated during the peer-appraising process of FDH cross
efficiency, which supports the conclusion that the output
schedules of the global criterion GAs are metric unbalanced.

Figure 5(e) illustrates the solving time (measured in
seconds) of five algorithms, and for illustrative presentation,
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Figure 5: The comparative results of CrosFDH, MD, WS, WES, and EWC-GA.

Table 4:The average value of metrics of each scheduling algorithm.

Algorithms Average
makespan

Average
energy

Average
link load

Average
balance

CrosFDH-GA 1.0000 1.0000 1.0000 1.0000
MD-GA 0.9776 1.3451 1.4852 8.0536
WS-GA 0.9992 1.4074 1.5757 8.0536
WES-GA 1.0213 1.4214 1.5883 8.2483
EWC-GA 0.9786 1.4323 1.6036 8.2483

the data in Figure 5(e) are preprocessed by applying log
10
to

the solving time of each algorithm. According to the figure,
MD-GA has the smallest solving time in the five algorithms.
The WS-GA, WES-GA, and EWC-GA have 4.4%, 4.5%, and
54.6% more solving times than the MD-GA on average.
The CROSFDH-GA has the largest solving time which is
nearly 109 times larger than MD-GA. The reason of such

long solving time is caused by the high computation load
introduced by DEA analysis. In the CROSFDH-GA, 90.2%
of the solving time is used to calculate the average FDH cross
efficiency, 8.3% of the solving time is used to calculate FDH
simple efficiency, and the rest of the algorithm consumed only
1.5% of the solving time.

In MD-GA, WS-GA, WES-GA, and EWC-GA, a clear
increasing trend of solving time is observed as the scale
of the scheduling problem (task number) rises, as shown
in Figure 6(a). However such trend is not observed in
CROSFDH-GA, as shown in Figure 6(b).

The reason of this phenomenon in CROSFDH-GA is that
the solving time of CROSFDH-GA is largely determined by
the calculation time of average FDH cross efficiency, and the
calculation time of average FDH cross efficiency is depending
on the size of the schedule set, which in our CROSFDH-GA is
the number of efficiency schedules in the DEA-ready pool in
each generation. Thus, the solving time of CROSFDH-GA is
not directly related to the task number of a schedule problem
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Figure 6: The relation of solving time and task number.

but to the number of efficient schedules in the DEA-ready
pool in each generation.

Figure 7(a) shows the relation between number of effi-
cient schedules in the DEA-ready pool and the average solv-
ing time of the average FDH cross efficiency in a generation.
As shown in the figure, the solving time rises rapidly as the
efficient schedule number increases. Moreover, Figure 7(b)
gives a statistic result of efficient schedule number during
all 22 simulations. As observed in the figure, most of the
generations during the simulation have the efficient schedule
number that lies between 30 and 70, which requires about 7
to 100 seconds average FDH cross efficiency solving time.

Finally, Figure 8 demonstrates the trend of how four
metrics converge during the iteration.The illustrated metrics
are the best ones in the corresponding subpopulations in each
generation and are all normalized to the final value of the
50th generation. Figure 8 shows that the𝑀metric is the first
converged metric, followed by the 𝐸 metric and 𝐿 metric,
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Figure 7: Efficient schedule number in CROSFDH-GA.

which both converge in the same pace. And the 𝐵 metric is
the last converged metric.

7. Conclusion

In this paper, a FDH cross efficiency formulation, as well as a
CrosFDH-GA algorithm, is proposed for the task scheduling
problem on the NoC-based MPSoC. Four common metrics,
namely, makespan, routing energy, average link load, and
workload balance, are used to construct the multi-input
multioutput DMUmodel. After using FDH simple efficiency
to eliminate inefficient (dominated) schedules, the peer-
appraisal FDH cross efficiency is introduced to ranking
schedules, during which the maverick (metric-unbalanced)
schedules are depreciated.Then a FDH cross efficiency-based
genetic algorithm with four subpopulations, each of which
optimizes a single metric, is proposed for solving actual
scheduling problem on NoC. According to our simulation
results, the proposed FDH cross efficiency effectively distin-
guishes the schedule solutions according to the balance of
their metrics, and our CrosFDH always outputsmoremetric-
balanced schedules than other global criterion GAs.
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